RM18-8, NERC Petition Exhibit D, Development History

RM18-8_NERCPetition_20180122ExD_develop history.pdf

FERC-725N, (NOPR in RM18-8, GMD) Mandatory Reliability Standards: Reliability Standard TPL Reliability Standards

RM18-8, NERC Petition Exhibit D, Development History

OMB: 1902-0264

Document [pdf]
Download: pdf | pdf
Exhibit D
Summary of Development History and Complete Record of Development

Summary of Development History

Summary of Development History
The development record for proposed Reliability Standard TPL-007-2 is summarized
below.
I.

Overview of the Standard Drafting Team
When evaluating a proposed Reliability Standard, the Commission is expected to give

“due weight” to the technical expertise of the ERO. 1 The technical expertise of the ERO is
derived from the standard drafting team selected to lead each project in accordance with Section
4.3 of the NERC Standards Process Manual. 2 For this project, the standard drafting team
consisted of industry experts, all with a diverse set of experiences. A roster of the Standard
Drafting team (“SDT”) members is included in Exhibit F.
II.

Standard Development History
A. Standard Authorization Request Development
Project 2013-03 – Geomagnetic Disturbance Mitigation was initiated to address

Commission directives in Order No. 830. 3 In Order No. 830, the Commission directed NERC to:
(1) Modify the benchmark GMD event definition used for GMD Vulnerability Assessments;
(2) Make related modifications to requirements pertaining to transformer thermal impact
assessments;
(3) Require collection of GMD-related data, which NERC is to make publicly available; and
(4) Require deadlines for Corrective Action Plans and GMD mitigating actions. 4

1

Section 215(d)(2) of the Federal Power Act; 16 U.S.C. §824(d)(2) (2012).
The NERC Standard Processes Manual is available at
http://www.nerc.com/comm/SC/Documents/Appendix_3A_StandardsProcessesManual.pdf.
3
Order No. 830, Reliability Standard for Transmission System Planned Performance for Geomagnetic
Disturbance Events, 156 FERC ¶ 61,215, 81 Fed. Reg. 67,210 (2016).
4
Id.
2

1

The Commission directed NERC to file the modifications within 18 months of the
effective date of Order No. 830. A Standard Authorization Request (“SAR”) was posted for a 30day formal comment period from December 16, 2016 through January 20, 2017. The Standards
Committee accepted the SAR on March 16, 2017.
B. First Posting – Comment Period, Initial Ballot and Non-binding Poll
Proposed Reliability Standard TPL-007-2 and the associated Implementation Plan,
Violation Risk Factors, and Violation Severity Levels were posted for a 45-day formal public
comment period from June 28, 2017 through August 11, 2017, with a parallel initial ballot and
non-binding poll held during the last 10 days of the comment period from August 2, 2017
through August 11, 2017. The initial ballot received 79.87% quorum, and 72.67% approval. The
non-binding poll received 77.13% quorum and 69.19% of supportive opinions. There were 58
sets of responses, including comments from approximately 147 different individuals and
approximately 106 companies representing all 10 industry segments. 5
C. Final Ballot
Proposed Reliability Standard TPL-007-2 was posted for a 10-day final ballot period on
October 20, 2017 through October 30, 2017. The proposed Reliability Standard received a
quorum of 88.74% and an approval rating of 73.35%.
D. Board of Trustees Approval
Proposed Reliability Standard TPL-007-2 was adopted by the NERC Board of Trustees
on November 9, 2017. 6

5

NERC, Consideration of Comments, Project 2013-03 - Geomagnetic Disturbance Mitigation, (October
2017), available at
http://www.nerc.com/pa/Stand/Project201303GeomagneticDisturbanceMitigation/Consideration_of_Comments_Oct
ober_2017.pdf.
6
NERC, Board of Trustees Agenda Package, Agenda Item 7b (Project 2013-03 - Geomagnetic Disturbance
Mitigation), available at
http://www.nerc.com/gov/bot/Agenda%20highlights%20and%20Mintues%202013/Board_Open_Meeting_Novemb
er_9_2017_Agenda_Package.pdf.

2

E. Implementation Plan Errata
On January 17, 2018, the Standards Committee approved an errata change to the TPL007-2 implementation plan. 7

7

NERC, Standards Committee Conference Call, Agenda Item 6 (Project 2013-03 TPL-007-2 Errata),
available at
http://www.nerc.com/comm/SC/Agenda%20Highlights%20and%20Minutes/Standards_Committee_Agenda_Packag
e_January_2018.pdf.

3

Complete Record of Development

Project 2013-03 Geomagnetic Disturbance Mitigation
Related Files
Status
A 10-day final ballot for TPL-007-2 - Transmission System Planned Performance for Geomagnetic
Disturbance Events concluded at 8 p.m. Eastern, Monday, October 30, 2017. The voting results can be
accessed via the links below. The standard will be submitted to the Board of Trustees for adoption and then filed
with the appropriate regulatory authorities.
Background:
On September 22, 2016, FERC issued Order No. 830 approving Reliability Standard TPL-007-1 − Transmission System
Planned Performance for Geomagnetic Disturbance Events. In the order, FERC directed NERC to develop certain
modifications to the Standard, or to develop other new or revised Standards. The revisions include:
•
•
•
•

Modify the benchmark GMD event definition used for GMD Vulnerability Assessments;
Make related modifications to requirements pertaining to transformer thermal impact assessments;
Require collection of GMD-related data. NERC is directed to make data available; and
Require deadlines for Corrective Action Plans (CAPs) and GMD mitigating actions.

FERC established a deadline of 18 months from the effective date of Order No. 830 for completing the revisions,
which is May 2018.
Standard Affected: TPL-007-1 - Transmission System Planned Performance for Geomagnetic Disturbance Events
Purpose/Industry Need:
Project 2013-03 will develop reliability standards to mitigate the risk of instability, uncontrolled separation, and
Cascading as a result of geomagnetic disturbances (GMDs) through application of Operating Procedures and
strategies that address potential impacts identified in a registered entity's assessment as directed in FERC Order 779
and FERC Order No. 830.
While the impacts of space weather are complex and depend on numerous factors, space weather has demonstrated
the potential to effect the reliable operation of the Bulk-Power System. During a GMD event, geomagneticallyinduced current (GIC) flow in transformers may cause half-cycle saturation, which can increase absorption of
Reactive Power, generate harmonic currents, and cause transformer hot spot heating. Increased transformer
Reactive Power absorption and harmonic currents associated with GMD events can also cause protection system
Misoperation and loss of Reactive Power sources, the combination of which can lead to voltage collapse.
<><><><><><><> <><><><><><><><><><><> <><><><><><><><><><><><><><><><><>

Draft

Action

Dates

Results

The Standards Committee approved the revised Implementation Plan on
January 17, 2018.
Revised
Implementation Plan
Clean (40)| Redline to Last
Posted (41)
Final Draft

Final Ballot

TPL-007-2
Clean (25) | Redline to
LastPosted (26)
Redline to Last Approved
(27)

Info (39)
Vote

10/20/17 10/30/17

Consideration
of Comments

Implementation Plan
Clean (28)| Redline to Last
Posted (29)
Supporting Materials
Supplemental GMD Event
White Paper
Clean (30) | Redline to Last
Posted (31)
Thermal Screening Criterion
White Paper
Clean (32)| Redline to Last
Posted (33)
Ballot
Results

Transformer Thermal
Impact Assessment White
Paper
Clean (34)| Redline to Last
Posted (35)
VRF/VSL Justification
Clean (36)| Redline to Last
Posted (37)
Consideration of
Directives (38)
Draft 1
TPL-007-2
Clean (8) | Redline to Last
Approved (9)

Initial Ballot and
Non-binding Poll
Updated Info (19)
Info (20)

Implementation Plan (10)

Vote

Supporting Materials

Comment Period

Supplemental GMD Event
White Paper (11)

Info (23)

Thermal Screening Criterion
White Paper
Clean (12) | Redline (13)

Ballot
Results (21)
08/02/17 –
08/11/17 Non-binding
Poll Results
(22)

06/28/17 –
08/11/17

Submit Comments
Join Ballot Pools

06/28/17 –
07/27/17

Info

07/25/17 Transformer Thermal
08/25/17
Send RSAW feedback
Impact Assessment White
to:RSAWfeedback@nerc.net
Paper

Comments Consideration of
Received Comments (24)

Clean (14) | Redline (15)
Unofficial Comment Form
(Word) (16)
VRF/VSL Justification (17)
Consideration of Directives
(18)
Draft Reliability Standard
Audit Worksheet (RSAW)
Clean | Redline to Last
Posted
The Standards Committee accepted the Standards Authorization Request on March 16, 2017.
Revised
Standard Authorization
03/17/17
Request
Clean (6) | Redline (7)

Standard Authorization
Request (1)

Informal Comment Period

Supporting Materials

Info (3)

Unofficial Comment Form
(Word) (2)

Submit Comments

12/16/16 – Comments Consideration of
01/20/17 Received (4) Comments (5)

Standards Authorization Request Form
When completed, email this form to:

sarcomm@nerc.com

NERC welcomes suggestions to improve the reliability
of the bulk power system through improved reliability
standards. Please use this form to submit your request
to propose a new or a revision to a NERC’s Reliability
Standard.

Request to propose a new or a revision to a Reliability Standard
Title of Proposed Standard(s):

Modifications to Geomagnetic Disturbance Standards

Date Submitted:

December 1, 2016

SAR Requester Information
Name:

Frank Koza

Organization:

PJM Interconnection / Project 2013-03 SDT Chair

Telephone:

610-666-4228

E-mail:

frank.koza@pjm.com

SAR Type (Check as many as applicable)
New Standard

Withdrawal of existing Standard

Revision to existing Standard

Urgent Action

SAR Information
Purpose (Describe what the standard action will achieve in support of Bulk Electric System reliability.):
The goal of this project is to address the Federal Energy Regulatory Commission (Commission) directives
contained in Order No. 830 by modifying TPL-007-1 - Transmission System Planned Performance for
Geomagnetic Disturbance Events and the benchmark GMD event used in GMD Vulnerability
Assessments or by developing an equally efficient and effective alternative.
Industry Need (What is the industry problem this request is trying to solve?):
On September 22, 2016, the Commission issued Order No. 830 approving TPL-007-1. In the order, the
Commission directed NERC to develop certain modifications to the Standard, including:



Modify the benchmark GMD event definition used for GMD Vulnerability Assessments;
Make related modifications to requirements pertaining to transformer thermal impact
assessments;

SAR Information



Require collection of GMD-related data, and for NERC to make it publicly available; and
Require deadlines for Corrective Action Plans (CAPs) and GMD mitigating actions.

The Commission established a deadline of 18 months from the effective date of Order No. 830 for
completing the revisions, which is May 29, 2018.
Brief Description (Provide a paragraph that describes the scope of this standard action.)
The Standards Drafting Team (SDT) shall develop modifications to TPL-007-1 and the benchmark GMD
event that address Commission directives from Order No. 830. The work will include development of
Violation Risk Factors, Violation Severity Levels, and an Implementation Plan for the modified standards
within the deadline established by the Commission in Order No. 830.
Detailed Description (Provide a description of the proposed project with sufficient details for the
standard drafting team to execute the SAR. Also provide a justification for the development or revision
of the standard, including an assessment of the reliability and market interface impacts of implementing
or not implementing the standard action.)
The SDT shall address each of the Order No. 830 directives by developing modifications to requirements
in TPL-007-1 and related material, or the SDT shall develop an equally efficient and effective alternative.
To address concerns identified in Order No. 830, the Commission directed the following:
Benchmark GMD Event
 [T]he Commission, as proposed in the NOPR, directs NERC to develop revisions to the benchmark
GMD event definition so that the reference peak geoelectric field amplitude component is not
based solely on spatially-averaged data.(P.44)
 Without prejudging how NERC proposes to address the Commission’s directive, NERC’s response
to this directive should satisfy the NOPR’s concern that reliance on spatially-averaged data alone
does not address localized peaks that could potentially affect the reliable operation of the BulkPower System. (P.47)
Transformer Thermal Impact Assessment
 Consistent with our determination above regarding the reference peak geoelectric field
amplitude value, the Commission directs NERC to revise Requirement R6 to require registered
entities to apply spatially averaged and non-spatially averaged peak geoelectric field values, or
some equally efficient and effective alternative, when conducting thermal impact assessments.
(P.65)
Collection of GMD Data
 The Commission … adopts the NOPR proposal in relevant part and directs NERC to develop
revisions to Reliability Standard TPL-007-1 to require responsible entities to collect GIC
monitoring and magnetometer data as necessary to enable model validation and situational
awareness, including from any devices that must be added to meet this need. The NERC standard
drafting team should address the criteria for collecting GIC monitoring and magnetometer data...

Project 2013-03 Geomagnetic Disturbance Mitigation
December 1, 2016

2

SAR Information





and provide registered entities with sufficient guidance in terms of defining the data that must be
collected.... (P.88)
Each responsible entity that is a transmission owner should be required to collect necessary GIC
monitoring data. However, a transmission owner should be able to apply for an exemption from
the GIC monitoring data collection requirement if it demonstrates that little or no value would be
added to planning and operations. (P.91)
NERC may also propose to incorporate the GIC monitoring and magnetometer data collection
requirements in a different Reliability Standard....(P.91)

Deadlines for Corrective Action Plans and Mitigations
 The Commission directs NERC to modify Reliability Standard TPL-007-1 to include a deadline of
one year from the completion of the GMD Vulnerability Assessments to complete the
development of corrective action plans. (P.101)
 The Commission also directs NERC to modify Reliability Standard TPL-007-1 to include a two-year
deadline after the development of the corrective action plan to complete the implementation of
non-hardware mitigation and four-year deadline to complete hardware mitigation…. The
Commission agrees that NERC should consider extensions of time on a case-by-case basis. (P.102)

Reliability Functions
The Standard will Apply to the Following Functions (Check each one that applies.)
Regional Reliability
Organization

Conducts the regional activities related to planning and operations, and
coordinates activities of Responsible Entities to secure the reliability of
the Bulk Electric System within the region and adjacent regions.

Reliability Coordinator

Responsible for the real-time operating reliability of its Reliability
Coordinator Area in coordination with its neighboring Reliability
Coordinator’s wide area view.

Balancing Authority

Integrates resource plans ahead of time, and maintains loadinterchange-resource balance within a Balancing Authority Area and
supports Interconnection frequency in real time.

Interchange Authority

Ensures communication of interchange transactions for reliability
evaluation purposes and coordinates implementation of valid and
balanced interchange schedules between Balancing Authority Areas.

Planning Coordinator

Assesses the longer-term reliability of its Planning Coordinator Area.

Project 2013-03 Geomagnetic Disturbance Mitigation
December 1, 2016

3

Reliability Functions
Resource Planner

Develops a >one year plan for the resource adequacy of its specific loads
within a Planning Coordinator area.

Transmission Planner

Develops a >one year plan for the reliability of the interconnected Bulk
Electric System within its portion of the Planning Coordinator area.

Transmission Service
Provider

Administers the transmission tariff and provides transmission services
under applicable transmission service agreements (e.g., the pro forma
tariff).

Transmission Owner

Owns and maintains transmission facilities.

Transmission
Operator

Ensures the real-time operating reliability of the transmission assets
within a Transmission Operator Area.

Distribution Provider

Delivers electrical energy to the End-use customer.

Generator Owner

Owns and maintains generation facilities.

Generator Operator

Operates generation unit(s) to provide real and Reactive Power.

Purchasing-Selling
Entity

Purchases or sells energy, capacity, and necessary reliability-related
services as required.

Market Operator

Interface point for reliability functions with commercial functions.

Load-Serving Entity

Secures energy and transmission service (and reliability-related services)
to serve the End-use Customer.

Reliability and Market Interface Principles
Applicable Reliability Principles (Check all that apply).
1. Interconnected bulk power systems shall be planned and operated in a coordinated manner
to perform reliably under normal and abnormal conditions as defined in the NERC Standards.
2. The frequency and voltage of interconnected bulk power systems shall be controlled within
defined limits through the balancing of real and Reactive Power supply and demand.
3. Information necessary for the planning and operation of interconnected bulk power systems
shall be made available to those entities responsible for planning and operating the systems
reliably.
4. Plans for emergency operation and system restoration of interconnected bulk power systems
shall be developed, coordinated, maintained and implemented.
5. Facilities for communication, monitoring and control shall be provided, used and maintained
for the reliability of interconnected bulk power systems.

Project 2013-03 Geomagnetic Disturbance Mitigation
December 1, 2016

4

Reliability and Market Interface Principles
6. Personnel responsible for planning and operating interconnected bulk power systems shall be
trained, qualified, and have the responsibility and authority to implement actions.
7. The security of the interconnected bulk power systems shall be assessed, monitored and
maintained on a wide area basis.
8. Bulk power systems shall be protected from malicious physical or cyber attacks.
Does the proposed Standard comply with all of the following Market Interface
Principles?
1. A reliability standard shall not give any market participant an unfair competitive
advantage.
2. A reliability standard shall neither mandate nor prohibit any specific market
structure.
3. A reliability standard shall not preclude market solutions to achieving compliance
with that standard.
4. A reliability standard shall not require the public disclosure of commercially
sensitive information. All market participants shall have equal opportunity to
access commercially non-sensitive information that is required for compliance
with reliability standards.

Enter
(yes/no)
YES
YES
YES

YES

Related Standards
Standard No.

Explanation

Related SARs
SAR ID

Project 2013-03 Geomagnetic Disturbance Mitigation
December 1, 2016

Explanation

5

Regional Variances
Region

Explanation

FRCC
MRO
NPCC
RF
SERC
SPP RE
Texas
RE
WECC

Project 2013-03 Geomagnetic Disturbance Mitigation
December 1, 2016

6

Unofficial Comment Form

Project 2013-03 Geomagnetic Disturbance Mitigation
Standard Authorization Request
DO NOT use this form for submitting comments. Use the electronic form to submit comments on the
Standards Authorization Request (SAR). The electronic comment form must be completed by 8:00 p.m.
Eastern, Friday, January 20, 2017.
Documents and information about this project are available on the project page. If you have any
questions, contact Standards Developer, Mark Olson (via email), or at (404) 446-9760.
Background Information

On September 22, 2016, the Federal Energy Regulatory Commission (FERC) issued Order No. 830
approving Reliability Standard TPL-007-1 - Transmission System Planned Performance for Geomagnetic
Disturbance Events. In the order, FERC directed NERC to develop certain modifications to the Standard,
including:
•
•
•
•

Modify the benchmark GMD event definition used for GMD Vulnerability Assessments;
Make related modifications to requirements pertaining to transformer thermal impact
assessments;
Require collection of GMD-related data, and for NERC to make it publicly available; and
Require deadlines for Corrective Action Plans (CAPs) and GMD mitigating actions.

FERC established a deadline of 18 months from the effective date of Order No. 830 for completing the
revisions, which is May 2018.
The standard drafting team (SDT) developed the SAR to specifically address the directives in Order No.
830. The SAR is posted for stake holder comment to obtain input for the SDT on whether changes to the
SAR are needed to address the directives in Order No. 830.

Questions

You do not have to answer all questions. Enter comments in simple text format. Bullets, numbers, and
special formatting will not be retained.
1. Do you agree with the proposed scope for Project 2013-03 as described in the SAR? If you do not
agree, or if you agree but have comments or suggestions for the project scope please provide your
recommendation and explanation.
Yes
No
Comments:
2. Provide any additional comments for the Standards Drafting Team (SDT) to consider, if desired.
Yes
No
Comments:

Unofficial Comment Form
Project 2013-03 Geomagnetic Disturbance Mitigation | December 2016

2

Standards Announcement

Project 2013-03 Geomagnetic Disturbance Mitigation
Standards Authorization Request
Informal Comment Period Open through January 20, 2017
Now Available

A 30-day informal comment period for the Project 2013-03 Geomagnetic Disturbance Mitigation
Standards Authorization Request (SAR), is open through 8 p.m. Eastern, Friday, January 20, 2017.
Commenting

Use the electronic form to submit comments on the SAR. If you experience any difficulties using the
electronic form, contact Nasheema Santos. An unofficial Word version of the comment form is posted on
the project page.
If you are having difficulty accessing the SBS due to a forgotten password, incorrect credential error
messages, or system lock-out, contact NERC IT support directly at https://support.nerc.net/ (Monday –
Friday, 8 a.m. - 5 p.m. Eastern).
•

Passwords expire every 6 months and must be reset.

•

The SBS is not supported for use on mobile devices.

•

Please be mindful of ballot and comment period closing dates. We ask to allow at least 48
hours for NERC support staff to assist with inquiries. Therefore, it is recommended that users try
logging into their SBS accounts prior to the last day of a comment/ballot period.

Next Steps

The drafting team will review all responses received during the comment period and determine the next
steps of the project.
For more information on the Standards Development Process, refer to the Standard Processes
Manual.
For more information or assistance, contact Senior Standards Developer, Mark Olson (via email) or at (404)
446-9760.
North American Electric Reliability Corporation
3353 Peachtree Rd, NE
Suite 600, North Tower

Atlanta, GA 30326
404-446-2560 | www.nerc.com

Standards Announcement
Project <20##-## Full Name> | 

2

Comment Report
Project Name:

2013-03 Geomagnetic Disturbance Mitigation SAR

Comment Period Start Date:

12/16/2016

Comment Period End Date:

1/20/2017

Associated Ballots:

There were 21 sets of responses, including comments from approximately 21 different people from approximately 19 companies
representing 8 of the Industry Segments as shown in the table on the following pages.

Questions
1. Do you agree with the proposed scope for Project 2013-03 as described in the SAR? If you do not agree, or if you agree but have
comments or suggestions for the project scope please provide your recommendation and explanation.

2. Provide any additional comments for the Standards Drafting Team (SDT) to consider, if desired.

Organization
Name
ACES Power
Marketing

Duke Energy

Seattle City
Light

Name

Brian Van
Gheem

Colby Bellville

Ginette
Lacasse

Segment(s)

6

1,3,5,6

1,3,4,5,6

Region

NA - Not
Applicable

Group Name

ACES
Standards
Collaborators

FRCC,RF,SERC Duke Energy

WECC

Seattle City
Light Ballot

Group Member
Name

Group
Member
Organization

Group
Member
Segment(s)
1

Group Member
Region

Bob Solomon

Hoosier
Energy Rural
Electric
Cooperative,
Inc.

RF

Karl Kohlrus

Prairie Power, 1,3
Inc.

SERC

Shari Heino

Brazos
1,5
Electric Power
Cooperative,
Inc.

Texas RE

Tara Lightner

Sunflower
1
Electric Power
Corporation

SPP RE

Mark Ringhausen Old Dominion 3,4
Electric
Cooperative

SERC

John Shaver

Arizona
1
Electric Power
Cooperative,
Inc.

WECC

Bill Hutchison

Southern
Illinois Power
Cooperative

SERC

Scott Brame

North Carolina 3,4,5
Electric
Membership
Corporation

SERC

Bill Hutchison

Southern
Illinois Power
Cooperative

1,4

RF

Bill Hutchison

Southern
Illinois Power
Cooperative

1,4

RF

Doug Hils

Duke Energy

1

RF

Lee Schuster

Duke Energy

3

FRCC

Dale Goodwine

Duke Energy

5

SERC

Greg Cecil

Duke Energy

6

RF

Pawel Krupa

Seattle City
Light

1

WECC

1

Body

Southern
Company Southern
Company
Services, Inc.

Marsha Morgan 1,3,5,6

Lower
Michael Shaw
Colorado
River Authority
Northeast
Power
Coordinating
Council

Ruida Shu

SERC

1,5,6

1,2,3,4,5,6,7,10 NPCC

Southern
Company

LCRA
Compliance

Hao Li

Seattle City
Light

4

WECC

Bud (Charles)
Freeman

Seattle City
Light

6

WECC

Mike Haynes

Seattle City
Light

5

WECC

Michael Watkins

Seattle City
Light

1,4

WECC

Faz Kasraie

Seattle City
Light

5

WECC

John Clark

Seattle City
Light

6

WECC

Tuan Tran

Seattle City
Light

3

WECC

Laurrie Hammack Seattle City
Light

3

WECC

Katherine Prewitt

Southern
Company
Services, Inc

1

SERC

Jennifer Sykes

Southern
Company
Generation
and Energy
Marketing

6

SERC

R Scott Moore

Alabama
Power
Company

3

SERC

William Shultz

Southern
Company
Generation

5

SERC

Teresa Cantwell

LCRA

1

Texas RE

Dixie Wells

LCRA

5

Texas RE

Michael Shaw

LCRA

6

Texas RE

Hydro One.

1

NPCC

Northeast
Power
Coordinating
Council

NA - Not
Applicable

NPCC

Randy MacDonald New
Brunswick
Power

2

NPCC

Wayne Sipperly

4

NPCC

RSC no
Paul Malozewski
Dominion and
Guy Zito
OPG

New York
Power
Authority

Midwest
Reliability
Organization

Russel
Mountjoy

10

MRO NSRF

Glen Smith

Entergy
Services

4

NPCC

Brian Robinson

Utility Services 5

NPCC

Bruce Metruck

New York
Power
Authority

6

NPCC

Alan Adamson

New York
State
Reliability
Council

7

NPCC

Edward Bedder

Orange &
Rockland
Utilities

1

NPCC

David Burke

UI

3

NPCC

Michele Tondalo

UI

1

NPCC

Sylvain Clermont

Hydro Quebec 1

NPCC

Si Truc Phan

Hydro Quebec 2

NPCC

Helen Lainis

IESO

2

NPCC

Laura Mcleod

NB Power

1

NPCC

MIchael Forte

Con Edison

1

NPCC

Quintin Lee

Eversource
Energy

1

NPCC

Kelly Silver

Con Edison

3

NPCC

Peter Yost

Con Edison

4

NPCC

Brian O'Boyle

Con Edison

5

NPCC

Greg Campoli

NY-ISO

2

NPCC

Kathleen
Goodman

ISO-NE

2

NPCC

Silvia Parada
Mitchell

NextEra
Energy, LLC

4

NPCC

Michael
Schiavone

National Grid

1

NPCC

Michael Jones

National Grid

3

NPCC

3,4,5,6

MRO

Joseph DePoorter Madison Gas
& Electric
Larry Heckert

Alliant Energy 4

MRO

Amy Casucelli

Xcel Energy

1,3,5,6

MRO

Chuck Lawrence

American
Transmission

1

MRO

Company
Michael Brytowski Great River
Energy

Southwest
Power Pool,
Inc. (RTO)

Shannon
Mickens

2

SPP RE

1,3,5,6

MRO

Jodi Jensen

Western Area 1,6
Power
Administratino

MRO

Kayleigh
Wilkerson

Lincoln
Electric
System

1,3,5,6

MRO

Mahmood Safi

Omaha Public 1,3,5,6
Power District

MRO

Brad Parret

Minnesota
Power

1,5

MRO

Terry Harbour

MidAmerican
Energy
Company

1,3

MRO

Tom Breene

Wisconsin
3,5,6
Public Service

MRO

Jeremy Volls

Basin Electric 1
Power Coop

MRO

Kevin Lyons

Central Iowa
Power
Cooperative

1

MRO

Mike Morrow

Midcontinent
Independent
System
Operator

2

MRO

2

SPP RE

James Nail

Independence 3
Power and
Light

SPP RE

Allan George

Sunflower
1
Electric Power
Corp

SPP RE

Jonathan Hayes

Southwest
Power Pool
Inc.

SPP RE

SPP
Shannon Mickens Southwest
Standards
Power Pool
Inc.
Review Group

2

1. Do you agree with the proposed scope for Project 2013-03 as described in the SAR? If you do not agree, or if you agree but have
comments or suggestions for the project scope please provide your recommendation and explanation.
David Jendras - Ameren - Ameren Services - 1,3,6
Answer

No

Document Name
Comment
The proposed revision to standard TPL-007-1 to address localized peaks in GMD events and not rely solely on the spatially-averaged data has the
potential to impact much more of the transmission system and many more EHV Y-connected transformers than we had previously estimated. It is
unknown at this time how the SDT will modify the standard to include this FERC mandated revision, but this would be a major concern for TOs.

It appears that Ameren as a TO will be required to install GIC monitoring equipment and magnetometers, collect data from these devices, and make the
data available to those that have a need for the information. Details are still to be determined by the SDT, with the cost to install such equipment and
maintain data is unknown.

Although the FERC directive allows for TOs to apply for an exemption to collect necessary GIC monitoring data, exemption criteria has not been
proposed to determine if the exemption would or would not be allowed in a particular case. Regardless, because of our location in the Midwest and
because of the number of 345 kV lines and EHV Y-connected transformers connected to the Ameren system, it is unlikely that Ameren would be
allowed an exemption from installing monitoring equipment and collecting the GIC data, regardless of our southerly location in relation to the
geomagnetic north pole.

Due to the fact that FERC is mandating these modifications, we are concerned that input from industry on the drafting of the revised standard would be
given minimal consideration.
Likes

0

Dislikes

0

Response

Russel Mountjoy - Midwest Reliability Organization - 10, Group Name MRO NSRF
Answer

Yes

Document Name
Comment
The NSRF agrees with the proposed scope for Project 2013-03 SAR but would like to make several suggestions that will benefit the reliable operation of
the BES. If the standard drafting team plans to incorporate real-time reliability monitoring and analysis to satisfy the GMD monitoring requirements, we

suggest the SDT add Transmission Operator (TOP) as an applicable Reliability Function in the SAR.

Rationale
FERC gives NERC the option to incorporate the GMD monitoring data collection in another reliability standard. The TOP is the responsible entity to
complete real-time reliability monitoring.

“NERC may also propose to incorporate the GIC monitoring and magnetometer data collection requirements in a different Reliability Standard (e.g.,
real-time reliability monitoring and analysis capabilities as part of the TOP Reliability Standards).” (FERC Order 830, P.91) .
Likes

0

Dislikes

0

Response

Aaron Cavanaugh - Bonneville Power Administration - 1,3,5,6 - WECC
Answer

Yes

Document Name
Comment
BPA would like to know if the model validation encompasses equipment and system models for accurate GIC current determination (like transformer
behavior). BPA would also like to know if the model validation encompass hysteresis curves for VAR consumption determination? BPA believes the
model should contain both.
Likes

0

Dislikes

0

Response

Ginette Lacasse - Seattle City Light - 1,3,4,5,6 - WECC, Group Name Seattle City Light Ballot Body
Answer

Yes

Document Name
Comment
Our subject matter experts do not believe that collected data should be available to the public. Or clearly define what is meant by "publicly available"
and what specifically can be available.
Likes
Dislikes

0
0

Response

Brian Van Gheem - ACES Power Marketing - 6 - NA - Not Applicable, Group Name ACES Standards Collaborators
Answer

Yes

Document Name
Comment
(1) We believe the proposed scope captures the directives identified in FERC Order No. 830. However, we believe several references to the FERC
Order are taken out of context, and should be removed from the SAR’s Detailed Description Section. The Commission wants GIC monitoring and
magnetometer data to be gathered through collaboration with academia and government agencies. The reference to include “…any device that must
be added…”could misdirect the SDT from the Commission’s intentions. We recommend the removal of this particular reference to limit the scope of
data collection.
(2) We feel the FERC directive references should be mapped to existing requirements to identify proposed changes. For example, we recommend
adding a reference to Requirement R3 when listing the directives associated with Benchmark Events. Likewise, when listing directives for Transformer
Thermal Impact Assessment or Corrective Action Plans, Requirement R6 and Requirement R7 should be included as references, respectively.
(3) We question the addition of a reference to move the data collection of GIC monitoring and magnetometer data to a different Reliability Standard.
We feel this inclusion opens the door to a Commission suggestion to incorporate data collection as part of real-time reliability monitoring and analysis
and relocated to the TOP Reliability Standards. We feel that if such data was required for real-time operations, it likely would have been incorporated in
NERC Reliability Standard EOP-010-1, as part of emergency Geomagnetic Disturbance Operations. We recommend the removal of this reference to
focus the scope of this project on TPL-007.
(4) The SAR briefly lists the development of an implementation plan, although does not elaborate on what may change within the SAR’s Detailed
Description Section. While the current five year implementation plan takes effect starting July 2017, we feel a significant portion of the implementation
plan will pass by the time the Commission approves the work of this SDT. We recommend the addition of a reference within the SAR’s Detailed
Description Section to incorporate modifications to the implementation plan that accounts for the transition away from the current implementation plane.
We believe the transition period should not be less than 18 months to accommodate an impacted entity’s effort to implement modeling and software
changes, additional resource procurements, and quality assurance of assessments.
Likes

0

Dislikes

0

Response

Ruida Shu - Northeast Power Coordinating Council - 1,2,3,4,5,6,7,10 - NPCC, Group Name RSC no Dominion and OPG
Answer

Yes

Document Name
Comment
NPCC RSC support the proposed scope for Project 2013-03.
Likes
Dislikes

0
0

Response

Karie Barczak - DTE Energy - Detroit Edison Company - 3,4,5
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Jeffrey DePriest - DTE Energy - Detroit Edison Company - 3,4,5
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Tho Tran - Oncor Electric Delivery - 1 - Texas RE
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Sean Bodkin - Dominion - Dominion Resources, Inc. - 3,5,6
Answer
Document Name

Yes

Comment

Likes

0

Dislikes

0

Response

RoLynda Shumpert - SCANA - South Carolina Electric and Gas Co. - 1,3,5,6 - SERC
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Thomas Foltz - AEP - 3,5
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Laura Nelson - IDACORP - Idaho Power Company - 1
Answer

Yes

Document Name
Comment

Likes

0

Dislikes
Response

0

John Merrell - Tacoma Public Utilities (Tacoma, WA) - 1,3,4,5,6
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Colby Bellville - Duke Energy - 1,3,5,6 - FRCC,SERC,RF, Group Name Duke Energy
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Shannon Mickens - Southwest Power Pool, Inc. (RTO) - 2 - SPP RE, Group Name SPP Standards Review Group
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Rachel Coyne - Texas Reliability Entity, Inc. - 10
Answer
Document Name
Comment

Yes

Likes

0

Dislikes

0

Response

Teresa Cantwell - Lower Colorado River Authority - 1,5,6
Answer

Yes

Document Name
Comment

Likes

0

Dislikes

0

Response

Michael Shaw - Lower Colorado River Authority - 1,5,6, Group Name LCRA Compliance
Answer
Document Name
Comment

Likes

0

Dislikes
Response

0

2013-03_GMD_SAR_Unofficial_Comment_Form_121516.docx

2. Provide any additional comments for the Standards Drafting Team (SDT) to consider, if desired.
Brian Van Gheem - ACES Power Marketing - 6 - NA - Not Applicable, Group Name ACES Standards Collaborators
Answer
Document Name
Comment
(1) We believe the SDT should collaborate its activities with existing industry technical groups, including the NERC Geomagnetic Disturbance Task
Force, when designing GIC monitoring and magnetometer data collection criteria. We propose limiting the focus of this SAR to GIC monitoring and
magnetometer data collection, and allow NERC and these other groups to address how such data will be shared publicly. We fear the SDT’s
involvement with the distribution of data could lead to unnecessarydevelopment of new Reliability Standards for currently unregistered entities and
functions.
(2) We thank you for this opportunity to provide these comments.
Likes

0

Dislikes

0

Response

Teresa Cantwell - Lower Colorado River Authority - 1,5,6
Answer
Document Name
Comment
The approach related to the GMD benchmark definition and transformer thermal impact assessment needs to balance ease of implementation with the
quality of results.
A methodology similar to that employed in PRC-002 should be utilized to limit the required number of installations of monitoring data (e.g. based on
short circuit MVA or some other parameter). Not every TO should be required to install monitoring data. This may be better accomplished by rolling the
monitoring requirement into another standard (e.g. PRC-002).
NERC should consider extensions of time for CAPs and/or hardware installation on a case-by-case basis.
Likes

0

Dislikes

0

Response

Rachel Coyne - Texas Reliability Entity, Inc. - 10
Answer

Document Name
Comment
Texas RE made the following observations:
•

Paragraph 91 in Order No. 830 discusses the ability for a Transmission Owner to apply for an exemption. Texas RE is concerned if the
responsible entity determined in R1 is allowed to grant exemptions, many entities that are registered as a TP and TO will be able to grant itself
an exemption. Texas RE recommends determining who is responsible for granting exemptions, since Order No. 830 does not specify.

•

The “Industry Need” section includes details about NERC making GMD-related data publicly available, but “Detailed Description” section does
not.

•

In the “Collection of GMD Data” section, the SAR states that “Each responsible entity that is a transmission owner should be required to collect
necessary GIC monitoring data.” However, TPL-007-1 R1 currently defines a “responsible entity” as either a TP or a PC. When updating the
Standard, the SDT should avoid using “responsible entity” when referencing a TO.

•

Texas RE recommends emphasizing sufficient and appropriate compliance documentation, regarding an “equally efficient and effective
alternative”. An entity would be required to demonstrate efficiency and effectiveness. For the data submittal portion, there needs to be care in
addressing timing as the directive included historical and new data. There is no discussion of data requirements, per se, and the content,
format, or timing associated with the data.

Likes

0

Dislikes

0

Response

Shannon Mickens - Southwest Power Pool, Inc. (RTO) - 2 - SPP RE, Group Name SPP Standards Review Group
Answer
Document Name
Comment
After reviewing the transcript associated with the Level 2 Appeal of Foundation For Resilient Societies, INC. in reference to TPL-007-1, we suggest the
drafting team review and use this document as guidance throughout their modification process to the Standard. In our review, we found some
similarities of concerns shared by both The Foundation for Resilient Societies, INC and FERC Order 830 such as, transformer thermal impact
assessments as well as data collection and how that information would be made publicly available.
Likes

0

Dislikes

0

Response

Ginette Lacasse - Seattle City Light - 1,3,4,5,6 - WECC, Group Name Seattle City Light Ballot Body
Answer
Document Name

Comment
Thank you for seeking our input in advance.
Likes

0

Dislikes

0

Response

Marsha Morgan - Southern Company - Southern Company Services, Inc. - 1,3,5,6 - SERC, Group Name Southern Company
Answer
Document Name
Comment
Because commercially available models and tools do not currently exist for performing transformer thermal impact assessments, we ask the SDT to
continue considering suitable alternates (e.g., look up tables, development of flowcharts or processes).
Also, we ask the SDT to provide clarification of the event included in Table 1 - Steady State Planning Events. In particular, with regards to protection
system misoperation due to harmonics during a GMD event, please provide clarification as to what is expected. Will this require that large scale
harmonic penetration studies be performed in order to analyze potential impact of half-cycle saturation generated harmonics on system protection
and/or equipment controls? Or will engineering assessments that identify credible scenarios be sufficient?
SDT to consider that the procurement and installation of instrument transformers for the collection of GIC monitoring and magnetometer data takes
months to implement. SDT to consider realistic timelines for implementation, as well as providing technical guidance for implementation of GIC
measurement devices.
We ask the SDT to provide additional clarification on R2. In particular, SDT to elaborate on "maintaining System models and GIC System Models." Is R2
referring to gathering and maintaining dc and ac models (e.g., substation dc resitances, dc network data) of the system under study? Does it require
having to complete a GIC analysis by R2 deadline, so that GIC system models can be produced and maintained? Please provide clarification.
Likes

0

Dislikes

0

Response

David Jendras - Ameren - Ameren Services - 1,3,6
Answer
Document Name
Comment
The change in deadlines for mitigation of GMD events would not be a concern in Ameren's case. Ameren is not interested in installing blocking devices
to Y-connected EHV transformers. Therefore, operational solutions will provide the likely mitigations.

Likes

0

Dislikes

0

Response

Aaron Cavanaugh - Bonneville Power Administration - 1,3,5,6 - WECC
Answer
Document Name
Comment
BPA would like to know how the Standard Drafting Team envisions collecting the data to perform the studies. If there is no regional data collection
effort similar to MOD-032, then how is it envisioned that accurate GIC studies to determine DC currents will be run? BPA believes a documented
process needs to be created WECC wide (or nationally). BPA envisions the data collection included with MOD-032 to be collected every 5 years (or
according to study schedule with version 2 of TPL-007). BPA’s experience is that most entities are not willing to take on extra work if they do not have
to.
Likes

0

Dislikes

0

Response

Russel Mountjoy - Midwest Reliability Organization - 10, Group Name MRO NSRF
Answer
Document Name
Comment
None
Likes

0

Dislikes

0

Response

Sandra Shaffer - Berkshire Hathaway - PacifiCorp - 6
Answer
Document Name
Comment
PacifiCorp supports the proposal to incorporate the GIC monitoring and magnetometer data collection requirements in a different Reliability Standard.

This separation would allow more attention to the specific upgrades already outlined in the SAR.
Likes

0

Dislikes

0

Response

Jeffrey DePriest - DTE Energy - Detroit Edison Company - 3,4,5
Answer
Document Name
Comment
Please consider an approach where GIC monitor locations are determined on a regional basis in order to obtain the most value from each installation
and insure that all areas are covered appropriately. An individual GO/TO may not have the information needed to properly place equipment. Also,
providing monitoring equipment specifications would insure that manufacturers would design, and entities would install, capable monitors that will
provide reliable data.
Likes

0

Dislikes

0

Response

Karie Barczak - DTE Energy - Detroit Edison Company - 3,4,5
Answer
Document Name
Comment
Please consider an approach where GIC monitor locations are determined on a regional basis in order to obtain the most value from each installation
and insure that all areas are covered appropriately. An individual GO/TO may not have the information needed to properly place equipment. Also,
providing monitoring equipment specifications would insure that manufacturers would design, and entities would install, capable monitors that will
provide reliable data.
Likes

0

Dislikes

0

Response

Michael Shaw - Lower Colorado River Authority - 1,5,6, Group Name LCRA Compliance
Answer
Document Name

2013-03_GMD_SAR_Unofficial_Comment_Form_121516.docx

Comment

Likes

0

Dislikes
Response

0

Consideration of Comments
Project Name:

2013-03 Geomagnetic Disturbance Mitigation SAR

Comment Period Start
Date:

12/16/2016

Comment Period End Date: 1/20/2017

There were 21 sets of responses, including comments from approximately 21 different people from approximately 19
companies representing 8 of the Industry Segments as shown in the table on the following pages.
All comments submitted can be reviewed in their original format on the project page.
If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment
serious consideration in this process. If you feel there has been an error or omission, you can contact the Director of
Standards Development, Steve Noess (via email) or at (404) 446‐9691.

Questions
1. Do you agree with the proposed scope for Project 2013-03 as described in the SAR? If you do not agree, or if you
agree but have comments or suggestions for the project scope please provide your recommendation and
explanation.
2. Provide any additional comments for the Standards Drafting Team (SDT) to consider, if desired.

The Industry Segments are:

1 — Transmission Owners
2 — RTOs, ISOs
3 — Load-serving Entities
4 — Transmission-dependent Utilities
5 — Electric Generators
6 — Electricity Brokers, Aggregators, and Marketers
7 — Large Electricity End Users
8 — Small Electricity End Users
9 — Federal, State, Provincial Regulatory or other Government Entities
10 — Regional Reliability Organizations, Regional Entities

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

2

Organization
Name

Name

ACES Power Brian Van
Marketing
Gheem

Segment(s)

6

Region

NA - Not
Applicable

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

Group Name

Group
Member Name

ACES
Bob Solomon
Standards
Collaborators

Group
Group
Member
Member
Organization Segment(s)
Hoosier
Energy Rural
Electric
Cooperative,
Inc.

1

Group Member
Region
RF

Karl Kohlrus

Prairie Power, 1,3
Inc.

SERC

Shari Heino

Brazos Electric 1,5
Power
Cooperative,
Inc.

Texas RE

Tara Lightner

Sunflower
1
Electric Power
Corporation

SPP RE

Mark
Ringhausen

Old Dominion 3,4
Electric
Cooperative

SERC

John Shaver

Arizona
1
Electric Power
Cooperative,
Inc.

WECC

Bill Hutchison

Southern
1
Illinois Power
Cooperative

SERC

3

Duke Energy Colby
Bellville

Seattle City
Light

Ginette
Lacasse

1,3,5,6

Scott Brame

North Carolina 3,4,5
Electric
Membership
Corporation

SERC

Bill Hutchison

Southern
1,4
Illinois Power
Cooperative

RF

Bill Hutchison

Southern
1,4
Illinois Power
Cooperative

RF

Duke Energy

1

RF

Duke Energy

3

FRCC

Dale Goodwine Duke Energy

5

SERC

Greg Cecil

Duke Energy

6

RF

Pawel Krupa

Seattle City
Light

1

WECC

Hao Li

Seattle City
Light

4

WECC

Bud (Charles)
Freeman

Seattle City
Light

6

WECC

Mike Haynes

Seattle City
Light

5

WECC

Michael
Watkins

Seattle City
Light

1,4

WECC

Faz Kasraie

Seattle City
Light

5

WECC

FRCC,RF,SERC Duke Energy Doug Hils
Lee Schuster

1,3,4,5,6

WECC

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

Seattle City
Light Ballot
Body

4

Southern
Marsha
Company - Morgan
Southern
Company
Services, Inc.

Lower
Colorado
River
Authority

Michael
Shaw

Northeast
Ruida Shu
Power
Coordinating
Council

1,3,5,6

SERC

1,5,6

1,2,3,4,5,6,7,10 NPCC

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

Southern
Company

LCRA
Compliance

RSC no
Dominion
and OPG

John Clark

Seattle City
Light

6

WECC

Tuan Tran

Seattle City
Light

3

WECC

Laurrie
Hammack

Seattle City
Light

3

WECC

Katherine
Prewitt

Southern
Company
Services, Inc

1

SERC

Jennifer Sykes Southern
Company
Generation
and Energy
Marketing

6

SERC

R Scott Moore Alabama
Power
Company

3

SERC

William Shultz Southern
Company
Generation

5

SERC

Teresa
Cantwell

LCRA

1

Texas RE

Dixie Wells

LCRA

5

Texas RE

Michael Shaw

LCRA

6

Texas RE

Paul
Malozewski

Hydro One.

1

NPCC

Guy Zito

Northeast
Power

NA - Not
Applicable

NPCC

5

Coordinating
Council
Randy
MacDonald

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

New
Brunswick
Power

2

NPCC

Wayne Sipperly New York
Power
Authority

4

NPCC

Glen Smith

4

NPCC

Brian Robinson Utility Services 5

NPCC

Bruce Metruck New York
Power
Authority

6

NPCC

Alan Adamson New York
State
Reliability
Council

7

NPCC

Edward Bedder Orange &
Rockland
Utilities

1

NPCC

David Burke

UI

3

NPCC

Michele
Tondalo

UI

1

NPCC

Sylvain
Clermont

Hydro Quebec 1

NPCC

Si Truc Phan

Hydro Quebec 2

NPCC

Entergy
Services

6

Midwest
Russel
Reliability
Mountjoy
Organization

10

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

MRO NSRF

Helen Lainis

IESO

2

NPCC

Laura Mcleod

NB Power

1

NPCC

MIchael Forte

Con Edison

1

NPCC

Quintin Lee

Eversource
Energy

1

NPCC

Kelly Silver

Con Edison

3

NPCC

Peter Yost

Con Edison

4

NPCC

Brian O'Boyle

Con Edison

5

NPCC

Greg Campoli

NY-ISO

2

NPCC

Kathleen
Goodman

ISO-NE

2

NPCC

Silvia Parada
Mitchell

NextEra
Energy, LLC

4

NPCC

Michael
Schiavone

National Grid 1

NPCC

Michael Jones National Grid 3

NPCC

Joseph
DePoorter

Madison Gas
& Electric

MRO

Larry Heckert

Alliant Energy 4

MRO

Amy Casucelli

Xcel Energy

1,3,5,6

MRO

Chuck
Lawrence

American
Transmission
Company

1

MRO

Michael
Brytowski

Great River
Energy

1,3,5,6

MRO

3,4,5,6

7

Southwest Shannon
Power Pool, Mickens
Inc. (RTO)

2

SPP RE

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

SPP
Standards

Jodi Jensen

Western Area 1,6
Power
Administratino

MRO

Kayleigh
Wilkerson

Lincoln
Electric
System

1,3,5,6

MRO

Mahmood Safi Omaha Public 1,3,5,6
Power District

MRO

Brad Parret

1,5

MRO

Terry Harbour MidAmerican 1,3
Energy
Company

MRO

Tom Breene

Wisconsin
3,5,6
Public Service

MRO

Jeremy Volls

Basin Electric 1
Power Coop

MRO

Kevin Lyons

Central Iowa
Power
Cooperative

1

MRO

Mike Morrow

Midcontinent 2
Independent
System
Operator

MRO

Shannon
Mickens

Southwest
Power Pool
Inc.

SPP RE

Minnesota
Power

2

8

Review
Group

James Nail

Independence 3
Power and
Light

SPP RE

Allan George

Sunflower
1
Electric Power
Corp

SPP RE

Jonathan Hayes Southwest
Power Pool
Inc.

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

2

SPP RE

9

1. Do you agree with the proposed scope for Project 2013-03 as described in the SAR? If you do not agree, or if you agree but have
comments or suggestions for the project scope please provide your recommendation and explanation.
David Jendras - Ameren - Ameren Services - 1,3,6
Answer

No

Document Name
Comment
The proposed revision to standard TPL-007-1 to address localized peaks in GMD events and not rely solely on the spatially-averaged data has
the potential to impact much more of the transmission system and many more EHV Y-connected transformers than we had previously
estimated. It is unknown at this time how the SDT will modify the standard to include this FERC mandated revision, but this would be a major
concern for TOs.
It appears that Ameren as a TO will be required to install GIC monitoring equipment and magnetometers, collect data from these devices, and
make the data available to those that have a need for the information. Details are still to be determined by the SDT, with the cost to install
such equipment and maintain data is unknown.
Although the FERC directive allows for TOs to apply for an exemption to collect necessary GIC monitoring data, exemption criteria has not
been proposed to determine if the exemption would or would not be allowed in a particular case. Regardless, because of our location in the
Midwest and because of the number of 345 kV lines and EHV Y-connected transformers connected to the Ameren system, it is unlikely that
Ameren would be allowed an exemption from installing monitoring equipment and collecting the GIC data, regardless of our southerly
location in relation to the geomagnetic north pole.
Due to the fact that FERC is mandating these modifications, we are concerned that input from industry on the drafting of the revised standard
would be given minimal consideration.
Likes
Dislikes

0
0

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

10

Response. Thank you for your comments. In order to address the FERC Order No. 830 directives, the SDT will consider ways to incorporate
localized peak events into the existing GMD benchmark. It is too soon to know how the benchmark will change and what the impact on the
industry will be. Regarding the installation of GIC monitors and magnetometers the SDT intends to coordinate technical details with the NERC
GMD Task Force. There is significant industry experience on the SDT, so any requirements that are added to the standard will be discussed
within the SDT and with the NERC GMD Task Force. Stakeholder input will be considered by the SDT throughout the standard development
process.
Russel Mountjoy - Midwest Reliability Organization - 10, Group Name MRO NSRF
Answer

Yes

Document Name
Comment
The NSRF agrees with the proposed scope for Project 2013-03 SAR but would like to make several suggestions that will benefit the reliable
operation of the BES. If the standard drafting team plans to incorporate real-time reliability monitoring and analysis to satisfy the GMD
monitoring requirements, we suggest the SDT add Transmission Operator (TOP) as an applicable Reliability Function in the SAR.
Rationale
FERC gives NERC the option to incorporate the GMD monitoring data collection in another reliability standard. The TOP is the responsible
entity to complete real-time reliability monitoring.
“NERC may also propose to incorporate the GIC monitoring and magnetometer data collection requirements in a different Reliability Standard
(e.g., real-time reliability monitoring and analysis capabilities as part of the TOP Reliability Standards).” (FERC Order 830, P.91) .
Likes
Dislikes

0
0

Response. Thank you for your comments. Order No. 830 directs NERC to address the collection of data from GIC detectors and
magnetometers for the purpose of aiding in the validation of models used to facilitate the calculations required in TPL-007. It does not
require real time data collection, but that doesn’t limit entities from collecting real time data in support of system operations. If an entity’s

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

11

operating procedure requires real time data collection, then that process would be documented in procedures under EOP-010 and the TOP
would be an applicable entity.
Aaron Cavanaugh - Bonneville Power Administration - 1,3,5,6 - WECC
Answer

Yes

Document Name
Comment
BPA would like to know if the model validation encompasses equipment and system models for accurate GIC current determination (like
transformer behavior). BPA would also like to know if the model validation encompass hysteresis curves for VAR consumption
determination? BPA believes the model should contain both.
Likes

0

Dislikes

0

Response. Thank you for your comments. Order No. 830 is not prescriptive regarding what kind of models would be validated using GIC
and/or geomagnetic field measurements. The SDT believes the requirements should be application-neutral.
Ginette Lacasse - Seattle City Light - 1,3,4,5,6 - WECC, Group Name Seattle City Light Ballot Body
Answer

Yes

Document Name
Comment
Our subject matter experts do not believe that collected data should be available to the public. Or clearly define what is meant by "publicly
available" and what specifically can be available.
Likes
Dislikes

0
0

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

12

Response. Thank you for your comment. Order No. 830 is clear in directing NERC to require entities to collect GIC and magnetometer data,
and for NERC to make the data publically available. The details of such a program are yet to be worked out, but will include discussions
among the SDT, the NERC GMD Task Force, and NERC. In Order No. 830, FERC indicated that they were not persuaded by arguments in the
record for TPL-007-1 that this data should be treated as confidential, but that entities could seek confidential treatment of their data from
NERC (P 94-95). Accordingly, NERC's data collection process developed to meet Order No. 830 is expected to provide entities with the means
for identifying some or all data that the entity believes should be treated as confidential.
Brian Van Gheem - ACES Power Marketing - 6 - NA - Not Applicable, Group Name ACES Standards Collaborators
Answer

Yes

Document Name
Comment
(1) We believe the proposed scope captures the directives identified in FERC Order No. 830. However, we believe several references to the
FERC Order are taken out of context, and should be removed from the SAR’s Detailed Description Section. The Commission wants GIC
monitoring and magnetometer data to be gathered through collaboration with academia and government agencies. The reference to include
“…any device that must be added…”could misdirect the SDT from the Commission’s intentions. We recommend the removal of this particular
reference to limit the scope of data collection.
(2) We feel the FERC directive references should be mapped to existing requirements to identify proposed changes. For example, we
recommend adding a reference to Requirement R3 when listing the directives associated with Benchmark Events. Likewise, when listing
directives for Transformer Thermal Impact Assessment or Corrective Action Plans, Requirement R6 and Requirement R7 should be included
as references, respectively.
(3) We question the addition of a reference to move the data collection of GIC monitoring and magnetometer data to a different Reliability
Standard. We feel this inclusion opens the door to a Commission suggestion to incorporate data collection as part of real-time reliability
monitoring and analysis and relocated to the TOP Reliability Standards. We feel that if such data was required for real-time operations, it
likely would have been incorporated in NERC Reliability Standard EOP-010-1, as part of emergency Geomagnetic Disturbance Operations. We
recommend the removal of this reference to focus the scope of this project on TPL-007.
(4) The SAR briefly lists the development of an implementation plan, although does not elaborate on what may change within the SAR’s
Detailed Description Section. While the current five year implementation plan takes effect starting July 2017, we feel a significant portion of

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

13

the implementation plan will pass by the time the Commission approves the work of this SDT. We recommend the addition of a reference
within the SAR’s Detailed Description Section to incorporate modifications to the implementation plan that accounts for the transition away
from the current implementation plane. We believe the transition period should not be less than 18 months to accommodate an impacted
entity’s effort to implement modeling and software changes, additional resource procurements, and quality assurance of assessments.
Likes

0

Dislikes

0

Response. Thank you for your comments.
(1) The FERC order discusses the option of collaborating with academia and government agencies for the collection of data, but that is not
the only option provided in the order. It is understood that additional GIC detectors and magnetometers may be required and the SAR
accounts for this additional option.
(2) References to the existing standard requirements will be added to the SAR as minor editorial changes.
(3) The SAR statement on the possibility of placing data collection requirements in another standard is from the FERC order. (paragraph 91)
(4) It is too soon to know what additional requirements may be placed on applicable entities as a result of modifications to the existing
standard. Accordingly, any statements about changes to the implementation plan are premature. The SDT believes the SAR as written
provides the necessary project scope for developing an implementation plan.

Ruida Shu - Northeast Power Coordinating Council - 1,2,3,4,5,6,7,10 - NPCC, Group Name RSC no Dominion and OPG
Answer

Yes

Document Name
Comment
NPCC RSC support the proposed scope for Project 2013-03.
Likes
Dislikes

0
0

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

14

Response. Thank you for your comment.
Karie Barczak - DTE Energy - Detroit Edison Company - 3,4,5
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
Jeffrey DePriest - DTE Energy - Detroit Edison Company - 3,4,5
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
Tho Tran - Oncor Electric Delivery - 1 - Texas RE
Answer

Yes

Document Name
Comment

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

15

Likes

0

Dislikes

0

Response
Sean Bodkin - Dominion - Dominion Resources, Inc. - 3,5,6
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
RoLynda Shumpert - SCANA - South Carolina Electric and Gas Co. - 1,3,5,6 - SERC
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
Thomas Foltz - AEP - 3,5

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

16

Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
Laura Nelson - IDACORP - Idaho Power Company - 1
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
John Merrell - Tacoma Public Utilities (Tacoma, WA) - 1,3,4,5,6
Answer

Yes

Document Name
Comment
Likes
Dislikes

0
0

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

17

Response
Colby Bellville - Duke Energy - 1,3,5,6 - FRCC,SERC,RF, Group Name Duke Energy
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
Shannon Mickens - Southwest Power Pool, Inc. (RTO) - 2 - SPP RE, Group Name SPP Standards Review Group
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
Rachel Coyne - Texas Reliability Entity, Inc. - 10
Answer

Yes

Document Name
Comment

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

18

Likes

0

Dislikes

0

Response
Teresa Cantwell - Lower Colorado River Authority - 1,5,6
Answer

Yes

Document Name
Comment
Likes

0

Dislikes

0

Response
Michael Shaw - Lower Colorado River Authority - 1,5,6, Group Name LCRA Compliance
Answer
Document Name
Comment
Likes

0

Dislikes

0

Response

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

19

2. Provide any additional comments for the Standards Drafting Team (SDT) to consider, if desired.
Brian Van Gheem - ACES Power Marketing - 6 - NA - Not Applicable, Group Name ACES Standards Collaborators
Answer
Document Name
Comment
(1) We believe the SDT should collaborate its activities with existing industry technical groups, including the NERC Geomagnetic Disturbance
Task Force, when designing GIC monitoring and magnetometer data collection criteria. We propose limiting the focus of this SAR to GIC
monitoring and magnetometer data collection, and allow NERC and these other groups to address how such data will be shared publicly. We
fear the SDT’s involvement with the distribution of data could lead to unnecessary development of new Reliability Standards for currently
unregistered entities and functions.
(2) We thank you for this opportunity to provide these comments.
Likes

0

Dislikes

0

Response. Thank you for your comment. The SDT intends to collaborate its standards development activities with the NERC GMD Task Force,
and where appropriate other industry technical groups. The SDT agrees that NERC and other technical groups should address issues with the
public availability of collected data. The SDT is focused on developing requirements for the collection of data as specified in Order No. 830 P 88
and P 91. The SDT has clarified this in the project SAR. The process for the distribution of that data will likely be addressed outside of the
revised standard.

Teresa Cantwell - Lower Colorado River Authority - 1,5,6
Answer
Document Name

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

20

Comment
The approach related to the GMD benchmark definition and transformer thermal impact assessment needs to balance ease of implementation
with the quality of results.
A methodology similar to that employed in PRC-002 should be utilized to limit the required number of installations of monitoring data (e.g.
based on short circuit MVA or some other parameter). Not every TO should be required to install monitoring data. This may be better
accomplished by rolling the monitoring requirement into another standard (e.g. PRC-002).
NERC should consider extensions of time for CAPs and/or hardware installation on a case-by-case basis.
Likes

0

Dislikes

0

Response. Thank you for your comment. The SDT will consider these inputs during standard development. The SDT believes that that there
is a balance between ease of implementation and a conservative approach to potential transformer impact by means of the transformer
thermal screening criteria.
The SDT will work in conjunction with the NERC GMD Task Force and other industry technical groups in the development of criteria for number
and/or location of monitoring equipment.

Rachel Coyne - Texas Reliability Entity, Inc. - 10
Answer
Document Name
Comment
Texas RE made the following observations:
•

Paragraph 91 in Order No. 830 discusses the ability for a Transmission Owner to apply for an exemption. Texas RE is concerned if the
responsible entity determined in R1 is allowed to grant exemptions, many entities that are registered as a TP and TO will be able to

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

21

grant itself an exemption. Texas RE recommends determining who is responsible for granting exemptions, since Order No. 830 does
not specify.
•

The “Industry Need” section includes details about NERC making GMD-related data publicly available, but “Detailed Description”
section does not.

•

In the “Collection of GMD Data” section, the SAR states that “Each responsible entity that is a transmission owner should be required
to collect necessary GIC monitoring data.” However, TPL-007-1 R1 currently defines a “responsible entity” as either a TP or a PC. When
updating the Standard, the SDT should avoid using “responsible entity” when referencing a TO.

•

Texas RE recommends emphasizing sufficient and appropriate compliance documentation, regarding an “equally efficient and effective
alternative”. An entity would be required to demonstrate efficiency and effectiveness. For the data submittal portion, there needs to
be care in addressing timing as the directive included historical and new data. There is no discussion of data requirements, per se, and
the content, format, or timing associated with the data.

Likes
Dislikes

0
0

Response. Thank you for your comments.
Order No. 830 states that entities should be able to apply for exemption from data collection requirements if an entity “demonstrates that no
or little value would be added to planning and operations.” The order provides flexibility for the SDT to establish the process and criteria for
requesting and approving such exemptions. The SDT will be discussing the exemption process as part of its work on the revised standard.
The detailed description section of the SAR contains excerpts from the FERC order with a reference to the applicable paragraph in the order.
The SDT believes that it is sufficiently clear that the intent is to make the data publically available
The SDT will make every attempt to provide clarity as to the applicability of the requirements of the standard and will minimize the use of the
term “responsible entity”.
The requirements for the collection and distribution of GIC detector and magnetometer data will be developed by the SDT. The FERC order
does require both historical and new data to be provided, however historical data will be collected by NERC via a Rules of Procedure Section

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

22

1600 data request (not in scope for the standards project). The SDT does not view the Order No. 830 phrase "equally efficient and effective"
to apply to compliance documentation.
Shannon Mickens - Southwest Power Pool, Inc. (RTO) - 2 - SPP RE, Group Name SPP Standards Review Group
Answer
Document Name
Comment
After reviewing the transcript associated with the Level 2 Appeal of Foundation For Resilient Societies, INC. in reference to TPL-007-1, we
suggest the drafting team review and use this document as guidance throughout their modification process to the Standard. In our review, we
found some similarities of concerns shared by both The Foundation for Resilient Societies, INC and FERC Order 830 such as, transformer
thermal impact assessments as well as data collection and how that information would be made publicly available.
Likes

0

Dislikes

0

Response. Thank you for your comments. The SDT is aware of Level 2 Appeal transcript. The SDT responded to comments raised by the
Foundation for Resilient Societies during development of TPL-007-1.
Ginette Lacasse - Seattle City Light - 1,3,4,5,6 - WECC, Group Name Seattle City Light Ballot Body
Answer
Document Name
Comment
Thank you for seeking our input in advance.
Likes
Dislikes

0
0

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

23

Response
Marsha Morgan - Southern Company - Southern Company Services, Inc. - 1,3,5,6 - SERC, Group Name Southern Company
Answer
Document Name
Comment
Because commercially available models and tools do not currently exist for performing transformer thermal impact assessments, we ask the
SDT to continue considering suitable alternates (e.g., look up tables, development of flowcharts or processes).
Also, we ask the SDT to provide clarification of the event included in Table 1 - Steady State Planning Events. In particular, with regards to
protection system misoperation due to harmonics during a GMD event, please provide clarification as to what is expected. Will this require
that large scale harmonic penetration studies be performed in order to analyze potential impact of half-cycle saturation generated harmonics
on system protection and/or equipment controls? Or will engineering assessments that identify credible scenarios be sufficient?
SDT to consider that the procurement and installation of instrument transformers for the collection of GIC monitoring and magnetometer data
takes months to implement. SDT to consider realistic timelines for implementation, as well as providing technical guidance for implementation
of GIC measurement devices.
We ask the SDT to provide additional clarification on R2. In particular, SDT to elaborate on "maintaining System models and GIC System
Models." Is R2 referring to gathering and maintaining dc and ac models (e.g., substation dc resistances, dc network data) of the system under
study? Does it require having to complete a GIC analysis by R2 deadline, so that GIC system models can be produced and maintained? Please
provide clarification.
Likes
Dislikes

0
0

Response. Thank you for your comments. The SDT has provided alternatives for conducting the transformer thermal impact assessments in
the original standard and intends to continue in that mode for any modifications that may be necessary to address the FERC directives.

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

24

The SDT recognizes that detailed harmonic analyses may be beyond the capability of many applicable entities. As stated in the development of
TPL-007-1, reasonable engineering judgment can be exercised to identify protection equipment that may be vulnerable to misoperation in the
Benchmark GMD event and therefore, should be placed out of service in the power flow analysis. (See Project 2013-03 Consideration of
Comments dated December 5, 2014, P. 16, P. 48)
To the degree that additional GIC detectors and/or magnetometers are necessary to be installed, the SDT will address the timeframe to install
such devices in the implementation plan.
The intent of requirement R2 in TPL-007-1 is to require entities to maintain models necessary to perform the required analysis (both ac models
for the network analysis and dc models for the GIC calculation). Requirement R2 does not specify that GIC calculations must be completed.
David Jendras - Ameren - Ameren Services - 1,3,6
Answer
Document Name
Comment
The change in deadlines for mitigation of GMD events would not be a concern in Ameren's case. Ameren is not interested in installing blocking
devices to Y-connected EHV transformers. Therefore, operational solutions will provide the likely mitigations.
Likes

0

Dislikes

0

Response Thank you for the comment.
Aaron Cavanaugh - Bonneville Power Administration - 1,3,5,6 - WECC
Answer
Document Name
Comment

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

25

BPA would like to know how the Standard Drafting Team envisions collecting the data to perform the studies. If there is no regional data
collection effort similar to MOD-032, then how is it envisioned that accurate GIC studies to determine DC currents will be run? BPA believes a
documented process needs to be created WECC wide (or nationally). BPA envisions the data collection included with MOD-032 to be collected
every 5 years (or according to study schedule with version 2 of TPL-007). BPA’s experience is that most entities are not willing to take on extra
work if they do not have to.
Likes

0

Dislikes

0

Response. Thank you for your comment. As noted in development of TPL-007-1, the standard provides flexibility for various approaches to
collecting the necessary data for GMD Vulnerability Assessments, including the use of regional planning groups. (See Project 2013-03
Consideration of Comments dated October 28, 2014, P. 23). The whitepapers associated with the development of TPL-007-1 address the
process of performing the GIC calculations.

Russel Mountjoy - Midwest Reliability Organization - 10, Group Name MRO NSRF
Answer
Document Name
Comment
None
Likes

0

Dislikes

0

Response
Sandra Shaffer - Berkshire Hathaway - PacifiCorp - 6

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

26

Answer
Document Name
Comment
PacifiCorp supports the proposal to incorporate the GIC monitoring and magnetometer data collection requirements in a different Reliability
Standard. This separation would allow more attention to the specific upgrades already outlined in the SAR.
Likes

0

Dislikes

0

Response. Thank you for your comment. The SDT will develop the GIC monitoring and magnetometer data collection requirements and then
determine the most appropriate location for those requirements.
Jeffrey DePriest - DTE Energy - Detroit Edison Company - 3,4,5
Answer
Document Name
Comment
Please consider an approach where GIC monitor locations are determined on a regional basis in order to obtain the most value from each
installation and insure that all areas are covered appropriately. An individual GO/TO may not have the information needed to properly place
equipment. Also, providing monitoring equipment specifications would insure that manufacturers would design, and entities would install,
capable monitors that will provide reliable data.
Likes
Dislikes

0
0

Response. The SDT will develop the GIC monitoring and magnetometer data collection requirements and determine the most appropriate
location for those requirements. The SDT will work with the NERC GMD Task Force on the issue of equipment specifications.

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

27

Karie Barczak - DTE Energy - Detroit Edison Company - 3,4,5
Answer
Document Name
Comment
Please consider an approach where GIC monitor locations are determined on a regional basis in order to obtain the most value from each
installation and insure that all areas are covered appropriately. An individual GO/TO may not have the information needed to properly place
equipment. Also, providing monitoring equipment specifications would insure that manufacturers would design, and entities would install,
capable monitors that will provide reliable data.
Likes

0

Dislikes

0

Response. The SDT will develop the GIC monitoring and magnetometer data collection requirements and determine the most appropriate
location for those requirements. The SDT will work with the NERC GMD Task Force on the issue of equipment specifications
Michael Shaw - Lower Colorado River Authority - 1,5,6, Group Name LCRA Compliance
Answer
Document Name
Comment
Likes

0

Dislikes

0

Response

Consideration of Comments | Standard Authorization Request
2013-03 Geomagnetic Disturbance Mitigation | March 16, 2017

28

Standards Authorization Request Form
When completed, email this form to:

sarcomm@nerc.com

NERC welcomes suggestions to improve the reliability
of the bulk power system through improved reliability
standards. Please use this form to submit your request
to propose a new or a revision to a NERC’s Reliability
Standard.

Request to propose a new or a revision to a Reliability Standard
Title of Proposed Standard(s):

Modifications to Geomagnetic Disturbance Standards

Date Submitted:

February 23, 2017

SAR Requester Information
Name:

Frank Koza

Organization:

PJM Interconnection / Project 2013-03 SDT Chair

Telephone:

610-666-4228

E-mail:

frank.koza@pjm.com

SAR Type (Check as many as applicable)
New Standard

Withdrawal of existing Standard

Revision to existing Standard

Urgent Action

SAR Information
Purpose (Describe what the standard action will achieve in support of Bulk Electric System reliability.):
The goal of this project is to address the Federal Energy Regulatory Commission (Commission) directives
contained in Order No. 830 by modifying TPL-007-1 - Transmission System Planned Performance for
Geomagnetic Disturbance Events and the benchmark GMD event used in GMD Vulnerability
Assessments or by developing an equally efficient and effective alternative.
Industry Need (What is the industry problem this request is trying to solve?):
On September 22, 2016, the Commission issued Order No. 830 approving TPL-007-1. In the order, the
Commission directed NERC to develop certain modifications to the Standard, including:
•
•

Modify the benchmark GMD event definition used for GMD Vulnerability Assessments;
Make related modifications to requirements pertaining to transformer thermal impact
assessments;

SAR Information
•
•

Require collection of GMD-related data, which NERC should make available to the public;
and
Require deadlines for Corrective Action Plans (CAPs) and GMD mitigating actions.

The Commission established a deadline of 18 months from the effective date of Order No. 830 for
completing the revisions, which is May 29, 2018.
Brief Description (Provide a paragraph that describes the scope of this standard action.)
The Standards Drafting Team (SDT) shall develop modifications to TPL-007-1 and the benchmark GMD
event that address Commission directives from Order No. 830. The work will include development of
Violation Risk Factors, Violation Severity Levels, and an Implementation Plan for the modified standards
within the deadline established by the Commission in Order No. 830.
Detailed Description (Provide a description of the proposed project with sufficient details for the
standard drafting team to execute the SAR. Also provide a justification for the development or revision
of the standard, including an assessment of the reliability and market interface impacts of implementing
or not implementing the standard action.)
The SDT shall address each of the Order No. 830 directives by developing modifications to requirements
in TPL-007-1 and related material, or the SDT shall develop an equally efficient and effective alternative.
To address concerns identified in Order No. 830, the Commission directed the following:
Benchmark GMD Event (TPL-007-1 Attachment 1 and related requirements)
• [T]he Commission, as proposed in the NOPR, directs NERC to develop revisions to the benchmark
GMD event definition so that the reference peak geoelectric field amplitude component is not
based solely on spatially-averaged data.(P.44)
• Without prejudging how NERC proposes to address the Commission’s directive, NERC’s response
to this directive should satisfy the NOPR’s concern that reliance on spatially-averaged data alone
does not address localized peaks that could potentially affect the reliable operation of the BulkPower System. (P.47)
Transformer Thermal Impact Assessment (TPL-007-1 Requirement R6)
• Consistent with our determination above regarding the reference peak geoelectric field
amplitude value, the Commission directs NERC to revise Requirement R6 to require registered
entities to apply spatially averaged and non-spatially averaged peak geoelectric field values, or
some equally efficient and effective alternative, when conducting thermal impact assessments.
(P.65)
Collection of GMD Data
• The Commission … adopts the NOPR proposal in relevant part and directs NERC to develop
revisions to Reliability Standard TPL-007-1 to require responsible entities to collect GIC
monitoring and magnetometer data as necessary to enable model validation and situational
awareness, including from any devices that must be added to meet this need. The NERC standard

Project 2013-03 Geomagnetic Disturbance Mitigation
February 23, 2017

2

SAR Information

•

•

drafting team should address the criteria for collecting GIC monitoring and magnetometer data...
and provide registered entities with sufficient guidance in terms of defining the data that must be
collected.... (P.88)
Each responsible entity that is a transmission owner should be required to collect necessary GIC
monitoring data. However, a transmission owner should be able to apply for an exemption from
the GIC monitoring data collection requirement if it demonstrates that little or no value would be
added to planning and operations. (P.91)
NERC may also propose to incorporate the GIC monitoring and magnetometer data collection
requirements in a different Reliability Standard....(P.91)

Deadlines for Corrective Action Plans and Mitigations (TPL-007-1 Requirement R7)
• The Commission directs NERC to modify Reliability Standard TPL-007-1 to include a deadline of
one year from the completion of the GMD Vulnerability Assessments to complete the
development of corrective action plans. (P.101)
• The Commission also directs NERC to modify Reliability Standard TPL-007-1 to include a two-year
deadline after the development of the corrective action plan to complete the implementation of
non-hardware mitigation and four-year deadline to complete hardware mitigation…. The
Commission agrees that NERC should consider extensions of time on a case-by-case basis. (P.102)

Reliability Functions
The Standard will Apply to the Following Functions (Check each one that applies.)
Regional Reliability
Organization

Conducts the regional activities related to planning and operations, and
coordinates activities of Responsible Entities to secure the reliability of
the Bulk Electric System within the region and adjacent regions.

Reliability Coordinator

Responsible for the real-time operating reliability of its Reliability
Coordinator Area in coordination with its neighboring Reliability
Coordinator’s wide area view.

Balancing Authority

Integrates resource plans ahead of time, and maintains loadinterchange-resource balance within a Balancing Authority Area and
supports Interconnection frequency in real time.

Interchange Authority

Ensures communication of interchange transactions for reliability
evaluation purposes and coordinates implementation of valid and
balanced interchange schedules between Balancing Authority Areas.

Project 2013-03 Geomagnetic Disturbance Mitigation
February 23, 2017

3

Reliability Functions
Planning Coordinator

Assesses the longer-term reliability of its Planning Coordinator Area.

Resource Planner

Develops a >one year plan for the resource adequacy of its specific loads
within a Planning Coordinator area.

Transmission Planner

Develops a >one year plan for the reliability of the interconnected Bulk
Electric System within its portion of the Planning Coordinator area.

Transmission Service
Provider

Administers the transmission tariff and provides transmission services
under applicable transmission service agreements (e.g., the pro forma
tariff).

Transmission Owner

Owns and maintains transmission facilities.

Transmission
Operator

Ensures the real-time operating reliability of the transmission assets
within a Transmission Operator Area.

Distribution Provider

Delivers electrical energy to the End-use customer.

Generator Owner

Owns and maintains generation facilities.

Generator Operator

Operates generation unit(s) to provide real and Reactive Power.

Purchasing-Selling
Entity

Purchases or sells energy, capacity, and necessary reliability-related
services as required.

Market Operator

Interface point for reliability functions with commercial functions.

Load-Serving Entity

Secures energy and transmission service (and reliability-related services)
to serve the End-use Customer.

Reliability and Market Interface Principles
Applicable Reliability Principles (Check all that apply).
1. Interconnected bulk power systems shall be planned and operated in a coordinated manner
to perform reliably under normal and abnormal conditions as defined in the NERC Standards.
2. The frequency and voltage of interconnected bulk power systems shall be controlled within
defined limits through the balancing of real and Reactive Power supply and demand.
3. Information necessary for the planning and operation of interconnected bulk power systems
shall be made available to those entities responsible for planning and operating the systems
reliably.
4. Plans for emergency operation and system restoration of interconnected bulk power systems
shall be developed, coordinated, maintained and implemented.

Project 2013-03 Geomagnetic Disturbance Mitigation
February 23, 2017

4

Reliability and Market Interface Principles
5. Facilities for communication, monitoring and control shall be provided, used and maintained
for the reliability of interconnected bulk power systems.
6. Personnel responsible for planning and operating interconnected bulk power systems shall be
trained, qualified, and have the responsibility and authority to implement actions.
7. The security of the interconnected bulk power systems shall be assessed, monitored and
maintained on a wide area basis.
8. Bulk power systems shall be protected from malicious physical or cyber attacks.
Does the proposed Standard comply with all of the following Market Interface
Principles?
1. A reliability standard shall not give any market participant an unfair competitive
advantage.
2. A reliability standard shall neither mandate nor prohibit any specific market
structure.
3. A reliability standard shall not preclude market solutions to achieving compliance
with that standard.
4. A reliability standard shall not require the public disclosure of commercially
sensitive information. All market participants shall have equal opportunity to
access commercially non-sensitive information that is required for compliance
with reliability standards.

Enter
(yes/no)
YES
YES
YES
YES

Related Standards
Standard No.

Explanation

Related SARs
SAR ID

Project 2013-03 Geomagnetic Disturbance Mitigation
February 23, 2017

Explanation

5

Regional Variances
Region

Explanation

FRCC
MRO
NPCC
RF
SERC
SPP RE
Texas
RE
WECC

Project 2013-03 Geomagnetic Disturbance Mitigation
February 23, 2017

6

Standards Authorization Request Form
When completed, email this form to:

sarcomm@nerc.com

NERC welcomes suggestions to improve the reliability
of the bulk power system through improved reliability
standards. Please use this form to submit your request
to propose a new or a revision to a NERC’s Reliability
Standard.

Request to propose a new or a revision to a Reliability Standard
Title of Proposed Standard(s):

Modifications to Geomagnetic Disturbance Standards

Date Submitted:

December February 123, 20162017

SAR Requester Information
Name:

Frank Koza

Organization:

PJM Interconnection / Project 2013-03 SDT Chair

Telephone:

610-666-4228

E-mail:

frank.koza@pjm.com

SAR Type (Check as many as applicable)
New Standard

Withdrawal of existing Standard

Revision to existing Standard

Urgent Action

SAR Information
Purpose (Describe what the standard action will achieve in support of Bulk Electric System reliability.):
The goal of this project is to address the Federal Energy Regulatory Commission (Commission) directives
contained in Order No. 830 by modifying TPL-007-1 - Transmission System Planned Performance for
Geomagnetic Disturbance Events and the benchmark GMD event used in GMD Vulnerability
Assessments or by developing an equally efficient and effective alternative.
Industry Need (What is the industry problem this request is trying to solve?):
On September 22, 2016, the Commission issued Order No. 830 approving TPL-007-1. In the order, the
Commission directed NERC to develop certain modifications to the Standard, including:
•
•

Modify the benchmark GMD event definition used for GMD Vulnerability Assessments;
Make related modifications to requirements pertaining to transformer thermal impact
assessments;

SAR Information
•
•

Require collection of GMD-related data, which and for NERC shouldto make it available to
the publicly available; and
Require deadlines for Corrective Action Plans (CAPs) and GMD mitigating actions.

The Commission established a deadline of 18 months from the effective date of Order No. 830 for
completing the revisions, which is May 29, 2018.
Brief Description (Provide a paragraph that describes the scope of this standard action.)
The Standards Drafting Team (SDT) shall develop modifications to TPL-007-1 and the benchmark GMD
event that address Commission directives from Order No. 830. The work will include development of
Violation Risk Factors, Violation Severity Levels, and an Implementation Plan for the modified standards
within the deadline established by the Commission in Order No. 830.
Detailed Description (Provide a description of the proposed project with sufficient details for the
standard drafting team to execute the SAR. Also provide a justification for the development or revision
of the standard, including an assessment of the reliability and market interface impacts of implementing
or not implementing the standard action.)
The SDT shall address each of the Order No. 830 directives by developing modifications to requirements
in TPL-007-1 and related material, or the SDT shall develop an equally efficient and effective alternative.
To address concerns identified in Order No. 830, the Commission directed the following:
Benchmark GMD Event (TPL-007-1 Attachment 1 and related requirements)
• [T]he Commission, as proposed in the NOPR, directs NERC to develop revisions to the benchmark
GMD event definition so that the reference peak geoelectric field amplitude component is not
based solely on spatially-averaged data.(P.44)
• Without prejudging how NERC proposes to address the Commission’s directive, NERC’s response
to this directive should satisfy the NOPR’s concern that reliance on spatially-averaged data alone
does not address localized peaks that could potentially affect the reliable operation of the BulkPower System. (P.47)
Transformer Thermal Impact Assessment (TPL-007-1 Requirement R6)
• Consistent with our determination above regarding the reference peak geoelectric field
amplitude value, the Commission directs NERC to revise Requirement R6 to require registered
entities to apply spatially averaged and non-spatially averaged peak geoelectric field values, or
some equally efficient and effective alternative, when conducting thermal impact assessments.
(P.65)
Collection of GMD Data
• The Commission … adopts the NOPR proposal in relevant part and directs NERC to develop
revisions to Reliability Standard TPL-007-1 to require responsible entities to collect GIC
monitoring and magnetometer data as necessary to enable model validation and situational
awareness, including from any devices that must be added to meet this need. The NERC standard

Project 2013-03 Geomagnetic Disturbance Mitigation
December February 123, 20162017

2

SAR Information

•

•

drafting team should address the criteria for collecting GIC monitoring and magnetometer data...
and provide registered entities with sufficient guidance in terms of defining the data that must be
collected.... (P.88)
Each responsible entity that is a transmission owner should be required to collect necessary GIC
monitoring data. However, a transmission owner should be able to apply for an exemption from
the GIC monitoring data collection requirement if it demonstrates that little or no value would be
added to planning and operations. (P.91)
NERC may also propose to incorporate the GIC monitoring and magnetometer data collection
requirements in a different Reliability Standard....(P.91)

Deadlines for Corrective Action Plans and Mitigations (TPL-007-1 Requirement R7)
• The Commission directs NERC to modify Reliability Standard TPL-007-1 to include a deadline of
one year from the completion of the GMD Vulnerability Assessments to complete the
development of corrective action plans. (P.101)
• The Commission also directs NERC to modify Reliability Standard TPL-007-1 to include a two-year
deadline after the development of the corrective action plan to complete the implementation of
non-hardware mitigation and four-year deadline to complete hardware mitigation…. The
Commission agrees that NERC should consider extensions of time on a case-by-case basis. (P.102)

Reliability Functions
The Standard will Apply to the Following Functions (Check each one that applies.)
Regional Reliability
Organization

Conducts the regional activities related to planning and operations, and
coordinates activities of Responsible Entities to secure the reliability of
the Bulk Electric System within the region and adjacent regions.

Reliability Coordinator

Responsible for the real-time operating reliability of its Reliability
Coordinator Area in coordination with its neighboring Reliability
Coordinator’s wide area view.

Balancing Authority

Integrates resource plans ahead of time, and maintains loadinterchange-resource balance within a Balancing Authority Area and
supports Interconnection frequency in real time.

Interchange Authority

Ensures communication of interchange transactions for reliability
evaluation purposes and coordinates implementation of valid and
balanced interchange schedules between Balancing Authority Areas.

Project 2013-03 Geomagnetic Disturbance Mitigation
December February 123, 20162017

3

Reliability Functions
Planning Coordinator

Assesses the longer-term reliability of its Planning Coordinator Area.

Resource Planner

Develops a >one year plan for the resource adequacy of its specific loads
within a Planning Coordinator area.

Transmission Planner

Develops a >one year plan for the reliability of the interconnected Bulk
Electric System within its portion of the Planning Coordinator area.

Transmission Service
Provider

Administers the transmission tariff and provides transmission services
under applicable transmission service agreements (e.g., the pro forma
tariff).

Transmission Owner

Owns and maintains transmission facilities.

Transmission
Operator

Ensures the real-time operating reliability of the transmission assets
within a Transmission Operator Area.

Distribution Provider

Delivers electrical energy to the End-use customer.

Generator Owner

Owns and maintains generation facilities.

Generator Operator

Operates generation unit(s) to provide real and Reactive Power.

Purchasing-Selling
Entity

Purchases or sells energy, capacity, and necessary reliability-related
services as required.

Market Operator

Interface point for reliability functions with commercial functions.

Load-Serving Entity

Secures energy and transmission service (and reliability-related services)
to serve the End-use Customer.

Reliability and Market Interface Principles
Applicable Reliability Principles (Check all that apply).
1. Interconnected bulk power systems shall be planned and operated in a coordinated manner
to perform reliably under normal and abnormal conditions as defined in the NERC Standards.
2. The frequency and voltage of interconnected bulk power systems shall be controlled within
defined limits through the balancing of real and Reactive Power supply and demand.
3. Information necessary for the planning and operation of interconnected bulk power systems
shall be made available to those entities responsible for planning and operating the systems
reliably.
4. Plans for emergency operation and system restoration of interconnected bulk power systems
shall be developed, coordinated, maintained and implemented.

Project 2013-03 Geomagnetic Disturbance Mitigation
December February 123, 20162017

4

Reliability and Market Interface Principles
5. Facilities for communication, monitoring and control shall be provided, used and maintained
for the reliability of interconnected bulk power systems.
6. Personnel responsible for planning and operating interconnected bulk power systems shall be
trained, qualified, and have the responsibility and authority to implement actions.
7. The security of the interconnected bulk power systems shall be assessed, monitored and
maintained on a wide area basis.
8. Bulk power systems shall be protected from malicious physical or cyber attacks.
Does the proposed Standard comply with all of the following Market Interface
Principles?
1. A reliability standard shall not give any market participant an unfair competitive
advantage.
2. A reliability standard shall neither mandate nor prohibit any specific market
structure.
3. A reliability standard shall not preclude market solutions to achieving compliance
with that standard.
4. A reliability standard shall not require the public disclosure of commercially
sensitive information. All market participants shall have equal opportunity to
access commercially non-sensitive information that is required for compliance
with reliability standards.

Enter
(yes/no)
YES
YES
YES
YES

Related Standards
Standard No.

Explanation

Related SARs
SAR ID

Project 2013-03 Geomagnetic Disturbance Mitigation
December February 123, 20162017

Explanation

5

Regional Variances
Region

Explanation

FRCC
MRO
NPCC
RF
SERC
SPP RE
Texas
RE
WECC

Project 2013-03 Geomagnetic Disturbance Mitigation
December February 123, 20162017

6

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Standard Development Timeline
This section is maintained by the drafting team during the development of the standard and will
be removed when the standard is adopted by the NERC Board of Trustees (Board).

Description of Current Draft
Completed Actions

Date

Standards Committee approved Standard Authorization Request
(SAR) for posting

December 14, 2016

SAR posted for comment

December 16, 2016
– January 20, 2017

Anticipated Actions

Date

45-day formal comment period with ballot

June 2017

45-day formal comment period with additional ballot

September 2017

10-day final ballot

TBD

Board adoption

February 2018

Draft 1 of TPL-007-2
June 2017

Page 1 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

New or Modified Term(s) Used in NERC Reliability Standards

This section includes all new or modified terms used in the proposed standard that will be
included in the Glossary of Terms Used in NERC Reliability Standards upon applicable regulatory
approval. Terms used in the proposed standard that are already defined and are not being
modified can be found in the Glossary of Terms Used in NERC Reliability Standards. The new or
revised terms listed below will be presented for approval with the proposed standard. Upon
Board adoption, this section will be removed.
Term(s):

None

Draft 1 of TPL-007-2
June 2017

Page 2 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Upon Board adoption, the rationale boxes will be moved to the Supplemental Material Section.

A. Introduction
1.

Title:
Events

Transmission System Planned Performance for Geomagnetic Disturbance

2.

Number:

TPL-007-2

3.

Purpose:
Establish requirements for Transmission system planned performance
during geomagnetic disturbance (GMD) events.

4.

Applicability:
4.1. Functional Entities:
4.1.1. Planning Coordinator with a planning area that includes a Facility or
Facilities specified in 4.2;
4.1.2. Transmission Planner with a planning area that includes a Facility or
Facilities specified in 4.2;
4.1.3. Transmission Owner who owns a Facility or Facilities specified in 4.2;
4.1.4. Generator Owner who owns a Facility or Facilities specified in 4.2.
4.2. Facilities:
4.2.1. Facilities that include power transformer(s) with a high side, wyegrounded winding with terminal voltage greater than 200 kV.

5.

Effective Date: See Implementation Plan for TPL-007-1

6.

Background:
During a GMD event, geomagnetically-induced currents (GIC) may cause transformer
hot-spot heating or damage, loss of Reactive Power sources, increased Reactive Power
demand, and Misoperation(s), the combination of which may result in voltage collapse
and blackout.

B. Requirements and Measures
R1. Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall
identify the individual and joint responsibilities of the Planning Coordinator and
Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining
models, performing the study or studies needed to complete benchmark and
supplemental GMD Vulnerability Assessments, and implementing process(es) to
obtain GMD measurement data as specified in this standard. [Violation Risk Factor:
Lower] [Time Horizon: Long-term Planning]
M1. Each Planning Coordinator, in conjunction with its Transmission Planners, shall provide
documentation on roles and responsibilities, such as meeting minutes, agreements,
Draft 1 of TPL-007-2
June 2017

Page 3 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

copies of procedures or protocols in effect between entities or between departments
of a vertically integrated system, or email correspondence that identifies an
agreement has been reached on individual and joint responsibilities for maintaining
models, performing the study or studies needed to complete benchmark and
supplemental GMD Vulnerability Assessments, and implementing process(es) to
obtain GMD measurement data in accordance with Requirement R1.
R2. Each responsible entity, as determined in Requirement R1, shall maintain System
models and GIC System models of the responsible entity’s planning area for
performing the study or studies needed to complete benchmark and supplemental
GMD Vulnerability Assessments. [Violation Risk Factor: High] [Time Horizon: Longterm Planning]
M2. Each responsible entity, as determined in Requirement R1, shall have evidence in
either electronic or hard copy format that it is maintaining System models and GIC
System models of the responsible entity’s planning area for performing the study or
studies needed to complete benchmark and supplemental GMD Vulnerability
Assessments.
R3. Each responsible entity, as determined in Requirement R1, shall have criteria for
acceptable System steady state voltage performance for its System during the GMD
events described in Attachment 1. [Violation Risk Factor: Medium] [Time Horizon:
Long-term Planning]
M3. Each responsible entity, as determined in Requirement R1, shall have evidence, such
as electronic or hard copies of the criteria for acceptable System steady state voltage
performance for its System in accordance with Requirement R3.
Benchmark GMD Vulnerability Assessment(s)
R4. Each responsible entity, as determined in Requirement R1, shall complete a
benchmark GMD Vulnerability Assessment of the Near-Term Transmission Planning
Horizon at least once every 60 calendar months. This benchmark GMD Vulnerability
Assessment shall use a study or studies based on models identified in Requirement R2,
document assumptions, and document summarized results of the steady state
analysis. [Violation Risk Factor: High] [Time Horizon: Long-term Planning]
4.1. The study or studies shall include the following conditions:
4.1.1. System On-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon; and
4.1.2. System Off-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon.
4.2. The study or studies shall be conducted based on the benchmark GMD event
described in Attachment 1 to determine whether the System meets the

Draft 1 of TPL-007-2
June 2017

Page 4 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

performance requirements for the steady state planning benchmark GMD event
contained in Table 1.
4.3. The benchmark GMD Vulnerability Assessment shall be provided: (i) to the
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to
any functional entity that submits a written request and has a reliability-related
need within 90 calendar days of receipt of such request or within 90 calendar
days of completion of the benchmark GMD Vulnerability Assessment, whichever
is later.
4.3.1. If a recipient of the benchmark GMD Vulnerability Assessment provides
documented comments on the results, the responsible entity shall
provide a documented response to that recipient within 90 calendar days
of receipt of those comments.
M4. Each responsible entity, as determined in Requirement R1, shall have dated evidence
such as electronic or hard copies of its benchmark GMD Vulnerability Assessment
meeting all of the requirements in Requirement R4. Each responsible entity, as
determined in Requirement R1, shall also provide evidence, such as email records,
web postings with an electronic notice of posting, or postal receipts showing recipient
and date, that it has distributed its benchmark GMD Vulnerability Assessment: (i) to
the responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to any
functional entity that submits a written request and has a reliability-related need
within 90 calendar days of receipt of such request or within 90 calendar days of
completion of the benchmark GMD Vulnerability Assessment, whichever is later, as
specified in Requirement R4. Each responsible entity, as determined in Requirement
R1, shall also provide evidence, such as email notices or postal receipts showing
recipient and date, that it has provided a documented response to comments received
on its benchmark GMD Vulnerability Assessment within 90 calendar days of receipt of
those comments in accordance with Requirement R4.
R5. Each responsible entity, as determined in Requirement R1, shall provide GIC flow
information to be used for the benchmark thermal impact assessment of transformers
specified in Requirement R6 to each Transmission Owner and Generator Owner that
owns an applicable Bulk Electric System (BES) power transformer in the planning area.
The GIC flow information shall include: [Violation Risk Factor: Medium] [Time
Horizon: Long-term Planning]
5.1. The maximum effective GIC value for the worst case geoelectric field orientation
for the benchmark GMD event described in Attachment 1. This value shall be
provided to the Transmission Owner or Generator Owner that owns each
applicable BES power transformer in the planning area.
5.2. The effective GIC time series, GIC(t), calculated using the benchmark GMD event
described in Attachment 1 in response to a written request from the
Draft 1 of TPL-007-2
June 2017

Page 5 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Transmission Owner or Generator Owner that owns an applicable BES power
transformer in the planning area. GIC(t) shall be provided within 90 calendar
days of receipt of the written request and after determination of the maximum
effective GIC value in Part 5.1.
M5. Each responsible entity, as determined in Requirement R1, shall provide evidence,
such as email records, web postings with an electronic notice of posting, or postal
receipts showing recipient and date, that it has provided the maximum effective
benchmark GIC value to the Transmission Owner and Generator Owner that owns
each applicable BES power transformer in the planning area as specified in
Requirement R5, Part 5.1. Each responsible entity, as determined in Requirement R1,
shall also provide evidence, such as email records, web postings with an electronic
notice of posting, or postal receipts showing recipient and date, that it has provided
GIC(t) in response to a written request from the Transmission Owner or Generator
Owner that owns an applicable BES power transformer in the planning area.
R6. Each Transmission Owner and Generator Owner shall conduct a benchmark thermal
impact assessment for its solely and jointly owned applicable BES power transformers
where the maximum effective GIC value provided in Requirement R5, Part 5.1, is 75 A
per phase or greater. The benchmark thermal impact assessment shall: [Violation Risk
Factor: Medium] [Time Horizon: Long-term Planning]
6.1. Be based on the effective GIC flow information provided in Requirement R5;
6.2. Document assumptions used in the analysis;
6.3. Describe suggested actions and supporting analysis to mitigate the impact of
GICs, if any; and
6.4. Be performed and provided to the responsible entities, as determined in
Requirement R1, within 24 calendar months of receiving GIC flow information
specified in Requirement R5, Part 5.1.
M6. Each Transmission Owner and Generator Owner shall have evidence such as electronic
or hard copies of its benchmark thermal impact assessment for all of its solely and
jointly owned applicable BES power transformers where the maximum effective GIC
value provided in Requirement R5, Part 5.1, is 75 A per phase or greater, and shall
have evidence such as email records, web postings with an electronic notice of
posting, or postal receipts showing recipient and date, that it has provided its thermal
impact assessment to the responsible entities as specified in Requirement R6.
Rationale for Requirement R7: The proposed requirement addresses directives in Order
No. 830 for establishing Corrective Action Plan (CAP) deadlines associated with GMD
Vulnerability Assessments. In Order No. 830, FERC directed revisions to TPL-007 such that
CAPs are developed within one year from the completion of GMD Vulnerability
Assessments (P. 101). Furthermore, FERC directed establishment of implementation
deadlines after the completion of the CAP as follows (P. 102):
Draft 1 of TPL-007-2
June 2017

Page 6 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

•
•

Two years for non-hardware mitigation; and
Four years for hardware mitigation.

The objective of Part 7.4 is to provide awareness to potentially impacted entities when
implementation of planned mitigation is not achievable within the deadlines established
in Part 7.3.
R7. Each responsible entity, as determined in Requirement R1, that concludes through the
benchmark GMD Vulnerability Assessment conducted in Requirement R4 that their
System does not meet the performance requirements for the steady state planning
benchmark GMD event contained in Table 1 shall develop a Corrective Action Plan
(CAP) addressing how the performance requirements will be met. The CAP shall:
[Violation Risk Factor: High] [Time Horizon: Long-term Planning]
7.1. List System deficiencies and the associated actions needed to achieve required
System performance. Examples of such actions include:
•

Installation, modification, retirement, or removal of Transmission and
generation Facilities and any associated equipment.

•

Installation, modification, or removal of Protection Systems or Remedial
Action Schemes.

•

Use of Operating Procedures, specifying how long they will be needed as
part of the CAP.

•

Use of Demand-Side Management, new technologies, or other initiatives.

7.2. Be developed within one year of completion of the benchmark GMD
Vulnerability Assessment.
7.3. Include a timetable, subject to revision by the responsible entity in Part 7.4, for
implementing the selected actions from Part 7.1. The timetable shall:
7.3.1. Specify implementation of non-hardware mitigation, if any, within two
years of development of the CAP; and
7.3.2. Specify implementation of hardware mitigation, if any, within four years
of development of the CAP.
7.4. Be revised if situations beyond the control of the responsible entity determined
in Requirement R1 prevent implementation of the CAP within the timetable for
implementation provided in Part 7.3. The revised CAP shall document the
following, and be updated at least once every 12 calendar months until
implemented:
7.4.1. Circumstances causing the delay for fully or partially implementing the
selected actions in Part 7.1;

Draft 1 of TPL-007-2
June 2017

Page 7 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

7.4.2. Description of the original CAP, and any previous changes to the CAP,
with the associated timetable(s) for implementing the selected actions in
Part 7.1; and
7.4.3. Revisions to the selected actions in Part 7.1, if any, including utilization of
Operating Procedures if applicable, and the updated timetable for
implementing the selected actions.
7.5. Be provided: (i) to the responsible entity’s Reliability Coordinator, adjacent
Planning Coordinator(s), adjacent Transmission Planner(s), and functional
entities referenced in the CAP within 90 calendar days of development or
revision, and (ii) to any functional entity that submits a written request and has a
reliability-related need within 90 calendar days of receipt of such request or
within 90 calendar days of development or revision, whichever is later.
7.5.1. If a recipient of the CAP provides documented comments on the results,
the responsible entity shall provide a documented response to that
recipient within 90 calendar days of receipt of those comments.
M7. Each responsible entity, as determined in Requirement R1, that concludes, through
the benchmark GMD Vulnerability Assessment conducted in Requirement R4, that the
responsible entity’s System does not meet the performance requirements for the
steady state planning benchmark GMD event contained in Table 1 shall have evidence
such as dated electronic or hard copies of its CAP including timetable for
implementing selected actions, as specified in Requirement R7. Each responsible
entity, as determined in Requirement R1, shall also provide evidence, such as email
records or postal receipts showing recipient and date, that it has revised its CAP if
situations beyond the responsible entity's control prevent implementation of the CAP
within the timetable specified. Each responsible entity, as determined in Requirement
R1, shall also provide evidence, such as email records, web postings with an electronic
notice of posting, or postal receipts showing recipient and date, that it has distributed
its CAP or relevant information, if any, (i) to the responsible entity’s Reliability
Coordinator, adjacent Planning Coordinator(s), adjacent Transmission Planner(s), and
functional entities referenced in the CAP within 90 calendar days of development or
revision, and (ii) to any functional entity that submits a written request and has a
reliability-related need within 90 calendar days of receipt of such request or within 90
calendar days of development or revision, whichever is later as specified in
Requirement R7. Each responsible entity, as determined in Requirement R1, shall also
provide evidence, such as email notices or postal receipts showing recipient and date,
that it has provided a documented response to comments received on its CAP within
90 calendar days of receipt of those comments, in accordance with Requirement R7.

Draft 1 of TPL-007-2
June 2017

Page 8 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Supplemental GMD Vulnerability Assessment(s)
Rationale for Requirements R8 - R10: The proposed requirements address directives in
Order No. 830 for revising the benchmark GMD event used in GMD Vulnerability
Assessments (P.44, P47-49). The requirements add a supplemental GMD Vulnerability
Assessment based on the supplemental GMD event that accounts for localized peak
geoelectric fields.
R8.

Each responsible entity, as determined in Requirement R1, shall complete a
supplemental GMD Vulnerability Assessment of the Near-Term Transmission Planning
Horizon at least once every 60 calendar months. This supplemental GMD Vulnerability
Assessment shall use a study or studies based on models identified in Requirement
R2, document assumptions, and document summarized results of the steady state
analysis. [Violation Risk Factor: High] [Time Horizon: Long-term Planning]
8.1. The study or studies shall include the following conditions:
8.1.1. System On-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon; and
8.1.2. System Off-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon.
8.2. The study or studies shall be conducted based on the supplemental GMD event
described in Attachment 1 to determine whether the System meets the
performance requirements for the steady state planning supplemental GMD
event contained in Table 1.
8.3. If the analysis concludes there is Cascading caused by the supplemental GMD
event described in Attachment 1, an evaluation of possible actions designed to
reduce the likelihood or mitigate the consequences and adverse impacts of the
event(s) shall be conducted.
8.4. The supplemental GMD Vulnerability Assessment shall be provided: (i) to the
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators,
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to
any functional entity that submits a written request and has a reliability-related
need within 90 calendar days of receipt of such request or within 90 calendar
days of completion of the supplemental GMD Vulnerability Assessment,
whichever is later.
8.4.1. If a recipient of the supplemental GMD Vulnerability Assessment
provides documented comments on the results, the responsible entity
shall provide a documented response to that recipient within 90 calendar
days of receipt of those comments.

M8. Each responsible entity, as determined in Requirement R1, shall have dated evidence
such as electronic or hard copies of its supplemental GMD Vulnerability Assessment
Draft 1 of TPL-007-2
June 2017

Page 9 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

meeting all of the requirements in Requirement R8. Each responsible entity, as
determined in Requirement R1, shall also provide evidence, such as email records,
web postings with an electronic notice of posting, or postal receipts showing recipient
and date, that it has distributed its supplemental GMD Vulnerability: (i) to the
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, adjacent
Transmission Planners within 90 calendar days of completion, and (ii) to any
functional entity that submits a written request and has a reliability-related need
within 90 calendar days of receipt of such request or within 90 calendar days of
completion of the supplemental GMD Vulnerability Assessment, whichever is later, as
specified in Requirement R8. Each responsible entity, as determined in Requirement
R1, shall also provide evidence, such as email notices or postal receipts showing
recipient and date, that it has provided a documented response to comments
received on its supplemental GMD Vulnerability Assessment within 90 calendar days
of receipt of those comments in accordance with Requirement R8.
R9.

Each responsible entity, as determined in Requirement R1, shall provide GIC flow
information to be used for the supplemental thermal impact assessment of
transformers specified in Requirement R10 to each Transmission Owner and
Generator Owner that owns an applicable Bulk Electric System (BES) power
transformer in the planning area. The GIC flow information shall include: [Violation
Risk Factor: Medium] [Time Horizon: Long-term Planning]
9.1. The maximum effective GIC value for the worst case geoelectric field orientation
for the supplemental GMD event described in Attachment 1. This value shall be
provided to the Transmission Owner or Generator Owner that owns each
applicable BES power transformer in the planning area.
9.2. The effective GIC time series, GIC(t), calculated using the supplemental GMD
event described in Attachment 1 in response to a written request from the
Transmission Owner or Generator Owner that owns an applicable BES power
transformer in the planning area. GIC(t) shall be provided within 90 calendar
days of receipt of the written request and after determination of the maximum
effective GIC value in Part 9.1.

M9. Each responsible entity, as determined in Requirement R1, shall provide evidence,
such as email records, web postings with an electronic notice of posting, or postal
receipts showing recipient and date, that it has provided the maximum effective
supplemental GIC value to the Transmission Owner and Generator Owner that owns
each applicable BES power transformer in the planning area as specified in
Requirement R9, Part 9.1. Each responsible entity, as determined in Requirement R1,
shall also provide evidence, such as email records, web postings with an electronic
notice of posting, or postal receipts showing recipient and date, that it has provided
GIC(t) in response to a written request from the Transmission Owner or Generator
Owner that owns an applicable BES power transformer in the planning area.
R10. Each Transmission Owner and Generator Owner shall conduct a supplemental
thermal impact assessment for its solely and jointly owned applicable BES power
Draft 1 of TPL-007-2
June 2017

Page 10 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

transformers where the maximum effective GIC value provided in Requirement R9,
Part 9.1, is 85 A per phase or greater. The supplemental thermal impact assessment
shall: [Violation Risk Factor: Medium] [Time Horizon: Long-term Planning]
10.1. Be based on the effective GIC flow information provided in Requirement R9;
10.2. Document assumptions used in the analysis;
10.3. Describe suggested actions and supporting analysis to mitigate the impact of
GICs, if any; and
10.4. Be performed and provided to the responsible entities, as determined in
Requirement R1, within 24 calendar months of receiving GIC flow information
specified in Requirement R9, Part 9.1.
M10. Each Transmission Owner and Generator Owner shall have evidence such as
electronic or hard copies of its supplemental thermal impact assessment for all of its
solely and jointly owned applicable BES power transformers where the maximum
effective GIC value provided in Requirement R9, Part 9.1, is 85 A per phase or greater,
and shall have evidence such as email records, web postings with an electronic notice
of posting, or postal receipts showing recipient and date, that it has provided its
supplemental thermal impact assessment to the responsible entities as specified in
Requirement R10.
GMD Measurement Data Processes

Rationale for Requirements R11 and R12: The proposed requirements address directives
in Order No. 830 for requiring responsible entities to collect GIC monitoring and
magnetometer data as necessary to enable model validation and situational awareness
(P. 88; P. 90-92). See the Guidelines and Technical Basis section of this standard for
technical information.
The objective of Requirement R11 is for entities to obtain GIC data for the Planning
Coordinator's planning area or other part of the system included in the Planning
Coordinator's GIC System model to inform GMD Vulnerability Assessments. Technical
considerations for GIC monitoring are contained in Chapter 6 of the 2012 Special
Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the BulkPower System (NERC 2012 GMD Report). GIC monitoring is generally performed by Hall
effect transducers that are attached to the neutral of the transformer and measure dc
current flowing through the neutral.
The objective of Requirement R12 is for entities to obtain geomagnetic field data for the
Planning Coordinator's planning area to inform GMD Vulnerability Assessments.
Magnetometers provide geomagnetic field data by measuring changes in the earth's
magnetic field. Sources of geomagnetic field data include:
•

Observatories such as those operated by U.S. Geological Survey, Natural
Resources Canada, research organizations, or university research facilities.

•

Installed magnetometers

Draft 1 of TPL-007-2
June 2017

Page 11 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

•

Commercial or third-party sources of geomagnetic field data

Geomagnetic field data for a Planning Coordinator’s planning area is obtained from one
or more of the above data sources located in the Planning Coordinator’s planning area, or
by obtaining a geomagnetic field data product for the Planning Coordinator’s planning
area from a government or research organization. The geomagnetic field data product
does not need to be derived from a magnetometer or observatory within the Planning
Coordinator’s planning area.
R11. Each responsible entity, as determined in Requirement R1, shall implement a process
to obtain GIC monitor data from at least one GIC monitor located in the Planning
Coordinator's planning area or other part of the system included in the Planning
Coordinator's GIC System model. [Violation Risk Factor: Lower] [Time Horizon: Longterm Planning]
M11. Each responsible entity, as determined in Requirement R1, shall have evidence such
as electronic or hard copies of its GIC monitor location(s) and documentation of its
process to obtain GIC monitor data in accordance with Requirement R11.
R12. Each responsible entity, as determined in Requirement R1, shall implement a process
to obtain geomagnetic field data for its Planning Coordinator’s planning area.
[Violation Risk Factor: Lower] [Time Horizon: Long-term Planning]
M12. Each responsible entity, as determined in Requirement R1, shall have evidence such
as electronic or hard copies of its process to obtain geomagnetic field data for its
Planning Coordinator’s planning area in accordance with Requirement R12.

C. Compliance
1.

Compliance Monitoring Process
1.1. Compliance Enforcement Authority: “Compliance Enforcement Authority”
means NERC or the Regional Entity, or any entity as otherwise designated by an
Applicable Governmental Authority, in their respective roles of monitoring
and/or enforcing compliance with mandatory and enforceable Reliability
Standards in their respective jurisdictions.
1.2. Evidence Retention: The following evidence retention period(s) identify the
period of time an entity is required to retain specific evidence to demonstrate
compliance. For instances where the evidence retention period specified below
is shorter than the time since the last audit, the Compliance Enforcement
Authority may ask an entity to provide other evidence to show that it was
compliant for the full-time period since the last audit.

Draft 1 of TPL-007-2
June 2017

Page 12 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

The applicable entity shall keep data or evidence to show compliance as
identified below unless directed by its Compliance Enforcement Authority to
retain specific evidence for a longer period of time as part of an investigation.
•

For Requirements R1, R2, R3, R5, R6, R9, and R10, each responsible entity
shall retain documentation as evidence for five years.

•

For Requirements R4 and R8, each responsible entity shall retain
documentation of the current GMD Vulnerability Assessment and the
preceding GMD Vulnerability Assessment.

•

For Requirement R7, each responsible entity shall retain documentation as
evidence for five years or until all actions in the Corrective Action Plan are
completed, whichever is later.

•

For Requirements R11 and R12, each responsible entity shall retain
documentation as evidence for three years.

1.3. Compliance Monitoring and Enforcement Program: As defined in the NERC
Rules of Procedure, “Compliance Monitoring and Enforcement Program” refers
to the identification of the processes that will be used to evaluate data or
information for the purpose of assessing performance or outcomes with the
associated Reliability Standard.

Draft 1 of TPL-007-2
June 2017

Page 13 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Table 1 – Steady State Planning GMD Event
Steady State:
a. Voltage collapse, Cascading and uncontrolled islanding shall not occur.
b.

Generation loss is acceptable as a consequence of the steady state planning GMD events.

c.

Planned System adjustments such as Transmission configuration changes and re-dispatch of generation are allowed if such adjustments
are executable within the time duration applicable to the Facility Ratings.

Category

Initial Condition

Benchmark
GMD Event -

1. System as may be
postured in response to
space weather
information1, and then

GMD Event
with Outages

Supplemental
GMD Event GMD Event
with Outages

2. GMD event2

1. System as may be
postured in response to
space weather
information1, and then
2. GMD event2

Interruption of
Firm Transmission
Service Allowed

Load Loss Allowed

Reactive Power compensation devices and
other Transmission Facilities removed as a
result of Protection System operation or
Misoperation due to harmonics during the
GMD event

Yes3

Yes3

Reactive Power compensation devices and
other Transmission Facilities removed as a
result of Protection System operation or
Misoperation due to harmonics during the
GMD event

Yes

Yes

Event

Table 1 – Steady State Performance Footnotes
1.

The System condition for GMD planning may include adjustments to posture the System that are executable in response to space weather
information.

2.

The GMD conditions for the benchmark and supplemental planning events are described in Attachment 1.

3.

Load loss as a result of manual or automatic Load shedding (e.g., UVLS) and/or curtailment of Firm Transmission Service may be used to
meet BES performance requirements during studied GMD conditions. The likelihood and magnitude of Load loss or curtailment of Firm
Transmission Service should be minimized.

Draft 1 of TPL-007-2
June 2017

Page 14 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Violation Severity Levels
Violation Severity Levels

R#

Lower VSL

Moderate VSL

High VSL

Severe VSL

R1.

N/A

N/A

N/A

The Planning Coordinator, in
conjunction with its
Transmission Planner(s),
failed to determine and
identify individual or joint
responsibilities of the
Planning Coordinator and
Transmission Planner(s) in
the Planning Coordinator’s
planning area for
maintaining models,
performing the study or
studies needed to complete
benchmark and
supplemental GMD
Vulnerability Assessments,
and implementing
process(es) to obtain GMD
measurement data as
specified in this standard.

R2.

N/A

N/A

The responsible entity did
not maintain either System
models or GIC System
models of the responsible
entity’s planning area for
performing the study or

The responsible entity did
not maintain both System
models and GIC System
models of the responsible
entity’s planning area for
performing the study or

Draft 1 of TPL-007-2
June 2017

Page 15 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

studies needed to complete
benchmark and
supplemental GMD
Vulnerability Assessments.

studies needed to complete
benchmark and
supplemental GMD
Vulnerability Assessments.

R3.

N/A

N/A

N/A

The responsible entity did
not have criteria for
acceptable System steady
state voltage performance
for its System during the
GMD events described in
Attachment 1 as required.

R4.

The responsible entity
completed a benchmark
GMD Vulnerability
Assessment, but it was more
than 60 calendar months
and less than or equal to 64
calendar months since the
last benchmark GMD
Vulnerability Assessment.

The responsible entity's
completed benchmark GMD
Vulnerability Assessment
failed to satisfy one of
elements listed in
Requirement R4, Parts 4.1
through 4.3;
OR
The responsible entity
completed a benchmark
GMD Vulnerability
Assessment, but it was more
than 64 calendar months
and less than or equal to 68
calendar months since the
last benchmark GMD
Vulnerability Assessment.

The responsible entity's
completed benchmark GMD
Vulnerability Assessment
failed to satisfy two of the
elements listed in
Requirement R4, Parts 4.1
through 4.3;
OR
The responsible entity
completed a benchmark
GMD Vulnerability
Assessment, but it was more
than 68 calendar months
and less than or equal to 72
calendar months since the
last benchmark GMD
Vulnerability Assessment.

The responsible entity's
completed benchmark GMD
Vulnerability Assessment
failed to satisfy three of the
elements listed in
Requirement R4, Parts 4.1
through 4.3;
OR
The responsible entity
completed a benchmark
GMD Vulnerability
Assessment, but it was more
than 72 calendar months
since the last benchmark
GMD Vulnerability
Assessment;
OR

Draft 1 of TPL-007-2
June 2017

Page 16 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

The responsible entity does
not have a completed
benchmark GMD
Vulnerability Assessment.
R5.

The responsible entity
provided the effective GIC
time series, GIC(t), in
response to written request,
but did so more than 90
calendar days and less than
or equal to 100 calendar
days after receipt of a
written request.

The responsible entity
provided the effective GIC
time series, GIC(t), in
response to written request,
but did so more than 100
calendar days and less than
or equal to 110 calendar
days after receipt of a
written request.

The responsible entity
provided the effective GIC
time series, GIC(t), in
response to written request,
but did so more than 110
calendar days after receipt
of a written request.

The responsible entity did
not provide the maximum
effective GIC value to the
Transmission Owner and
Generator Owner that owns
each applicable BES power
transformer in the planning
area;
OR
The responsible entity did
not provide the effective GIC
time series, GIC(t), upon
written request.

R6.

The responsible entity failed
to conduct a benchmark
thermal impact assessment
for 5% or less or one of its
solely owned and jointly
owned applicable BES power
transformers (whichever is
greater) where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater
per phase;

The responsible entity failed
to conduct a benchmark
thermal impact assessment
for more than 5% up to (and
including) 10% or two of its
solely owned and jointly
owned applicable BES power
transformers (whichever is
greater) where the
maximum effective GIC value
provided in Requirement R5,

The responsible entity failed
to conduct a benchmark
thermal impact assessment
for more than 10% up to
(and including) 15% or three
of its solely owned and
jointly owned applicable BES
power transformers
(whichever is greater) where
the maximum effective GIC
value provided in

The responsible entity failed
to conduct a benchmark
thermal impact assessment
for more than 15% or more
than three of its solely
owned and jointly owned
applicable BES power
transformers (whichever is
greater) where the
maximum effective GIC value
provided in Requirement R5,

Draft 1 of TPL-007-2
June 2017

Page 17 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

R7.

OR
The responsible entity
conducted a benchmark
thermal impact assessment
for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R5, Part 5.1, is
75 A or greater per phase
but did so more than 24
calendar months and less
than or equal to 26 calendar
months of receiving GIC flow
information specified in
Requirement R5, Part 5.1.

Part 5.1, is 75 A or greater
per phase;
OR
The responsible entity
conducted a benchmark
thermal impact assessment
for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R5, Part 5.1, is
75 A or greater per phase
but did so more than 26
calendar months and less
than or equal to 28 calendar
months of receiving GIC flow
information specified in
Requirement R5, Part 5.1;
OR
The responsible entity failed
to include one of the
required elements as listed
in Requirement R6, Parts 6.1
through 6.3.

Requirement R5, Part 5.1, is
75 A or greater per phase;
OR
The responsible entity
conducted a benchmark
thermal impact assessment
for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R5, Part 5.1, is
75 A or greater per phase
but did so more than 28
calendar months and less
than or equal to 30 calendar
months of receiving GIC flow
information specified in
Requirement R5, Part 5.1;
OR
The responsible entity failed
to include two of the
required elements as listed
in Requirement R6, Parts 6.1
through 6.3.

Part 5.1, is 75 A or greater
per phase;
OR
The responsible entity
conducted a benchmark
thermal impact assessment
for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R5, Part 5.1, is
75 A or greater per phase
but did so more than 30
calendar months of receiving
GIC flow information
specified in Requirement R5,
Part 5.1;
OR
The responsible entity failed
to include three of the
required elements as listed
in Requirement R6, Parts 6.1
through 6.3.

The responsible entity's
Corrective Action Plan failed
to comply with one of the
elements in Requirement R7,
Parts 7.1 through 7.5.

The responsible entity's
Corrective Action Plan failed
to comply with two of the
elements in Requirement R7,
Parts 7.1 through 7.5.

The responsible entity's
Corrective Action Plan failed
to comply with three of the
elements in Requirement R7,
Parts 7.1 through 7.5.

The responsible entity's
Corrective Action Plan failed
to comply with four or more
of the elements in

Draft 1 of TPL-007-2
June 2017

Page 18 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Requirement R7, Parts 7.1
through 7.5;
OR
The responsible entity did
not have a Corrective Action
Plan as required by
Requirement R7.
R8.

The responsible entity
completed a supplemental
GMD Vulnerability
Assessment, but it was more
than 60 calendar months
and less than or equal to 64
calendar months since the
last supplemental GMD
Vulnerability Assessment;
OR
The responsible entity's
completed supplemental
GMD Vulnerability
Assessment failed to satisfy
one of elements listed in
Requirement R8, Parts 8.1
through 8.4;

Draft 1 of TPL-007-2
June 2017

The responsible entity's
completed supplemental
GMD Vulnerability
Assessment failed to satisfy
two of elements listed in
Requirement R8, Parts 8.1
through 8.4;
OR
The responsible entity
completed a supplemental
GMD Vulnerability
Assessment, but it was more
than 64 calendar months
and less than or equal to 68
calendar months since the
last supplemental GMD
Vulnerability Assessment.

The responsible entity's
completed supplemental
GMD Vulnerability
Assessment failed to satisfy
three of the elements listed
in Requirement R8, Parts 8.1
through 8.4;
OR
The responsible entity
completed a supplemental
GMD Vulnerability
Assessment, but it was more
than 68 calendar months
and less than or equal to 72
calendar months since the
last supplemental GMD
Vulnerability Assessment.

Page 19 of 42

The responsible entity's
completed supplemental
GMD Vulnerability
Assessment failed to satisfy
four of the elements listed in
Requirement R8, Parts 8.1
through 8.4;
OR
The responsible entity
completed a supplemental
GMD Vulnerability
Assessment, but it was more
than 72 calendar months
since the last supplemental
GMD Vulnerability
Assessment;
OR
The responsible entity does
not have a completed
supplemental GMD
Vulnerability Assessment.

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

R9.

The responsible entity
provided the effective GIC
time series, GIC(t), in
response to written request,
but did so more than 90
calendar days and less than
or equal to 100 calendar
days after receipt of a
written request.

The responsible entity
provided the effective GIC
time series, GIC(t), in
response to written request,
but did so more than 100
calendar days and less than
or equal to 110 calendar
days after receipt of a
written request.

The responsible entity
provided the effective GIC
time series, GIC(t), in
response to written request,
but did so more than 110
calendar days after receipt
of a written request.

The responsible entity did
not provide the maximum
effective GIC value to the
Transmission Owner and
Generator Owner that owns
each applicable BES power
transformer in the planning
area;
OR
The responsible entity did
not provide the effective GIC
time series, GIC(t), upon
written request.

R10.

The responsible entity failed
to conduct a supplemental
thermal impact assessment
for 5% or less or one of its
solely owned and jointly
owned applicable BES power
transformers (whichever is
greater) where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater
per phase;
OR
The responsible entity
conducted a supplemental
thermal impact assessment

The responsible entity failed
to conduct a supplemental
thermal impact assessment
for more than 5% up to (and
including) 10% or two of its
solely owned and jointly
owned applicable BES power
transformers (whichever is
greater) where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater
per phase;
OR
The responsible entity
conducted a supplemental

The responsible entity failed
to conduct a supplemental
thermal impact assessment
for more than 10% up to
(and including) 15% or three
of its solely owned and
jointly owned applicable BES
power transformers
(whichever is greater) where
the maximum effective GIC
value provided in
Requirement R9, Part 9.1, is
85 A or greater per phase;
OR
The responsible entity
conducted a supplemental

The responsible entity failed
to conduct a supplemental
thermal impact assessment
for more than 15% or more
than three of its solely
owned and jointly owned
applicable BES power
transformers (whichever is
greater) where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater
per phase;
OR
The responsible entity
conducted a supplemental

Draft 1 of TPL-007-2
June 2017

Page 20 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

R11.

for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R9, Part 9.1, is
85 A or greater per phase
but did so more than 24
calendar months and less
than or equal to 26 calendar
months of receiving GIC flow
information specified in
Requirement R9, Part 9.1.

thermal impact assessment
for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R9, Part 9.1, is
85 A or greater per phase
but did so more than 26
calendar months and less
than or equal to 28 calendar
months of receiving GIC flow
information specified in
Requirement R9, Part 9.1;
OR
The responsible entity failed
to include one of the
required elements as listed
in Requirement R10, Parts
10.1 through 10.3.

thermal impact assessment
for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R9, Part 9.1, is
85 A or greater per phase
but did so more than 28
calendar months and less
than or equal to 30 calendar
months of receiving GIC flow
information specified in
Requirement R9, Part 9.1;
OR
The responsible entity failed
to include two of the
required elements as listed
in Requirement R10, Parts
10.1 through 10.3.

thermal impact assessment
for its solely owned and
jointly owned applicable BES
power transformers where
the maximum effective GIC
value provided in
Requirement R9, Part 9.1, is
85 A or greater per phase
but did so more than 30
calendar months of receiving
GIC flow information
specified in Requirement R9,
Part 9.1;
OR
The responsible entity failed
to include three of the
required elements as listed
in Requirement R10, Parts
10.1 through 10.3.

N/A

N/A

N/A

The responsible entity did
not implement a process to
obtain GIC monitor data
from at least one GIC
monitor located in the
Planning Coordinator’s
planning area or other part
of the system included in the
Planning Coordinator’s GIC
System Model.

Draft 1 of TPL-007-2
June 2017

Page 21 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

R12.

N/A

N/A

N/A

The responsible entity did
not implement a process to
obtain geomagnetic field
data for its Planning
Coordinator’s planning area.

D. Regional Variances
None.

E. Associated Documents
None.

Draft 1 of TPL-007-2
June 2017

Page 22 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Version History
Version

1
2

Draft 1 of TPL-007-2
June 2017

Date

Action

Change
Tracking

December 17, Adopted by the NERC Board of Trustees
2014
TBD

Revised to respond to directives in FERC
Order No. 830.

Revised

Page 23 of 42

TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events

Standard Attachments

The following attachments are part of TPL-007-2.

Draft 1 of TPL-007-2
June 2017

Page 24 of 42

TPL-007-2 Supplemental Material

Attachment 1
Calculating Geoelectric Fields for the Benchmark and Supplemental GMD
Events
The benchmark GMD event 1 defines the geoelectric field values used to compute GIC flows that
are needed to conduct a benchmark GMD Vulnerability Assessment. It is composed of the
following elements: (1) a reference peak geoelectric field amplitude of 8 V/km derived from
statistical analysis of historical magnetometer data; (2) scaling factors to account for local
geomagnetic latitude; (3) scaling factors to account for local earth conductivity; and (4) a
reference geomagnetic field time series or waveform to facilitate time-domain analysis of GMD
impact on equipment.
The supplemental GMD event is composed of similar elements as described above, except (1)
the reference peak geoelectric field amplitude is 12 V/km over a localized area; and (2) the
geomagnetic field time series or waveform includes a local enhancement in the waveform.2
The regional geoelectric field peak amplitude used in GMD Vulnerability Assessment, Epeak, can
be obtained from the reference geoelectric field value of 8 V/km for the benchmark GMD event
(1) or 12 V/km for the supplemental GMD event (2) using the following relationships:
Epeak = 8 × 𝛼𝛼 × 𝛽𝛽 𝑏𝑏 (V/km)
Epeak = 12 × 𝛼𝛼 × 𝛽𝛽 𝑠𝑠 (V/km)

(1)
(2)

where α is the scaling factor to account for local geomagnetic latitude, and β is a scaling factor
to account for the local earth conductivity structure. Subscripts b and s for the β scaling factor
denote association with the benchmark or supplemental GMD events, respectively.
Scaling the Geomagnetic Field

The benchmark and supplemental GMD events are defined for geomagnetic latitude of 60° and
must be scaled to account for regional differences based on geomagnetic latitude. Table 2
provides a scaling factor correlating peak geoelectric field to geomagnetic latitude.
Alternatively, the scaling factor α is computed with the empirical expression
(3)

α = 0.001 ⋅ e ( 0.115⋅L )

where L is the geomagnetic latitude in degrees and 0.1 ≤ α ≤ 1.

The benchmark GMD event description is available on the Related Information page for TPL-007-1:
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
2
The extent of local enhancements is on the order of 100 km in North-South (latitude) direction but longer in EastWest (longitude) direction. The local enhancement in the geomagnetic field occurs over the time period of 2-5 minutes.
Additional information is available in the Supplemental GMD Event Description white paper on the Project 2013-03
Geomagnetic Disturbance Mitigation project page: http://www.nerc.com/pa/Stand/Pages/Project-2013-03-GeomagneticDisturbance-Mitigation.aspx
1

Draft 1 of TPL-007-2
June 2017

Page 25 of 42

TPL-007-2 Supplemental Material

For large planning areas that cover more than one scaling factor from Table 2, the GMD
Vulnerability Assessment should be based on a peak geoelectric field that is:
• calculated by using the most conservative (largest) value for α; or
• calculated assuming a non-uniform or piecewise uniform geomagnetic field.

Table 2− Geomagnetic Field Scaling Factors
for the Benchmark and Supplemental GMD Events
Geomagnetic Latitude
Scaling Factor1
(Degrees)
(α)
≤ 40
45
50
54
56
57
58
59
≥ 60

0.10
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0

Scaling the Geoelectric Field

The benchmark GMD event is defined for the reference Quebec earth model described in Table
4. The peak geoelectric field, Epeak, used in a GMD Vulnerability Assessment may be obtained by
either:
• Calculating the geoelectric field for the ground conductivity in the planning area and
the reference geomagnetic field time series scaled according to geomagnetic latitude,
using a procedure such as the plane wave method described in the NERC GMD Task
Force GIC Application Guide; 3 or
• Using the earth conductivity scaling factor β from Table 3 that correlates to the ground
conductivity map in Figure 1 or Figure 2. Along with the scaling factor α from equation
(3) or Table 2, β is applied to the reference geoelectric field using equation (1 or 2, as
applicable) to obtain the regional geoelectric field peak amplitude Epeak to be used in
GMD Vulnerability Assessments. When a ground conductivity model is not available,
the planning entity should use the largest β factor of adjacent physiographic regions or
a technically justified value.
The earth models used to calculate Table 3 for the United States were obtained from publicly
available information published on the U. S. Geological Survey website.4 The models used to
calculate Table 3 for Canada were obtained from Natural Resources Canada (NRCan) and reflect
the average structure for large regions. A planner can also use specific earth model(s) with

Available at the NERC GMD Task Force project page: http://www.nerc.com/comm/PC/Pages/GeomagneticDisturbance-Task-Force-(GMDTF)-2013.aspx
4
Available at http://geomag.usgs.gov/conductivity/
3

Draft 1 of TPL-007-2
June 2017

Page 26 of 42

TPL-007-2 Supplemental Material

documented justification and the reference geomagnetic field time series to calculate the β
factor(s) as follows:
𝛽𝛽𝑏𝑏 = 𝐸𝐸/8 for the benchmark GMD event
(4)
(5)
𝛽𝛽𝑠𝑠 = 𝐸𝐸/12 for the supplemental GMD event

where E is the absolute value of peak geoelectric in V/km obtained from the technically justified
earth model and the reference geomagnetic field time series.
For large planning areas that span more than one β scaling factor, the most conservative (largest)
value for β may be used in determining the peak geoelectric field to obtain conservative results.
Alternatively, a planner could perform analysis using a non-uniform or piecewise uniform
geoelectric field.
Applying the Localized Peak Geoelectric Field in the Supplemental GMD Event

The peak geoelectric field of the supplemental GMD event occurs in a localized area.5 Planners
have flexibility to determine how to apply the localized peak geoelectric field over the planning
area in performing GIC calculations. Examples of approaches are:
•
•

•

Apply the peak geoelectric field (12 V/km scaled to the planning area) over the entire
planning area;
Apply a spatially limited (12 V/km scaled to the planning area) peak geoelectric field (e.g.,
100 km in North-South latitude direction and 500 km in East-West longitude direction)
over a portion(s) of the system, and apply the benchmark GMD event over the rest of the
system; or
Other methods to adjust the benchmark GMD event analysis to account for the localized
geoelectric field enhancement of the supplemental GMD event.

See the Supplemental Geomagnetic Disturbance Description white paper located on the Project 2013-03
Geomagnetic Disturbance Mitigation project page: http://www.nerc.com/pa/Stand/Pages/Project-2013-03-GeomagneticDisturbance-Mitigation.aspx
5

Draft 1 of TPL-007-2
June 2017

Page 27 of 42

TPL-007-2 Supplemental Material

FL-1

Figure 1: Physiographic Regions of the Continental United States 6

Figure 2: Physiographic Regions of Canada

6

Additional map detail is available at the U.S. Geological Survey (http://geomag.usgs.gov/)

Draft 1 of TPL-007-2
June 2017

Page 28 of 42

TPL-007-2 Supplemental Material
Table 3 − Geoelectric Field Scaling Factors
Earth model

Scaling Factor
Benchmark Event
(β b)

Scaling Factor
Supplemental Event
(β s)

AK1A
AK1B
AP1
AP2
BR1
CL1
CO1
CP1
CP2
FL1
CS1
IP1
IP2
IP3
IP4
NE1
PB1
PB2
PT1
SL1
SU1
BOU
FBK
PRU
BC
PRAIRIES
SHIELD
ATLANTIC

0.56
0.56
0.33
0.82
0.22
0.76
0.27
0.81
0.95
0.76
0.41
0.94
0.28
0.93
0.41
0.81
0.62
0.46
1.17
0.53
0.93
0.28
0.56
0.21
0.67
0.96
1.0
0.79

0.51
0.51
0.30
0.78
0.22
0.73
0.25
0.77
0.86
0.73
0.37
0.90
0.25
0.90
0.35
0.77
0.55
0.39
1.19
0.49
0.90
0.24
0.56
0.22
0.62
0.88
1.0
0.76

Rationale: Scaling factors in Table 3 are dependent upon the frequency content of the
reference storm. Consequently, the benchmark GMD event and the supplemental GMD
event may produce different scaling factors for a given earth model.
The scaling factor associated with the benchmark GMD event for the Florida earth model (FL1) has been updated based on the earth model published on the USGS public website.

Draft 1 of TPL-007-2
June 2017

Page 29 of 42

TPL-007-2 Supplemental Material

Table 4 − Reference Earth Model (Quebec)
Layer Thickness (km)

Resistivity (Ω-m)

15

20,000

10

200

125

1,000

200

100

∞

3

Reference Geomagnetic Field Time Series or Waveform for the Benchmark GMD
Event7

The geomagnetic field measurement record of the March 13-14 1989 GMD event, measured at
NRCan’s Ottawa geomagnetic observatory is the basis for the reference geomagnetic field
waveform to be used to calculate the GIC time series, GIC(t), required for transformer thermal
impact assessment.
The geomagnetic latitude of the Ottawa geomagnetic observatory is 55°; therefore, the
amplitudes of the geomagnetic field measurement data were scaled up to the 60° reference
geomagnetic latitude (see Figure 3) such that the resulting peak geoelectric field amplitude
computed using the reference earth model was 8 V/km (see Figures 4 and 5). The sampling rate
for the geomagnetic field waveform is 10 seconds. 8 To use this geoelectric field time series
when a different earth model is applicable, it should be scaled with the appropriate benchmark
conductivity scaling factor βb.

7

Refer to the Benchmark GMD Event Description white paper for details on the determination of the reference
geomagnetic field waveform: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
8
The data file of the benchmark geomagnetic field waveform is available on the Related Information page for
TPL-007-1: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
Draft 1 of TPL-007-2
June 2017

Page 30 of 42

TPL-007-2 Supplemental Material

Figure 3: Benchmark Geomagnetic Field Waveform. Red Bn (Northward), Blue Be (Eastward)

Figure 4: Benchmark Geoelectric Field Waveform - EE (Eastward)

Draft 1 of TPL-007-2
June 2017

Page 31 of 42

TPL-007-2 Supplemental Material

Figure 5: Benchmark Geoelectric Field Waveform – EN (Northward)

Draft 1 of TPL-007-2
June 2017

Page 32 of 42

TPL-007-2 Supplemental Material
Reference Geomagnetic Field Time Series or Waveform for the Supplemental GMD
Event9

The geomagnetic field measurement record of the March 13-14, 1989 GMD event, measured at
NRCan’s Ottawa geomagnetic observatory is the basis for the reference geomagnetic field
waveform to be used to calculate the GIC time series, GIC(t), required for transformer thermal
impact assessment for the supplemental GMD event. The supplemental GMD event waveform
differs from the benchmark GMD event waveform in that the supplemental GMD event
waveform has a local enhancement.
The geomagnetic latitude of the Ottawa geomagnetic observatory is 55°; therefore, the
amplitudes of the geomagnetic field measurement data were scaled up to the 60° reference
geomagnetic latitude (see Figure 6) such that the resulting peak geoelectric field amplitude
computed using the reference earth model was 12 V/km (see Figure7). The sampling rate for
the geomagnetic field waveform is 10 seconds. 10 To use this geoelectric field time series when a
different earth model is applicable, it should be scaled with the appropriate supplemental
conductivity scaling factor βs.

Refer to the Supplemental GMD Event Description white paper for details on the determination of the
reference geomagnetic field waveform: http://www.nerc.com/pa/Stand/Pages/Project-2013-03-GeomagneticDisturbance-Mitigation.aspx
10
The data file of the benchmark geomagnetic field waveform is available on the NERC GMD Task Force
project page: http://www.nerc.com/comm/PC/Pages/Geomagnetic-Disturbance-Task-Force-(GMDTF)-2013.aspx
9

Draft 1 of TPL-007-2
June 2017

Page 33 of 42

TPL-007-2 Supplemental Material

4000

2000

Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

-10000

Figure 6: Supplemental Geomagnetic Field Waveform. Red Bn (Northward), Blue Be (Eastward)

12 V/km

12000
10000
8000

E (mV/km)

6000
4000
2000
0
200
-2000

400

600

800

1000

1200

1400

1600

1800

2000

Time (min)

-4000
-6000
-8000

Figure 7: Supplemental Geoelectric Field Waveform. Blue En (Northward), Red Ee (Eastward)

Draft 1 of TPL-007-2
June 2017

Page 34 of 42

TPL-007-2 Supplemental Material

Guidelines and Technical Basis
The diagram below provides an overall view of the GMD Vulnerability Assessment process:

The requirements in this standard cover various aspects of the GMD Vulnerability Assessment
process.
Benchmark GMD Event (Attachment 1)
The benchmark GMD event defines the geoelectric field values used to compute GIC flows that
are needed to conduct a benchmark GMD Vulnerability Assessment. A white paper that
includes the event description, analysis, and example calculations is available on the Project
2013-03 Geomagnetic Disturbance Mitigation project page at:
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
Supplemental GMD Event (Attachment 1)
The supplemental GMD event defines the geoelectric field values used to compute GIC flows
that are needed to conduct a supplemental GMD Vulnerability Assessment. A white paper that
includes the event description and analysis is available on the Project 2013-03 Geomagnetic
Disturbance Mitigation project page:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
Requirement R2
A GMD Vulnerability Assessment requires a GIC System model, which is a dc representation of
the System, to calculate GIC flow. In a GMD Vulnerability Assessment, GIC simulations are used
to determine transformer Reactive Power absorption and transformer thermal response.
Details for developing the GIC System model are provided in the NERC GMD Task Force guide:
Application Guide for Computing Geomagnetically-Induced Current in the Bulk Power System.
The guide is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GIC%20Application%20Guide%202013_approved.pdf
Underground pipe-type cables present a special modeling situation in that the steel pipe that
encloses the power conductors significantly reduces the geoelectric field induced into the
conductors themselves, while they remain a path for GIC. Solid dielectric cables that are not
Draft 1 of TPL-007-2
June 2017

Page 35 of 42

TPL-007-2 Supplemental Material

enclosed by a steel pipe will not experience a reduction in the induced geoelectric field. A
planning entity should account for special modeling situations in the GIC system model, if
applicable.
Requirement R4
The GMD Planning Guide developed by the NERC GMD Task Force provides technical
information on GMD-specific considerations for planning studies. It is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GMD%20Planning%20Guide_approved.pdf
Requirement R5
The benchmark thermal impact assessment of transformers specified in Requirement R6 is
based on GIC information for the benchmark GMD Event. This GIC information is determined by
the planning entity through simulation of the GIC System model and must be provided to the
entity responsible for conducting the thermal impact assessment. GIC information should be
provided in accordance with Requirement R5 each time the GMD Vulnerability Assessment is
performed since, by definition, the GMD Vulnerability Assessment includes a documented
evaluation of susceptibility to localized equipment damage due to GMD.
The maximum effective GIC value provided in Part 5.1 is used for the benchmark thermal
impact assessment. Only those transformers that experience an effective GIC value of 75 A or
greater per phase require evaluation in Requirement R6.
GIC(t) provided in Part 5.2 is used to convert the steady state GIC flows to time-series GIC data
for the benchmark thermal impact assessment of transformers. This information may be
needed by one or more of the methods for performing a benchmark thermal impact
assessment. Additional information is in the following section and the thermal impact
assessment white paper.
The peak GIC value of 75 Amps per phase has been shown through thermal modeling to be a
conservative threshold below which the risk of exceeding known temperature limits established
by technical organizations is low.
Requirement R6
The benchmark thermal impact assessment of a power transformer may be based on
manufacturer-provided GIC capability curves, thermal response simulation, thermal impact
screening, or other technically justified means. Approaches for conducting the assessment are
presented in the Transformer Thermal Impact Assessment white paper. The ERO enterprise has
endorsed the white paper as Implementation Guidance for this requirement. The white paper is
posted on the NERC compliance guidance page:
http://www.nerc.com/pa/comp/guidance/Pages/default.aspx
Transformers are exempt from the benchmark thermal impact assessment requirement if the
effective GIC value for the transformer is less than 75 A per phase, as determined by a GIC
Draft 1 of TPL-007-2
June 2017

Page 36 of 42

TPL-007-2 Supplemental Material

analysis of the System. Justification for this criterion is provided in the Screening Criterion for
Transformer Thermal Impact Assessment white paper posted on the Related Information page
for TPL-007-1. A documented design specification exceeding this value is also a justifiable
threshold criterion that exempts a transformer from Requirement R6.
The benchmark threshold criteria and its associated transformer thermal impact must be
evaluated on the basis of effective GIC. Refer to the white papers for additional information.
Requirement R7
Technical considerations for GMD mitigation planning, including operating and equipment
strategies, are available in Chapter 5 of the GMD Planning Guide. Additional information is
available in the 2012 Special Reliability Assessment Interim Report: Effects of Geomagnetic
Disturbances on the Bulk-Power System:
http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf
Requirement R8
The GMD Planning Guide developed by the NERC GMD Task Force provides technical
information on GMD-specific considerations for planning studies. It is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GMD%20Planning%20Guide_approved.pdf
The supplemental GMD Vulnerability Assessment process is similar to the benchmark GMD
Vulnerability Assessment process described under Requirement R4.
Requirement R9
The supplemental thermal impact assessment specified of transformers in Requirement R10 is
based on GIC information for the supplemental GMD Event. This GIC information is determined
by the planning entity through simulation of the GIC System model and must be provided to the
entity responsible for conducting the thermal impact assessment. GIC information should be
provided in accordance with Requirement R9 each time the GMD Vulnerability Assessment is
performed since, by definition, the GMD Vulnerability Assessment includes a documented
evaluation of susceptibility to localized equipment damage due to GMD.
The maximum effective GIC value provided in Part 9.1 is used for the supplemental thermal
impact assessment. Only those transformers that experience an effective GIC value of 85 A or
greater per phase require evaluation in Requirement R10.
GIC(t) provided in Part 9.2 is used to convert the steady state GIC flows to time-series GIC data
for the supplemental thermal impact assessment of transformers. This information may be
needed by one or more of the methods for performing a supplemental thermal impact
assessment. Additional information is in the following section.
The peak GIC value of 85 Amps per phase has been shown through thermal modeling to be a
conservative threshold below which the risk of exceeding known temperature limits established
by technical organizations is low.
Draft 1 of TPL-007-2
June 2017

Page 37 of 42

TPL-007-2 Supplemental Material

Requirement R10
The supplemental thermal impact assessment of a power transformer may be based on
manufacturer-provided GIC capability curves, thermal response simulation, thermal impact
screening, or other technically justified means. Approaches for conducting the assessment are
presented in the Transformer Thermal Impact Assessment white paper discussed in the
Requirement R6 section above. A revised version of the Transformer Thermal Impact
Assessment white paper has been developed to include updated information pertinent to the
supplemental GMD event and supplemental thermal impact assessment. This revised white
paper is posted on the project page at:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
Transformers are exempt from the supplemental thermal impact assessment requirement if the
effective GIC value for the transformer is less than 85 A per phase, as determined by a GIC
analysis of the System. Justification for this criterion is provided in the revised Screening
Criterion for Transformer Thermal Impact Assessment white paper posted on the project page.
A documented design specification exceeding this value is also a justifiable threshold criterion
that exempts a transformer from Requirement R10.
The supplemental threshold criteria and its associated transformer thermal impact must be
evaluated on the basis of effective GIC. Refer to the white papers for additional information.
Requirement R11
Technical considerations for GIC monitoring are contained in the NERC 2012 GMD Report (see
Chapter 6). GIC monitoring is generally performed by Hall effect transducers that are attached
to the neutral of the wye-grounded transformer. Data from GIC monitors is useful for model
validation and situational awareness.
Responsible entities consider the following in developing a process for obtaining GIC monitor
data:
•

•

Monitor locations. An entity's operating process may be constrained by location of
existing GIC monitors. However, when planning for additional GIC monitoring
installations consider that data from monitors located in areas found to have high GIC
based on system studies may provide more useful information for validation and
situational awareness purposes. Conversely, data from GIC monitors that are located in
the vicinity of transportation systems using direct current (e.g., subways or light rail)
may be unreliable.
Monitor specifications. Capabilities of Hall effect transducers, existing and planned,
should be considered in the operating process. When planning new GIC monitor
installations, consider monitor data range (e.g., -500 A through + 500 A) and ambient
temperature ratings consistent with temperatures in the region in which the monitor
will be installed.

Draft 1 of TPL-007-2
June 2017

Page 38 of 42

TPL-007-2 Supplemental Material

•
•

•

•
•

Sampling Interval. An entity's operating process may be constrained by capabilities of
existing GIC monitors. However, when possible specify data sampling during periods of
interest at a rate of 10 seconds or faster.
Collection Periods. The process should specify when the entity expects GIC data to be
collected. For example, collection could be required during periods where the Kp index
is above a threshold, or when GIC values are above a threshold. Determining when to
discontinue collecting GIC data should also be specified to maintain consistency in data
collection.
Data format. Specify time and value formats. For example, Greenwich Mean Time
(GMT) (MM/DD/YYYY HH:MM:SS) and GIC Value (Ampere). Positive (+) and negative (-)
signs indicate direction of GIC flow. Positive reference is flow from ground into
transformer neutral. Time fields should indicate the sampled time rather than system or
SCADA time if supported by the GIC monitor system.
Data retention. The entity's process should specify data retention periods, for example
1 year. Data retention periods should be adequately long to support availability for the
entity's model validation process and external reporting requirements, if any.
Additional information. The entity's process should specify collection of other
information necessary for making the data useful, for example monitor location and
type of neutral connection (e.g., three-phase or single-phase).

Requirement R12
Magnetometers measure changes in the earth's magnetic field. Entities should obtain data
from the nearest accessible magnetometer. Sources of magnetometer data include:
•

Observatories such as those operated by U.S. Geological Survey and Natural Resources
Canada, see figure below for locations (http://www.intermagnet.org/):

• Research institutions and academic universities;
• Entities with installed magnetometers.
Entities that choose to install magnetometers should consider equipment specifications and
data format protocols contained in the latest version of the Intermagnet Technical Reference
Manual, which is available at:
http://www.intermagnet.org/publications/intermag_4-6.pdf

Draft 1 of TPL-007-2
June 2017

Page 39 of 42

TPL-007-2 Supplemental Material

Rationale

During development of TPL-007-1, text boxes were embedded within the standard to explain
the rationale for various parts of the standard. The text from the rationale text boxes was
moved to this section upon approval of TPL-007-1 by the NERC Board of Trustees. In developing
TPL-007-2, the SDT has made changes to the sections below only when necessary for clarity.
Changes are marked with brackets [ ].
Rationale for Applicability:
Instrumentation transformers and station service transformers do not have significant impact
on geomagnetically-induced current (GIC) flows; therefore, these transformers are not included
in the applicability for this standard.
Terminal voltage describes line-to-line voltage.
Rationale for R1:
In some areas, planning entities may determine that the most effective approach to conduct a
GMD Vulnerability Assessment is through a regional planning organization. No requirement in
the standard is intended to prohibit a collaborative approach where roles and responsibilities
are determined by a planning organization made up of one or more Planning Coordinator(s).
Rationale for R2:
A GMD Vulnerability Assessment requires a GIC System model to calculate GIC flow which is
used to determine transformer Reactive Power absorption and transformer thermal response.
Guidance for developing the GIC System model is provided in the GIC Application Guide
developed by the NERC GMD Task Force and available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GIC%20Application%20Guide%202013_approved.pdf
The System model specified in Requirement R2 is used in conducting steady state power flow
analysis that accounts for the Reactive Power absorption of power transformer(s) due to GIC in
the System.
The GIC System model includes all power transformer(s) with a high side, wye-grounded
winding with terminal voltage greater than 200 kV. The model is used to calculate GIC flow in
the network.
The projected System condition for GMD planning may include adjustments to the System that
are executable in response to space weather information. These adjustments could include, for
example, recalling or postponing maintenance outages.
The Violation Risk Factor (VRF) for Requirement R2 is changed from Medium to High. This
change is for consistency with the VRF for approved standard TPL-001-4 Requirement R1, which
is proposed for revision in the NERC filing dated August 29, 2014 (RM12-1-000). NERC
guidelines require consistency among Reliability Standards.
Rationale for R3:
Requirement R3 allows a responsible entity the flexibility to determine the System steady state
voltage criteria for System steady state performance in Table 1. Steady state voltage limits are
an example of System steady state performance criteria.
Draft 1 of TPL-007-2
June 2017

Page 40 of 42

TPL-007-2 Supplemental Material

Rationale for R4:
The GMD Vulnerability Assessment includes steady state power flow analysis and the
supporting study or studies using the models specified in Requirement R2 that account for the
effects of GIC. Performance criteria are specified in Table 1.
At least one System On-Peak Load and at least one System Off-Peak Load must be examined in
the analysis.
Distribution of GMD Vulnerability Assessment results provides a means for sharing relevant
information with other entities responsible for planning reliability. Results of GIC studies may
affect neighboring systems and should be taken into account by planners.
The GMD Planning Guide developed by the NERC GMD Task Force provides technical
information on GMD-specific considerations for planning studies. It is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GMD%20Planning%20Guide_approved.pdf
The provision of information in Requirement R4, Part 4.3, shall be subject to the legal and
regulatory obligations for the disclosure of confidential and/or sensitive information.
Rationale for R5:
This GIC information is necessary for determining the thermal impact of GIC on transformers in
the planning area and must be provided to entities responsible for performing the thermal
impact assessment so that they can accurately perform the assessment. GIC information should
be provided in accordance with Requirement R5 as part of the GMD Vulnerability Assessment
process since, by definition, the GMD Vulnerability Assessment includes documented
evaluation of susceptibility to localized equipment damage due to GMD.
The maximum effective GIC value provided in Part 5.1 is used for transformer thermal impact
assessment.
GIC(t) provided in Part 5.2 can alternatively be used to convert the steady state GIC flows to
time-series GIC data for transformer thermal impact assessment. This information may be
needed by one or more of the methods for performing a thermal impact assessment. Additional
guidance is available in the Transformer Thermal Impact Assessment white paper:
[http://www.nerc.com/pa/comp/guidance/Pages/default.aspx]
A Transmission Owner or Generator Owner that desires GIC(t) may request it from the planning
entity. The planning entity shall provide GIC(t) upon request once GIC has been calculated, but
no later than 90 calendar days after receipt of a request from the owner and after completion
of Requirement R5, Part 5.1.
The provision of information in Requirement R5 shall be subject to the legal and regulatory
obligations for the disclosure of confidential and/or sensitive information.
Rationale for R6:
The transformer thermal impact screening criterion has been revised from 15 A per phase to 75
A per phase [for the benchmark GMD event]. Only those transformers that experience an

Draft 1 of TPL-007-2
June 2017

Page 41 of 42

TPL-007-2 Supplemental Material

effective GIC value of 75 A per phase or greater require evaluation in Requirement R6. The
justification is provided in the Thermal Screening Criterion white paper.
The thermal impact assessment may be based on manufacturer-provided GIC capability curves,
thermal response simulation, thermal impact screening, or other technically justified means.
The transformer thermal assessment will be repeated or reviewed using previous assessment
results each time the planning entity performs a GMD Vulnerability Assessment and provides
GIC information as specified in Requirement R5. Approaches for conducting the assessment are
presented in the Transformer Thermal Impact Assessment white paper posted on the project
page.
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
Thermal impact assessments are provided to the planning entity, as determined in Requirement
R1, so that identified issues can be included in the GMD Vulnerability Assessment (R4), and the
Corrective Action Plan (R7) as necessary.
Thermal impact assessments of non-BES transformers are not required because those
transformers do not have a wide-area effect on the reliability of the interconnected
Transmission system.
The provision of information in Requirement R6, Part 6.4, shall be subject to the legal and
regulatory obligations for the disclosure of confidential and/or sensitive information.
Rationale for R7:
Corrective Action Plans are defined in the NERC Glossary of Terms:
A list of actions and an associated timetable for implementation to remedy a specific
problem.
Corrective Action Plans must, subject to the vulnerabilities identified in the assessments,
contain strategies for protecting against the potential impact of the benchmark GMD event,
based on factors such as the age, condition, technical specifications, system configuration, or
location of specific equipment. Chapter 5 of the NERC GMD Task Force GMD Planning Guide
provides a list of mitigating measures that may be appropriate to address an identified
performance issue.
The provision of information in Requirement R7, Part 7.3 [Part 7.5 in TPL-007-2], shall be
subject to the legal and regulatory obligations for the disclosure of confidential and/or sensitive
information.
Rationale for Table 3:
Table 3 has been revised to use the same ground model designation, FL1, as is being used by
USGS. The calculated scaling factor for FL1 is 0.74. [The scaling factor associated with the
benchmark GMD event for the Florida earth model (FL1) has been updated to 0.76 in TPL-007-2
based on the earth model published on the USGS public website.]

Draft 1 of TPL-007-2
June 2017

Page 42 of 42

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

A. Introduction
1.

Title:
Events

Transmission System Planned Performance for Geomagnetic Disturbance

2.

Number:

TPL-007-12

3.

Purpose:
Establish requirements for Transmission system planned performance
during geomagnetic disturbance (GMD) events.

4.

Applicability:
4.1. Functional Entities:
4.1.1 Planning Coordinator with a planning area that includes a Facility or
Facilities specified in 4.2;
4.1.2 Transmission Planner with a planning area that includes a Facility or
Facilities specified in 4.2;
4.1.3 Transmission Owner who owns a Facility or Facilities specified in 4.2;
4.1.4 Generator Owner who owns a Facility or Facilities specified in 4.2.
4.2. Facilities:
4.2.1 Facilities that include power transformer(s) with a high side, wyegrounded winding with terminal voltage greater than 200 kV.

5.

Background:
During a GMD event, geomagnetically-induced currents (GIC) may cause transformer
hot-spot heating or damage, loss of Reactive Power sources, increased Reactive Power
demand, and Misoperation(s), the combination of which may result in voltage collapse
and blackout.

6.

Effective Date:
See Implementation Plan for TPL-007-12

B. Requirements and Measures
R1.

Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall identify
the individual and joint responsibilities of the Planning Coordinator and Transmission
Planner(s) in the Planning Coordinator’s planning area for maintaining models and,
performing the study or studies needed to complete benchmark and supplemental
GMD Vulnerability Assessment(s)., and implementing process(es) to obtain GMD
measurement data as specified in this standard. [Violation Risk Factor: Lower] [Time
Horizon: Long-term Planning]

M1. Each Planning Coordinator, in conjunction with its Transmission Planners, shall provide
documentation on roles and responsibilities, such as meeting minutes, agreements,
copies of procedures or protocols in effect between entities or between departments of
a vertically integrated system, or email correspondence that identifies an agreement has
been reached on individual and joint responsibilities for maintaining models and,

Page 1 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

performing the study or studies needed to complete benchmark and supplemental GMD
Vulnerability Assessment(s), and implementing process(es) to obtain GMD
Mmeasurement Ddata in accordance with Requirement R1.
R2.

Each responsible entity, as determined in Requirement R1, shall maintain System
models and GIC System models of the responsible entity’s planning area for performing
the study or studies needed to complete benchmark and supplemental GMD
Vulnerability Assessment(s). [Violation Risk Factor: High] [Time Horizon: Long-term
Planning]

M2. Each responsible entity, as determined in Requirement R1, shall have evidence in either
electronic or hard copy format that it is maintaining System models and GIC System
models of the responsible entity’s planning area for performing the study or studies
needed to complete benchmark and supplemental GMD Vulnerability Assessment(s).
R3.

Each responsible entity, as determined in Requirement R1, shall have criteria for
acceptable System steady state voltage performance for its System during the
benchmark GMD eventevents described in Attachment 1. [Violation Risk Factor:
Medium] [Time Horizon: Long-term Planning]

M3. Each responsible entity, as determined in Requirement R1, shall have evidence, such as
electronic or hard copies of the criteria for acceptable System steady state voltage
performance for its System in accordance with Requirement R3.
Benchmark GMD Vulnerability Assessment(s)

R4.

Each responsible entity, as determined in Requirement R1, shall complete a benchmark
GMD Vulnerability Assessment of the Near-Term Transmission Planning Horizon at least
once every 60 calendar months. This benchmark GMD Vulnerability Assessment shall
use a study or studies based on models identified in Requirement R2, document
assumptions, and document summarized results of the steady state analysis. [Violation
Risk Factor: High] [Time Horizon: Long-term Planning]
4.1. The study or studies shall include the following conditions:
4.1.1. System On-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon; and
4.1.2. System Off-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon.
4.2. The study or studies shall be conducted based on the benchmark GMD event
described in Attachment 1 to determine whether the System meets the
performance requirements for the steady state planning benchmark GMD event
contained in Table 1.
4.3. The benchmark GMD Vulnerability Assessment shall be provided: (i) within 90
calendar days of completion to the responsible entity’s Reliability Coordinator,

Page 2 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

adjacent Planning Coordinators, and adjacent Transmission Planners, within 90
calendar days of completion, and (ii) to any functional entity that submits a
written request and has a reliability-related need within 90 calendar days of
receipt of such request or within 90 calendar days of completion of the
benchmark GMD Vulnerability Assessment, whichever is later.
4.3.1. If a recipient of the benchmark GMD Vulnerability Assessment provides
documented comments on the results, the responsible entity shall
provide a documented response to that recipient within 90 calendar
days of receipt of those comments.
M4. Each responsible entity, as determined in Requirement R1, shall have dated evidence
such as electronic or hard copies of its benchmark GMD Vulnerability Assessment
meeting all of the requirements in Requirement R4. Each responsible entity, as
determined in Requirement R1, shall also provide evidence, such as email records, web
postings with an electronic notice of posting, or postal receipts showing recipient and
date, that it has distributed its benchmark GMD Vulnerability Assessment: (i) to the
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to any
functional entity that submits a written request and has a reliability-related need within
90 calendar days of receipt of such request or within 90 calendar days of completion of
the benchmark GMD Vulnerability Assessment, whichever is later, within 90 calendar
days of completion to its Reliability Coordinator, adjacent Planning Coordinator(s),
adjacent Transmission Planner(s), and to any functional entity who has submitted a
written request and has a reliability-related need as specified in Requirement R4. Each
responsible entity, as determined in Requirement R1, shall also provide evidence, such
as email notices or postal receipts showing recipient and date, that it has provided a
documented response to comments received on its benchmark GMD Vulnerability
Assessment within 90 calendar days of receipt of those comments in accordance with
Requirement R4.
R5.

Each responsible entity, as determined in Requirement R1, shall provide GIC flow
information to be used for the transformerbenchmark thermal impact assessment of
transformers specified in Requirement R6 to each Transmission Owner and Generator
Owner that owns an applicable Bulk Electric System (BES) power transformer in the
planning area. The GIC flow information shall include: [Violation Risk Factor: Medium]
[Time Horizon: Long-term Planning]
5.1. The maximum effective GIC value for the worst case geoelectric field orientation
for the benchmark GMD event described in Attachment 1. This value shall be
provided to the Transmission Owner or Generator Owner that owns each
applicable BES power transformer in the planning area.
5.2. The effective GIC time series, GIC(t), calculated using the benchmark GMD event
described in Attachment 1 in response to a written request from the
Transmission Owner or Generator Owner that owns an applicable BES power

Page 3 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

transformer in the planning area. GIC(t) shall be provided within 90 calendar
days of receipt of the written request and after determination of the maximum
effective GIC value in Part 5.1.
M5. Each responsible entity, as determined in Requirement R1, shall provide evidence, such
as email records, web postings with an electronic notice of posting, or postal receipts
showing recipient and date, that it has provided the maximum effective benchmark GIC
value to the Transmission Owner and Generator Owner that owns each applicable BES
power transformer in the planning area as specified in Requirement R5, Part 5.1. Each
responsible entity, as determined in Requirement R1, shall also provide evidence, such
as email records, web postings with an electronic notice of posting, or postal receipts
showing recipient and date, that it has provided GIC(t) in response to a written request
from the Transmission Owner or Generator Owner that owns an applicable BES power
transformer in the planning area.
R6.

Each Transmission Owner and Generator Owner shall conduct a benchmark thermal
impact assessment for its solely and jointly owned applicable BES power transformers
where the maximum effective GIC value provided in Requirement R5, Part 5.1, is 75 A
per phase or greater. The benchmark thermal impact assessment shall: [Violation Risk
Factor: Medium] [Time Horizon: Long-term Planning]
6.1. Be based on the effective GIC flow information provided in Requirement R5;
6.2. Document assumptions used in the analysis;
6.3. Describe suggested actions and supporting analysis to mitigate the impact of
GICs, if any; and
6.4. Be performed and provided to the responsible entities, as determined in
Requirement R1, within 24 calendar months of receiving GIC flow information
specified in Requirement R5, Part 5.1.

M6. Each Transmission Owner and Generator Owner shall have evidence such as electronic
or hard copies of its benchmark thermal impact assessment for all of its solely and
jointly owned applicable BES power transformers where the maximum effective GIC
value provided in Requirement R5, Part 5.1, is 75 A per phase or greater, and shall have
evidence such as email records, web postings with an electronic notice of posting, or
postal receipts showing recipient and date, that it has provided its thermal impact
assessment to the responsible entities as specified in Requirement R6.
Rationale for Requirement R7: The proposed requirement addresses directives in
Order No. 830 for establishing Corrective Action Plan (CAP) deadlines associated with
GMD Vulnerability Assessments. In Order No. 830, FERC directed revisions to TPL-007
such that CAPs are developed within one year from the completion of GMD
Vulnerability Assessments (P. 101). Furthermore, FERC directed establishment of
implementation deadlines after the completion of the CAP as follows (P. 102):
•

Two years for non-hardware mitigation; and

Page 4 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

•

Four years for hardware mitigation.

The objective of Part 7.4 is to provide awareness to potentially impacted entities
when implementation of planned mitigation is not achievable within the deadlines
established in Part 7.3.

R7.

Each responsible entity, as determined in Requirement R1, that concludes, through the
benchmark GMD Vulnerability Assessment conducted in Requirement R4, that their
System does not meet the performance requirements offor the steady state planning
benchmark GMD event contained in Table 1 shall develop a Corrective Action Plan
(CAP) addressing how the performance requirements will be met. The Corrective Action
PlanCAP shall: [Violation Risk Factor: High] [Time Horizon: Long-term Planning]
7.1. List System deficiencies and the associated actions needed to achieve required
System performance. Examples of such actions include:
•

Installation, modification, retirement, or removal of Transmission and
generation Facilities and any associated equipment.

•

Installation, modification, or removal of Protection Systems or Special
Protection SystemsRemedial Action Schemes.

•

Use of Operating Procedures, specifying how long they will be needed as
part of the Corrective Action PlanCAP.

•

Use of Demand-Side Management, new technologies, or other initiatives.

7.2. Be reviewed in subsequent GMD Vulnerability Assessments until it is determined
that the System meets the performance requirements contained in Table 1.Be
developed within one year of completion of the benchmark GMD Vulnerability
Assessment.
7.3. Include a timetable, subject to revision by the responsible entity in Part 7.4, for
implementing the selected actions from Part 7.1. The timetable shall:
7.3.1. Specify implementation of non-hardware mitigation, if any, within two
years of development of the CAP; and
7.3.2. Specify implementation of hardware mitigation, if any, within four years
of development of the CAP.
7.4. Be revised if situations beyond the control of the responsible entity determined
in Requirement R1 prevent implementation of the CAP within the timetable for
implementation provided in Part 7.3. The revised CAP shall document the
following, and be updated at least once every 12 calendar months until
implemented:
7.4.1. Circumstances causing the delay for fully or partially implementing the
selected actions in Part 7.1;

Page 5 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

7.4.2. Description of the original CAP, and any previous changes to the CAP,
with the associated timetable(s) for implementing the selected actions in
Part 7.1; and
7.4.3. Revisions to the selected actions in Part 7.1, if any, including utilization of
Operating Procedures if applicable, and the updated timetable for
implementing the selected actions.
7.2.7.5.
Be provided: (i) within 90 calendar days of completiondevelopment or
revision to the responsible entity’s Reliability Coordinator, adjacent Planning
Coordinator(s), adjacent Transmission Planner(s), and functional entities
referenced in the Corrective Action PlanCAP within 90 calendar days of
development or revision, and (ii) to any functional entity that submits a written
request and has a reliability-related need within 90 calendar days of receipt of
such request or within 90 calendar days of development or revision, whichever is
later.
7.2.1.7.5.1. If a recipient of the Corrective Action PlanCAP provides
documented comments on the results, the responsible entity shall
provide a documented response to that recipient within 90 calendar days
of receipt of those comments.
M7. Each responsible entity, as determined in Requirement R1, that concludes, through the
benchmark GMD Vulnerability Assessment conducted in Requirement R4, that the
responsible entity’s System does not meet the performance requirements of for the
steady state planning benchmark GMD event contained in Table 1 shall have evidence
such as dated electronic or hard copies of its Corrective Action PlanCAP including
timetable for implementing selected actions, as specified in Requirement R7. Each
responsible entity, as determined in Requirement R1, shall also provide evidence, such
as email records or postal receipts showing recipient and date, that it has revised its CAP
if situations beyond the responsible entity's control prevent implementation of the CAP
within the timetable specified. Each responsible entity, as determined in Requirement
R1, shall also provide evidence, such as email records, web postings with an electronic
notice of posting, or postal receipts showing recipient and date, that it has distributed
its Corrective Action PlanCAP or relevant information, if any, (i) to the responsible
entity’s Reliability Coordinator, adjacent Planning Coordinator(s), adjacent Transmission
Planner(s), and functional entities referenced in the CAP within 90 calendar days of
development or revision, and (ii) to any functional entity that submits a written request
and has a reliability-related need within 90 calendar days of receipt of such request or
within 90 calendar days of development or revision, whichever is later,within 90
calendar days of its completiondevelopment or revision to its Reliability Coordinator,
adjacent Planning Coordinator(s), adjacent Transmission Planner(s), a functional entity
referenced in the Corrective Action PlanCAP, and any functional entity that submitswho
has submitted a written request and has a reliability-related need, as specified in
Requirement R7. Each responsible entity, as determined in Requirement R1, shall also
provide evidence, such as email notices or postal receipts showing recipient and date,

Page 6 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

that it has provided a documented response to comments received on its Corrective
Action PlanCAP within 90 calendar days of receipt of those comments, in accordance
with Requirement R7.
Supplemental GMD Vulnerability Assessment(s)

Rationale for Requirements R8 - R10: The proposed requirements address directives
in Order No. 830 for revising the benchmark GMD event used in GMD Vulnerability
Assessments (P.44, P47-49). The requirements add a supplemental GMD Vulnerability
Assessment based on the supplemental GMD event that accounts for localized peak
geoelectric fields.
R8.

Each responsible entity, as determined in Requirement R1, shall complete a
supplemental GMD Vulnerability Assessment of the Near-Term Transmission Planning
Horizon at least once every 60 calendar months. This supplemental GMD Vulnerability
Assessment shall use a study or studies based on models identified in Requirement R2,
document assumptions, and document summarized results of the steady state analysis.
[Violation Risk Factor: High] [Time Horizon: Long-term Planning]
8.1. The study or studies shall include the following conditions:
8.1.1. System On-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon; and
8.1.2. System Off-Peak Load for at least one year within the Near-Term
Transmission Planning Horizon.
8.2 The study or studies shall be conducted based on the supplemental GMD event
described in Attachment 1 to determine whether the System meets the
performance requirements for the steady state planning supplemental GMD
event contained in Table 1.
8.3 If the analysis concludes there is Cascading caused by the supplemental GMD
event described in Attachment 1, an evaluation of possible actions designed to
reduce the likelihood or mitigate the consequences and adverse impacts of the
event(s) shall be conducted.
8.4 The supplemental GMD Vulnerability Assessment shall be provided: (i) to the
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to
any functional entity that submits a written request and has a reliability-related
need within 90 calendar days of receipt of such request or within 90 calendar
days of completion of the supplemental GMD Vulnerability Assessment,
whichever is later.
8.4.1 If a recipient of the supplemental GMD Vulnerability Assessment
provides documented comments on the results, the responsible entity

Page 7 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

shall provide a documented response to that recipient within 90
calendar days of receipt of those comments.
M8. Each responsible entity, as determined in Requirement R1, shall have dated evidence
such as electronic or hard copies of its supplemental GMD Vulnerability Assessment
meeting all of the requirements in Requirement R8. Each responsible entity, as
determined in Requirement R1, shall also provide evidence, such as email records, web
postings with an electronic notice of posting, or postal receipts showing recipient and
date, that it has distributed its supplemental GMD Vulnerability Assessment: (i) to the
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, adjacent
Transmission Planners within 90 calendar days of completion, and (ii) to any functional
entity that submits a written request and has a reliability-related need within 90
calendar days of receipt of such request or within 90 calendar days of completion of the
supplemental GMD Vulnerability Assessment, whichever is later, as specified in
Requirement R8. Each responsible entity, as determined in Requirement R1, shall also
provide evidence, such as email notices or postal receipts showing recipient and date,
that it has provided a documented response to comments received on its supplemental
GMD Vulnerability Assessment within 90 calendar days of receipt of those comments in
accordance with Requirement R8.
R9.

Each responsible entity, as determined in Requirement R1, shall provide GIC flow
information to be used for the supplemental thermal impact assessment of
transformers specified in Requirement R10 to each Transmission Owner and Generator
Owner that owns an applicable Bulk Electric System (BES) power transformer in the
planning area. The GIC flow information shall include: [Violation Risk Factor: Medium]
[Time Horizon: Long-term Planning]
9.1. The maximum effective GIC value for the worst case geoelectric field orientation
for the supplemental GMD event described in Attachment 1. This value shall be
provided to the Transmission Owner or Generator Owner that owns each
applicable BES power transformer in the planning area.
9.2. The effective GIC time series, GIC(t), calculated using the supplemental GMD
event described in Attachment 1 in response to a written request from the
Transmission Owner or Generator Owner that owns an applicable BES power
transformer in the planning area. GIC(t) shall be provided within 90 calendar
days of receipt of the written request and after determination of the maximum
effective GIC value in Part 9.1.

M9. Each responsible entity, as determined in Requirement R1, shall provide evidence, such
as email records, web postings with an electronic notice of posting, or postal receipts
showing recipient and date, that it has provided the maximum effective supplemental
GIC value to the Transmission Owner and Generator Owner that owns each applicable
BES power transformer in the planning area as specified in Requirement R9, Part 9.1.
Each responsible entity, as determined in Requirement R1, shall also provide evidence,
such as email records, web postings with an electronic notice of posting, or postal

Page 8 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

receipts showing recipient and date, that it has provided GIC(t) in response to a written
request from the Transmission Owner or Generator Owner that owns an applicable BES
power transformer in the planning area.
R10. Each Transmission Owner and Generator Owner shall conduct a supplemental thermal
impact assessment for its solely and jointly owned applicable BES power transformers
where the maximum effective GIC value provided in Requirement R9, Part 9.1, is 85 A
per phase or greater. The supplemental thermal impact assessment shall: [Violation
Risk Factor: Medium] [Time Horizon: Long-term Planning]
10.1. Be based on the effective GIC flow information provided in Requirement R9;
10.2. Document assumptions used in the analysis;
10.3. Describe suggested actions and supporting analysis to mitigate the impact of
GICs, if any; and
10.4. Be performed and provided to the responsible entities, as determined in
Requirement R1, within 24 calendar months of receiving GIC flow information
specified in Requirement R9, Part 9.1.
M10. Each Transmission Owner and Generator Owner shall have evidence such as electronic
or hard copies of its supplemental thermal impact assessment for all of its solely and
jointly owned applicable BES power transformers where the maximum effective GIC
value provided in Requirement R9, Part 9.1, is 85 A per phase or greater, and shall have
evidence such as email records, web postings with an electronic notice of posting, or
postal receipts showing recipient and date, that it has provided its supplemental
thermal impact assessment to the responsible entities as specified in Requirement R10.
GMD Measurement Data Processes

Rationale for Requirements R11 and R12: The proposed requirements address
directives in Order No. 830 for requiring responsible entities to collect GIC
monitoring and magnetometer data as necessary to enable model validation and
situational awareness (P. 88; P. 90-92). See the Guidelines and Technical Basis
section of this standard for technical information.
The objective of Requirement R11 is for entities to obtain GIC data for the Planning
Coordinator's planning area or other part of the system included in the Planning
Coordinator's GIC System model to inform GMD Vulnerability Assessments. Technical
considerations for GIC monitoring are contained in Chapter 6 of the 2012 Special
Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the
Bulk-Power System (NERC 2012 GMD Report). GIC monitoring is generally performed
by Hall effect transducers that are attached to the neutral of the transformer and
measure dc current flowing through the neutral.
The objective of Requirement R12 is for entities to obtain geomagnetic field data for
the Planning Coordinator's planning area to inform GMD Vulnerability Assessments.

Page 9 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

Magnetometers provide geomagnetic field data by measuring changes in the earth's
magnetic field. Sources of geomagnetic field data include:
•

Observatories such as those operated by U.S. Geological Survey, Natural
Resources Canada, research organizations, or university research facilities.

•

Installed magnetometers

•

Commercial or third-party sources of geomagnetic field data

Geomagnetic field data for a Planning Coordinator’s planning area is obtained from
one or more of the above data sources located in the Planning Coordinator’s
planning area, or by obtaining a geomagnetic field data product for the Planning
Coordinator’s planning area from a government or research organization. The
geomagnetic field data product does not need to be derived from a magnetometer
or observatory within the Planning Coordinator’s planning area.
R8.R11.
Each responsible entity, as determined in Requirement R1, shall
implement a process to obtain GIC monitor data from at least one GIC monitor located
in the Planning Coordinator's planning area or other part of the system included in the
Planning Coordinator's GIC System model. [Violation Risk Factor: Lower] [Time
Horizon: Long-term Planning]
M11. Each responsible entity, as determined in Requirement R1, shall have evidence such as
electronic or hard copies of its GIC monitor location(s) and documentation of its process
to obtain GIC monitor data in accordance with Requirement R11.
R9.R12.
Each responsible entity, as determined in Requirement R1, shall
implement a process to obtain geomagnetic field data for its Planning Coordinator’s
planning area. [Violation Risk Factor: Lower] [Time Horizon: Long-term Planning]
M12. Each responsible entity, as determined in Requirement R1, shall have evidence such as
electronic or hard copies of its process to obtain geomagnetic field data for its Planning
Coordinator’s planning area in accordance with Requirement R12.

Page 10 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

Table 1 – Steady State Planning GMD Event
Steady State:
a. Voltage collapse, Cascading and uncontrolled islanding shall not occur.
b.

Generation loss is acceptable as a consequence of the steady state planning GMD events.

c.

Planned System adjustments such as Transmission configuration changes and re-dispatch of generation are allowed if such adjustments
are executable within the time duration applicable to the Facility Ratings.

Category

Initial Condition

Benchmark
GMD Event -

1. System as may be
postured in response to
space weather
information1, and then

GMD Event
with Outages

Supplemental
GMD Event GMD Event
with Outages

2. GMD event2

1. System as may be
postured in response to
space weather
information1, and then
2. GMD event2

Interruption of
Firm Transmission
Service Allowed

Load Loss Allowed

Reactive Power compensation devices and
other Transmission Facilities removed as a
result of Protection System operation or
Misoperation due to harmonics during the
GMD event

Yes3

Yes3

Reactive Power compensation devices and
other Transmission Facilities removed as a
result of Protection System operation or
Misoperation due to harmonics during the
GMD event

Yes

Yes

Event

Table 1 – Steady State Performance Footnotes
1.

The System condition for GMD planning may include adjustments to posture the System that are executable in response to space weather
information.

2.

The GMD conditions for the benchmark and supplemental planning eventevents are described in Attachment 1 (Benchmark GMD Event). .

3.

Load loss as a result of manual or automatic Load shedding (e.g.., UVLS) and/or curtailment of Firm Transmission Service may be used to
meet BES performance requirements during studied GMD conditions. The likelihood and magnitude of Load loss or curtailment of Firm
Transmission Service should be minimized.

Page 11 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

Attachment 1
Calculating Geoelectric Fields for the Benchmark and Supplemental GMD
EventEvents
The benchmark GMD event 1 defines the geoelectric field values used to compute GIC flows that
are needed to conduct a benchmark GMD Vulnerability Assessment. It is composed of the
following elements: (1) a reference peak geoelectric field amplitude of 8 V/km derived from
statistical analysis of historical magnetometer data; (2) scaling factors to account for local
geomagnetic latitude; (3) scaling factors to account for local earth conductivity; and (4) a
reference geomagnetic field time series or waveshapewaveform to facilitate time-domain
analysis of GMD impact on equipment.
The supplemental GMD event is composed of similar elements as described above, except (1)
the reference peak geoelectric field amplitude is 12 V/km over a localized area; and (2) the
geomagnetic field time series or waveform includes a local enhancement in the waveform.2
The regional geoelectric field peak amplitude used in GMD Vulnerability Assessment, Epeak, can
be obtained from the reference geoelectric field value of 8 V/km for the benchmark GMD event
(1) or 12 V/km for the supplemental GMD event (2) using the following relationships:
Epeak = 8 × 𝛼𝛼 × 𝛽𝛽𝛽𝛽 𝑏𝑏 (V/km)
Epeak = 12 × 𝛼𝛼 × 𝛽𝛽 𝑠𝑠 (V/km)

(1)
(2)

where α is the scaling factor to account for local geomagnetic latitude, and β is a scaling factor
to account for the local earth conductivity structure. Subscripts b and s for the β scaling factor
denotes association with the benchmark or supplemental GMD events, respectively.
Scaling the Geomagnetic Field

The benchmark and supplemental GMD event isevents are defined for geomagnetic latitude of
60° and it must be scaled to account for regional differences based on geomagnetic latitude.
Table 2 provides a scaling factor correlating peak geoelectric field to geomagnetic latitude.
Alternatively, the scaling factor α is computed with the empirical expression
(2)

α = 0.001 ⋅ e ( 0.115⋅L )

The benchmark GMD event description is available on the Project 2013-03 Geomagnetic Disturbance Mitigation
projectRelated Information page:http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx for TPL-007-1:: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
2
The extent of local enhancements is on the order of 100 km in North-South (latitude) direction but longer in EastWest (longitude) direction. The local enhancement in the geomagnetic field occurs over the time period of 2-5 minutes.
Additional information is available in the sSupplemental GMD eEvent dDescription white paper on the Project 2013-03
Geomagnetic Disturbance Mitigation project page: http://www.nerc.com/pa/Stand/Pages/Project-2013-03-GeomagneticDisturbance-Mitigation.aspx
1

Page 12 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

(3)

α = 0.001 ⋅ e ( 0.115⋅L )

where L is the geomagnetic latitude in degrees and 0.1 ≤ α ≤ 1.
For large planning areas that cover more than one scaling factor from Table 2, the GMD
Vulnerability Assessment should be based on a peak geoelectric field that is:
• calculated by using the most conservative (largest) value for α; or
• calculated assuming a non-uniform or piecewise uniform geomagnetic field.

Table 2− Geomagnetic Field Scaling Factors
for the Benchmark and Supplemental GMD Events
Geomagnetic Latitude
Scaling Factor1
(Degrees)
(α)
≤ 40
45
50
54
56
57
58
59
≥ 60

0.10
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0

Scaling the Geoelectric Field

The benchmark GMD event is defined for the reference Quebec earth model described in Table
4. The peak geoelectric field, Epeak, used in a GMD Vulnerability Assessment may be obtained by
either:
•

•

Calculating the geoelectric field for the ground conductivity in the planning area and
the reference geomagnetic field time series scaled according to geomagnetic latitude,
using a procedure such as the plane wave method described in the NERC GMD Task
Force GIC Application Guide; 3 or
Using the earth conductivity scaling factor β from Table 3 that correlates to the ground
conductivity map in Figure 1 or Figure 2. Along with the scaling factor α from equation
(23) or Table 2, β is applied to the reference geoelectric field using equation (1 or 2, as
applicable) to obtain the regional geoelectric field peak amplitude Epeak to be used in
GMD Vulnerability AssessmentAssessments. When a ground conductivity model is not

Available at the NERC GMD Task Force project page: http://www.nerc.com/comm/PC/Pages/GeomagneticDisturbance-Task-Force-(GMDTF)-2013.aspx

3

Page 13 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

available, the planning entity should use the largest β factor of adjacent physiographic
regions or a technically justified value.
The earth models used to calculate Table 3 for the United States were obtained from publicly
available information published on the U. S. Geological Survey website.4 The models used to
calculate Table 3 for Canada were obtained from Natural Resources Canada (NRCan) and reflect
the average structure for large regions. A planner can also use specific earth model(s) with
documented justification and the reference geomagnetic field time series to calculate the β
factor(s) as follows:
𝛽𝛽𝑏𝑏 = 𝐸𝐸/8𝛽𝛽 = 𝐸𝐸/8 for the benchmark GMD event
(4)
𝛽𝛽𝑠𝑠 = 𝐸𝐸/12 for the supplemental GMD event
(5)

where E is the absolute value of peak geoelectric in V/km obtained from the technically justified
earth model and the reference geomagnetic field time series.
For large planning areas that span more than one β scaling factor, the most conservative (largest)
value for β may be used in determining the peak geoelectric field to obtain conservative results.
Alternatively, a planner could perform analysis using a non-uniform or piecewise uniform
geoelectric field.
Applying the Localized Peak Geoelectric Field in the Supplemental GMD Event

The peak geoelectric field of the supplemental GMD event occurs in a localized area.5 Planners
have flexibility to determine how to apply the localized peak geoelectric field over the planning
area in performing GIC calculations. Examples of approaches are:
•
•

•

4

Apply the peak geoelectric field (12 V/km scaled to the planning area) over the entire
planning area;
Apply a spatially limited (12 V/km scaled to the planning area) peak geoelectric field (e.g.,
100 km in North-South latitude direction and 500 km in East-West longitude direction)
over a portion(s) of the system, and apply the benchmark GMD event over the rest of the
system; or
Other methods to adjust the benchmark GMD event analysis to account for the localized
geoelectric field enhancement of the supplemental GMD event.

Available at http://geomag.usgs.gov/conductivity/

5

See the Supplemental Geomagnetic Disturbance Description white paper located on the Project 2013-03
Geomagnetic Disturbance Mitigation project page: http://www.nerc.com/pa/Stand/Pages/Project-2013-03-GeomagneticDisturbance-Mitigation.aspx

Page 14 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

FL-1

Figure 1: Physiographic Regions of the Continental United States 6

Figure 2: Physiographic Regions of Canada

6

Additional map detail is available at the U.S. Geological Survey (http://geomag.usgs.gov/)

Page 15 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events
Table 3 − Geoelectric Field Scaling Factors
USGS
Earth model

Scaling Factor
(β)Benchmark Event
(β b)

Scaling Factor
Supplemental Event
(β s)

AK1A
AK1B
AP1
AP2
BR1
CL1
CO1
CP1
CP2
FL1
CS1
IP1
IP2
IP3
IP4
NE1
PB1
PB2
PT1
SL1
SU1
BOU
FBK
PRU
BC
PRAIRIES
SHIELD
ATLANTIC

0.56
0.56
0.33
0.82
0.22
0.76
0.27
0.81
0.95
0.7476
0.41
0.94
0.28
0.93
0.41
0.81
0.62
0.46
1.17
0.53
0.93
0.28
0.56
0.21
0.67
0.96
1.0
0.79

0.51
0.51
0.30
0.78
0.22
0.73
0.25
0.77
0.86
0.73
0.37
0.90
0.25
0.90
0.35
0.77
0.55
0.39
1.19
0.49
0.90
0.24
0.56
0.22
0.62
0.88
1.0
0.76

Rationale: Scaling factors in Table 3 are dependent upon the frequency content of the
reference storm. Consequently, the benchmark GMD event and the supplemental GMD
event may produce different scaling factors for a given earth model.
The scaling factor associated with the benchmark GMD event for the Florida earth model (FL1) has been updated based on the earth model published on the USGS public website.

Page 16 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

Table 4 − Reference Earth Model (Quebec)
Layer Thickness (km)

Resistivity (Ω-m)

15

20,000

10

200

125

1,000

200

100

∞

3

Page 17 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events
Reference Geomagnetic Field Time Series or Waveshape 7Waveform for the
Benchmark GMD Event 8

The geomagnetic field measurement record of the March 13-14 1989 GMD event, measured at
NRCan’s Ottawa geomagnetic observatory is the basis for the reference geomagnetic field
waveshapewaveform to be used to calculate the GIC time series, GIC(t), required for
transformer thermal impact assessment.
The geomagnetic latitude of the Ottawa geomagnetic observatory is 55°; therefore, the
amplitude of the geomagnetic field measurement data were scaled up to the 60° reference
geomagnetic latitude (see Figure 3) such that the resulting peak geoelectric field amplitude
computed using the reference earth model was 8 V/km (see Figures 4 and 5). The Sampling
sampling rate for the geomagnetic field waveshapewaveform is 10 seconds. 9 To use this
geoelectric field time series when a different earth model is applicable, it should be scaled with
the appropriate benchmark conductivity scaling factor β.βb.

7

Refer to the Benchmark GMD Event Description for details on the determination of the reference geomagnetic
field waveshape: http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
8

Refer to the Benchmark GMD Event Description white paper for details on the determination of the reference
geomagnetic field waveform: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
9
The data file of the benchmark geomagnetic field waveshapewaveform is available on the NERC GMD Task Force
projectRelated Information page: http://www.nerc.com/comm/PC/Pages/Geomagnetic-Disturbance-Task-Force(GMDTF)-2013.aspx for TPL-007-1: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx

Page 18 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

Figure 3: Benchmark Geomagnetic Field WaveshapeWaveform. Red Bn (Northward), Blue Be
(Eastward)

Figure 4: Benchmark Geoelectric Field WaveshapeWaveform - EE (Eastward)

Page 19 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

Figure 5: Benchmark Geoelectric Field WaveshapeWaveform – EN (Northward)

Page 20 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events
Reference Geomagnetic Field Time Series or Waveform for the Supplemental GMD
Event10

The geomagnetic field measurement record of the March 13-14, 1989 GMD event, measured at
NRCan’s Ottawa geomagnetic observatory is the basis for the reference geomagnetic field
waveform to be used to calculate the GIC time series, GIC(t), required for transformer thermal
impact assessment for the supplemental GMD event. The supplemental GMD event waveform
differs from the benchmark GMD event waveform in that the supplemental GMD event
waveform has a local enhancement.
The geomagnetic latitude of the Ottawa geomagnetic observatory is 55°; therefore, the
amplitude of the geomagnetic field measurement data were scaled up to the 60° reference
geomagnetic latitude (see Figure 6) such that the resulting peak geoelectric field amplitude
computed using the reference earth model was 12 V/km (see Figure7). The sampling rate for
the geomagnetic field waveform is 10 seconds. 11 To use this geoelectric field time series when a
different earth model is applicable, it should be scaled with the appropriate supplemental
conductivity scaling factor βs.

Refer to the Supplemental GMD Event Description white paper for details on the determination of the
reference geomagnetic field waveform: http://www.nerc.com/pa/Stand/Pages/Project-2013-03-GeomagneticDisturbance-Mitigation.aspx
11
The data file of the benchmark geomagnetic field waveform is available on the NERC GMD Task Force
project page: http://www.nerc.com/comm/PC/Pages/Geomagnetic-Disturbance-Task-Force-(GMDTF)-2013.aspx
10

Page 21 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

4000

2000

Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

-10000

Figure 6: Supplemental Geomagnetic Field Waveform. Red Bn (Northward), Blue Be
(Eastward)

12 V/km

12000
10000
8000

E (mV/km)

6000
4000
2000
0
200
-2000

400

600

800

1000

1200

1400

1600

1800

2000

Time (min)

-4000
-6000
-8000

Figure 7: Supplemental Geoelectric Field Waveform. Red Blue En (Northward), Blue Red Ee
(Eastward)

Page 22 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

C. Compliance

1. Compliance Monitoring Process
1.1.

Compliance Enforcement Authority
As defined in the NERC Rules of Procedure, “Compliance Enforcement Authority”
means NERC or the Regional Entity, or any entity as otherwise designated by an
Applicable Governmental Authority, in their respective roles of monitoring
and/or enforcing compliance with the NERCmandatory and enforceable
Reliability Standards in their respective jurisdictions.

1.2.

Evidence Retention
The following evidence retention periodsperiod(s) identify the period of time an
entity is required to retain specific evidence to demonstrate compliance. For
instances where the evidence retention period specified below is shorter than
the time since the last audit, the CEACompliance Enforcement Authority may ask
an entity to provide other evidence to show that it was compliant for the fulltime period since the last audit.
The Planning Coordinator, Transmission Planner, Transmission Owner, and
Generator OwnerThe applicable entity shall keep data or evidence to show
compliance as identified below unless directed by its Compliance Enforcement
Authority to retain specific evidence for a longer period of time as part of an
investigation:.
•

For Requirements R1, R2, R3, R5, R6, R9, and R6R10, each responsible
entity shall retain documentation as evidence for five years.

•

For RequirementRequirements R4 and R8, each responsible entity shall
retain documentation of the current GMD Vulnerability Assessment and
the preceding GMD Vulnerability Assessment.

•

For Requirement R7, each responsible entity shall retain documentation
as evidence for five years or until all actions in the Corrective Action Plan
are completed, whichever is later.

•

For Requirements R11 and R12, each responsible entity shall retain
documentation as evidence for three years.

If a Planning Coordinator, Transmission Planner, Transmission Owner, or
Generator Owner is found non-compliant it shall keep information related to the
non-compliance until mitigation is complete and approved or for the time
specified above, whichever is longer.
The Compliance Enforcement Authority shall keep the last audit records and all
requested and submitted subsequent audit records.
1.3.

Compliance Monitoring and Assessment Processes:
Compliance Audits
Self-Certifications

Page 23 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

Spot Checking
Compliance Investigations
Self-Reporting
Complaints
1.4.

Additional Compliance Information
None

Page 24 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

•

1.3.

For Requirements R11 and R12, each responsible entity shall retain
documentation as evidence for three years.

Compliance Monitoring and Assessment Processes: As defined in the NERC
Rules of Procedure, “Compliance Monitoring and Enforcement Program” refers
to the identification of the processes that will be used to evaluate data or
information for the purpose of assessing performance or outcomes with the
associated Reliability Standard.

Page 25 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

Table of Compliance Elements
R#

Time
Horizon

VRF

Violation Severity Levels
Lower VSL

R1

Long-term
Planning

Lower

N/A

Moderate VSL

N/A

High VSL

N/A

Severe VSL

The Planning
Coordinator, in
conjunction with its
Transmission
Planner(s), failed to
determine and
identify individual or
joint responsibilities of
the Planning
Coordinator and
Transmission
Planner(s) in the
Planning
Coordinator’s
planning area for
maintaining models
and, performing the
study or studies
needed to complete
benchmark and
supplemental GMD
Vulnerability
Assessment(s).), and
implementing
process(es) to obtain

Page 26 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

GMD measurement
data as specified in
this standard.
R2

Long-term
Planning

High

N/A

N/A

The responsible entity
did not maintain
either System models
or GIC System models
of the responsible
entity’s planning area
for performing the
study or studies
needed to complete
benchmark and
supplemental GMD
Vulnerability
Assessment(s).

The responsible entity
did not maintain both
System models and
GIC System models of
the responsible
entity’s planning area
for performing the
study or studies
needed to complete
benchmark and
supplemental GMD
Vulnerability
Assessment(s).

R3

Long-term
Planning

Medium N/A

N/A

N/A

The responsible entity
did not have criteria
for acceptable System
steady state voltage
performance for its
System during the
benchmark GMD
eventevents described
in Attachment 1 as
required.

R4

Long-term
Planning

High

The responsible
entity's completed
benchmark GMD

The responsible
entity's completed
benchmark GMD

The responsible
entity's completed
benchmark GMD

The responsible entity
completed a
benchmark GMD

Page 27 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

Vulnerability
Assessment, but it
was more than 60
calendar months and
less than or equal to
64 calendar months
since the last
benchmark GMD
Vulnerability
Assessment.

R5

Long-term
Planning

Medium The responsible entity
provided the effective
GIC time series, GIC(t),
in response to written
request, but did so
more than 90 calendar
days and less than or

Vulnerability
Assessment failed to
satisfy one of
elements listed in
Requirement R4, Parts
4.1 through 4.3;

Vulnerability
Assessment failed to
satisfy three of the
elements listed in
Requirement R4, Parts
4.1 through 4.3;
OR

The responsible entity
completed a
benchmark GMD
Vulnerability
Assessment, but it
was more than 64
calendar months and
less than or equal to
68 calendar months
since the last
benchmark GMD
Vulnerability
Assessment.

Vulnerability
Assessment failed to
satisfy two of the
elements listed in
Requirement R4, Parts
4.1 through 4.3;
OR
The responsible entity
completed a
benchmark GMD
Vulnerability
Assessment, but it
was more than 68
calendar months and
less than or equal to
72 calendar months
since the last
benchmark GMD
Vulnerability
Assessment.

The responsible entity
provided the effective
GIC time series, GIC(t),
in response to written
request, but did so
more than 100
calendar days and less

The responsible entity
provided the effective
GIC time series, GIC(t),
in response to written
request, but did so
more than 110
calendar days after

The responsible entity
did not provide the
maximum effective
GIC value to the
Transmission Owner
and Generator Owner
that owns each

OR

The responsible entity
completed a
benchmark GMD
Vulnerability
Assessment, but it
was more than 72
calendar months since
the last benchmark
GMD Vulnerability
Assessment;
OR
The responsible entity
does not have a
completed benchmark
GMD Vulnerability
Assessment.

Page 28 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

equal to 100 calendar
days after receipt of a
written request.

R6

Long-term
Planning

Medium The responsible entity
failed to conduct a
benchmark thermal
impact assessment for
5% or less or one of its
solely owned and
jointly owned
applicable BES power
transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase;
OR
The responsible entity
conducted a
benchmark thermal
impact assessment for

than or equal to 110
calendar days after
receipt of a written
request.

receipt of a written
request.

applicable BES power
transformer in the
planning area;
OR
The responsible entity
did not provide the
effective GIC time
series, GIC(t), upon
written request.

The responsible entity
failed to conduct a
benchmark thermal
impact assessment for
more than 5% up to
(and including) 10% or
two of its solely
owned and jointly
owned applicable BES
power transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase;
OR
The responsible entity
conducted a
benchmark thermal

The responsible entity
failed to conduct a
benchmark thermal
impact assessment for
more than 10% up to
(and including) 15% or
three of its solely
owned and jointly
owned applicable BES
power transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase;
OR
The responsible entity
conducted a
benchmark thermal

The responsible entity
failed to conduct a
benchmark thermal
impact assessment for
more than 15% or
more than three of its
solely owned and
jointly owned
applicable BES power
transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase;
OR
The responsible entity
conducted a
benchmark thermal

Page 29 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

R7

its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase but did so
more than 24 calendar
months and less than
or equal to 26
calendar months of
receiving GIC flow
information specified
in Requirement R5,
Part 5.1.

impact assessment for
its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase but did so
more than 26 calendar
months and less than
or equal to 28
calendar months of
receiving GIC flow
information specified
in Requirement R5,
Part 5.1;
OR
The responsible entity
failed to include one
of the required
elements as listed in
Requirement R6, Parts
6.1 through 6.3.

impact assessment for
its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase but did so
more than 28 calendar
months and less than
or equal to 30
calendar months of
receiving GIC flow
information specified
in Requirement R5,
Part 5.1;
OR
The responsible entity
failed to include two
of the required
elements as listed in
Requirement R6, Parts
6.1 through 6.3.

impact assessment for
its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R5, Part
5.1, is 75 A or greater
per phase but did so
more than 30 calendar
months of receiving
GIC flow information
specified in
Requirement R5, Part
5.1;
OR
The responsible entity
failed to include three
of the required
elements as listed in
Requirement R6, Parts
6.1 through 6.3.

The responsible
entity's Corrective
Action Plan failed to
comply with one of
the elements in

The responsible
entity's Corrective
Action Plan failed to
comply with two of
the elements in

The responsible
entity's Corrective
Action Plan failed to
comply with three of
the elements in

The responsible
entity's Corrective
Action Plan failed to
comply with four or
more of the elements

Page 30 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

R8

Requirement R7, Parts Requirement R7, Parts Requirement R7, Parts in Requirement R7,
7.1 through 7.5.
7.1 through 7.5.
7.1 through 7.5.
Parts 7.1 through 7.5;
OR
The responsible entity
did not have a
Corrective Action Plan
as required by
Requirement R7.
The responsible entity The responsible
The responsible
The responsible
completed a
entity's completed
entity's completed
entity's completed
supplemental GMD
supplemental GMD
supplemental GMD
supplemental GMD
Vulnerability
Vulnerability
Vulnerability
Vulnerability
Assessment, but it
Assessment failed to
Assessment failed to
Assessment failed to
was more than 60
satisfy two of
satisfy three of the
satisfy four of the
calendar months and
elements listed in
elements listed in
elements listed in
less than or equal to
Requirement R8, Parts Requirement R8, Parts Requirement R8, Parts
64 calendar months
8.1 through 8.4;
8.1 through 8.4;
8.1 through 8.4;
since the last
OR
OR
OR
supplemental GMD
The responsible entity The responsible entity The responsible entity
Vulnerability
completed a
completed a
completed a
Assessment;
supplemental
GMD
supplemental GMD
supplemental GMD
OR
Vulnerability
Vulnerability
Vulnerability
Assessment, but it
Assessment, but it
The responsible
Assessment, but it
was
more
than
68
was more than 72
entity's completed
was more than 64
calendar months and
calendar months since
supplemental GMD
calendar months and
less than or equal to
the last supplemental
Vulnerability
less than or equal to
72
calendar
months
GMD Vulnerability
Assessment failed to
68 calendar months
since the last
Assessment;
satisfy one of
since the last
supplemental GMD
elements listed in
supplemental GMD
OR
Vulnerability
Requirement R8, Parts
Assessment.
8.1 through 8.4;
Page 31 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

Vulnerability
Assessment.

R9

R10

The responsible entity
does not have a
completed
supplemental GMD
Vulnerability
Assessment.
The responsible entity The responsible entity The responsible entity The responsible entity
provided the effective provided the effective provided the effective did not provide the
GIC time series, GIC(t), GIC time series, GIC(t), GIC time series, GIC(t), maximum effective
in response to written in response to written in response to written GIC value to the
request, but did so
request, but did so
request, but did so
Transmission Owner
more than 90 calendar more than 100
more than 110
and Generator Owner
days and less than or
calendar days and less calendar days after
that owns each
equal to 100 calendar than or equal to 110
receipt of a written
applicable BES power
days after receipt of a calendar days after
request.
transformer in the
written request.
receipt of a written
planning area;
request.
OR
The responsible entity
did not provide the
effective GIC time
series, GIC(t), upon
written request.
The responsible entity
failed to conduct a
supplemental thermal
impact assessment for
5% or less or one of its
solely owned and
jointly owned
applicable BES power

The responsible entity
failed to conduct a
supplemental thermal
impact assessment for
more than 5% up to
(and including) 10% or
two of its solely
owned and jointly

The responsible entity
failed to conduct a
supplemental thermal
impact assessment for
more than 10% up to
(and including) 15% or
three of its solely
owned and jointly

The responsible entity
failed to conduct a
supplemental thermal
impact assessment for
more than 15% or
more than three of its
solely owned and
jointly owned

Page 32 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase;
OR
The responsible entity
conducted a
supplemental thermal
impact assessment for
its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase but did so
more than 24 calendar
months and less than
or equal to 26
calendar months of
receiving GIC flow
information specified
in Requirement R9,
Part 9.1.

owned applicable BES
power transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase;
OR
The responsible entity
conducted a
supplemental thermal
impact assessment for
its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase but did so
more than 26 calendar
months and less than
or equal to 28
calendar months of
receiving GIC flow
information specified

owned applicable BES
power transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase;
OR
The responsible entity
conducted a
supplemental thermal
impact assessment for
its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase but did so
more than 28 calendar
months and less than
or equal to 30
calendar months of
receiving GIC flow
information specified

applicable BES power
transformers
(whichever is greater)
where the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase;
OR
The responsible entity
conducted a
supplemental thermal
impact assessment for
its solely owned and
jointly owned
applicable BES power
transformers where
the maximum
effective GIC value
provided in
Requirement R9, Part
9.1, is 85 A or greater
per phase but did so
more than 30 calendar
months of receiving
GIC flow information
specified in
Requirement R9, Part
9.1;
OR

Page 33 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

R11

N/A

in Requirement R9,
Part 9.1;
OR
The responsible entity
failed to include one
of the required
elements as listed in
Requirement R10,
Parts 10.1 through
10.3.
N/A

R12

N/A

N/A

in Requirement R9,
Part 9.1;
OR
The responsible entity
failed to include two
of the required
elements as listed in
Requirement R10,
Parts 10.1 through
10.3.
N/A

N/A

The responsible entity
failed to include three
of the required
elements as listed in
Requirement R10,
Parts 10.1 through
10.3.

The responsible entity
did not implement a
process to obtain GIC
monitor data from at
least one GIC monitor
located in the
Planning
Coordinator’s
planning area or other
part of the system
included in the
Planning
Coordinator’s GIC
System Model.
The responsible entity
did not implement a
process to obtain
geomagnetic field
data for its Planning
Coordinator’s
planning area.

Page 34 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance Events

Page 35 of 45

TPL-007-12 — Transmission System Planned Performance for Geomagnetic Disturbance
Events

D. Regional Variances
None.
E. Interpretations
None.
F. Associated Documents
None.

Version History
Version

Date

Action

1

December 17, 2014

Adopted by the NERC Board of Trustees

2

TBD

Revised to respond to directives in FERC
Order No. 830.

Change Tracking

Revised

Page 21 of 26

Application Guidelines
Guidelines and Technical Basis
The diagram below provides an overall view of the GMD Vulnerability Assessment process:

The requirements in this standard cover various aspects of the GMD Vulnerability Assessment
process.
Benchmark GMD Event (Attachment 1)
The benchmark GMD event defines the geoelectric field values used to compute GIC flows that
are needed to conduct a benchmark GMD Vulnerability Assessment. A white paper that
includes the event description, analysis, and example calculations is available on the Project
2013-03 Geomagnetic Disturbance Mitigation project page at:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspxhttp://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
Supplemental GMD Event (Attachment 1)
The supplemental GMD event defines the geoelectric field values used to compute GIC flows
that are needed to conduct a supplemental GMD Vulnerability Assessment. A white paper that
includes the event description and analysis is available on the Project 2013-03 Geomagnetic
Disturbance Mitigation project page:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
Requirement R2
A GMD Vulnerability Assessment requires a GIC System model, which is a dc representation of
the System, to calculate GIC flow. In a GMD Vulnerability Assessment, GIC simulations are used
to determine transformer Reactive Power absorption and transformer thermal response.
Details for developing the GIC System model are provided in the NERC GMD Task Force guide:
Application Guide for Computing Geomagnetically-Induced Current in the Bulk Power System.
The guide is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GIC%20Application%20Guide%202013_approved.pdf

Page 37 of 45

Application Guidelines
Underground pipe-type cables present a special modeling situation in that the steel pipe that
encloses the power conductors significantly reduces the geoelectric field induced into the
conductors themselves, while they remain a path for GIC. Solid dielectric cables that are not
enclosed by a steel pipe will not experience a reduction in the induced geoelectric field. A
planning entity should account for special modeling situations in the GIC system model, if
applicable.
Requirement R4
The GMD Planning Guide developed by the NERC GMD Task Force provides technical
information on GMD-specific considerations for planning studies. It is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GMD%20Planning%20Guide_approved.pdf
The diagram below provides an overall view of the GMD Vulnerability Assessment process:

Requirement R5
The transformerbenchmark thermal impact assessment of transformers specified in
Requirement R6 is based on GIC information for the Benchmarkbenchmark GMD Event. This
GIC information is determined by the planning entity through simulation of the GIC System
model and must be provided to the entity responsible for conducting the thermal impact
assessment. GIC information should be provided in accordance with Requirement R5 each time
the GMD Vulnerability Assessment is performed since, by definition, the GMD Vulnerability
Assessment includes a documented evaluation of susceptibility to localized equipment damage
due to GMD.

Page 38 of 45

Application Guidelines
The maximum effective GIC value provided in Part 5.1 is used for transformerthe benchmark
thermal impact assessment. Only those transformers that experience an effective GIC value of
75 A or greater per phase require evaluation in Requirement R6.
GIC(t) provided in Part 5.2 is used to convert the steady -state GIC flows to time-series GIC data
for transformerthe benchmark thermal impact assessment. of transformers. This information
may be needed by one or more of the methods for performing a benchmark thermal impact
assessment. Additional information is in the following section and the thermal impact
assessment white paper.
The peak GIC value of 75 Amps per phase has been shown through thermal modeling to be a
conservative threshold below which the risk of exceeding known temperature limits established
by technical organizations is low.
Requirement R6
The benchmark thermal impact assessment of a power transformer may be based on
manufacturer-provided GIC capability curves, thermal response simulation, thermal impact
screening, or other technically justified means. Approaches for conducting the assessment are
presented in the Transformer Thermal Impact Assessment white paper posted on the project
page.. The ERO enterprise has endorsed the white paper as Implementation Guidance for this
requirement. The white paper is posted on the NERC compliance guidance page:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
http://www.nerc.com/pa/comp/guidance/Pages/default.aspx
Transformers are exempt from the benchmark thermal impact assessment requirement if the
effective GIC value for the transformer is less than 75 A per phase, as determined by a GIC
analysis of the System. Justification for this criterion is provided in the Screening Criterion for
Transformer Thermal Impact Assessment white paper posted on the Related Information page
for projectTPL-007-1. A documented design specification exceeding this value is also a
justifiable threshold criterion that exempts a transformer from Requirement R6.
The benchmark threshold criteria and its associated transformer thermal impact must be
evaluated on the basis of effective GIC. Refer to the white papers for additional information.
Requirement R7
Technical considerations for GMD mitigation planning, including operating and equipment
strategies, are available in Chapter 5 of the GMD Planning Guide. Additional information is
available in the 2012 Special Reliability Assessment Interim Report: Effects of Geomagnetic
Disturbances on the Bulk-Power System:
http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf
Requirement R8

Page 39 of 45

Application Guidelines
The GMD Planning Guide developed by the NERC GMD Task Force provides technical
information on GMD-specific considerations for planning studies. It is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GMD%20Planning%20Guide_approved.pdf
The supplemental GMD Vulnerability Assessment process is similar to the benchmark GMD
Vulnerability Assessment process described under Requirement R4.
Requirement R9
The supplemental thermal impact assessment specified of transformers in Requirement R10 is
based on GIC information for the supplemental GMD Event. This GIC information is determined
by the planning entity through simulation of the GIC System model and must be provided to the
entity responsible for conducting the thermal impact assessment. GIC information should be
provided in accordance with Requirement R9 each time the GMD Vulnerability Assessment is
performed since, by definition, the GMD Vulnerability Assessment includes a documented
evaluation of susceptibility to localized equipment damage due to GMD.
The maximum effective GIC value provided in Part 9.1 is used for the supplemental thermal
impact assessment. Only those transformers that experience an effective GIC value of 85 A or
greater per phase require evaluation in Requirement R10.
GIC(t) provided in Part 9.2 is used to convert the steady state GIC flows to time-series GIC data
for the supplemental thermal impact assessment of transformers. This information may be
needed by one or more of the methods for performing a supplemental thermal impact
assessment. Additional information is in the following section.
The peak GIC value of 85 Amps per phase has been shown through thermal modeling to be a
conservative threshold below which the risk of exceeding known temperature limits established
by technical organizations is low.
Requirement R10
The supplemental thermal impact assessment of a power transformer may be based on
manufacturer-provided GIC capability curves, thermal response simulation, thermal impact
screening, or other technically justified means. Approaches for conducting the assessment are
presented in the Transformer Thermal Impact Assessment white paper discussed in the
Requirement R6 section above. A revised version of the Transformer Thermal Impact
Assessment white paper has been developed to include updated information pertinent to the
supplemental GMD event and supplemental thermal impact assessment. This revised white
paper is posted on the project page at:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
Transformers are exempt from the supplemental thermal impact assessment requirement if the
effective GIC value for the transformer is less than 85 A per phase, as determined by a GIC
analysis of the System. Justification for this criterion is provided in the revised Screening

Page 40 of 45

Application Guidelines
Criterion for Transformer Thermal Impact Assessment white paper posted on the project page.
A documented design specification exceeding this value is also a justifiable threshold criterion
that exempts a transformer from Requirement R10.
The supplemental threshold criteria and its associated transformer thermal impact must be
evaluated on the basis of effective GIC. Refer to the white papers for additional information.
Requirement R11
Technical considerations for GIC monitoring are contained in the NERC 2012 GMD Report (see
Chapter 6). GIC monitoring is generally performed by Hall effect transducers that are attached
to the neutral of the wye-grounded transformer. Data from GIC monitors is useful model
validation and situational awareness.
Responsible entities consider the following in developing a process for obtaining GIC monitor
data:
•

•

•
•

•

•

Monitor locations. An entity's operating process may be constrained by location of
existing GIC monitors. However, when planning for additional GIC monitoring
installations consider that data from monitors located in areas found to have high GIC
based on system studies may provide more useful information for validation and
situational awareness purposes. Conversely, data from GIC monitors that are located in
the vicinity of transportation systems using direct current (e.g., subways or light rail)
may be unreliable.
Monitor specifications. Capabilities of Hall effect transducers, existing and planned,
should be considered in the operating process. When planning new GIC monitor
installations, consider monitor data range (e.g., -500 A through + 500 A) and ambient
temperature ratings consistent with temperatures in the region in which the monitor
will be installed.
Sampling Interval. An entity's operating process may be constrained by capabilities of
existing GIC monitors. However, when possible specify data sampling during periods of
interest at a rate of 10 seconds or faster.
Collection Periods. The process should specify when the entity expects GIC data to be
collected. For example, collection could be required during periods where the Kp index
is above a threshold, or when GIC values are above a threshold. Determining when to
discontinue collecting GIC data should also be specified to maintain consistency in data
collection.
Data format. Specify time and value formats. For example, Greenwich Mean Time
(GMT) (MM/DD/YYYY HH:MM:SS) and GIC Value (Ampere). Positive (+) and negative (-)
signs indicate direction of GIC flow. Positive reference is flow from ground into
transformer neutral. Time fields should indicate the sampled time rather than system or
SCADA time if supported by the GIC monitor system.
Data retention. The entity's process should specify data retention periods, for example
1 year. Data retention periods should be adequately long to support availability for the
entity's model validation process and external reporting requirements, if any.

Page 41 of 45

Application Guidelines
•

Additional information. The entity's process should specify collection of other
information necessary for making the data useful, for example monitor location and
type of neutral connection (e.g., three-phase or single-phase).

Requirement R12
Magnetometers measure changes in the earth's magnetic field. Entities should obtain data
from the nearest accessible magnetometer. Sources of magnetometer data include:
•

Observatories such as those operated by U.S. Geological Survey and Natural Resources
Canada, see figure below for locations (http://www.intermagnet.org/):

•
•

Research institutions and academic universities;
Entities with installed magnetometers.

Entities that choose to install magnetometers should consider equipment specifications and
data format protocols contained in the latest version of the Intermagnet Technical Reference
Manual, which is available at:
http://www.intermagnet.org/publications/intermag_4-6.pdf

Page 42 of 45

Application Guidelines
Rationale:
During development of this standardTPL-007-1, text boxes were embedded within the standard
to explain the rationale for various parts of the standard. Upon BOT approval, theThe text from
the rationale text boxes was moved to this section. upon approval of TPL-007-1 by the NERC
Board of Trustees. In developing TPL-007-2, the SDT has made changes to the sections below
only when necessary for clarity. Changes are marked with brackets [ ].
Rationale for Applicability:
Instrumentation transformers and station service transformers do not have significant impact
on geomagnetically-induced current (GIC) flows; therefore, these transformers are not included
in the applicability for this standard.
Terminal voltage describes line-to-line voltage.
Rationale for R1:
In some areas, planning entities may determine that the most effective approach to conduct a
GMD Vulnerability Assessment is through a regional planning organization. No requirement in
the standard is intended to prohibit a collaborative approach where roles and responsibilities
are determined by a planning organization made up of one or more Planning Coordinator(s).
Rationale for R2:
A GMD Vulnerability Assessment requires a GIC System model to calculate GIC flow which is
used to determine transformer Reactive Power absorption and transformer thermal response.
Guidance for developing the GIC System model is provided in the GIC Application Guide
developed by the NERC GMD Task Force and available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GIC%20Application%20Guide%202013_approved.pdf
The System model specified in Requirement R2 is used in conducting steady state power flow
analysis that accounts for the Reactive Power absorption of power transformer(s) due to GIC in
the System.
The GIC System model includes all power transformer(s) with a high side, wye-grounded
winding with terminal voltage greater than 200 kV. The model is used to calculate GIC flow in
the network.
The projected System condition for GMD planning may include adjustments to the System that
are executable in response to space weather information. These adjustments could include, for
example, recalling or postponing maintenance outages.
The Violation Risk Factor (VRF) for Requirement R2 is changed from Medium to High. This
change is for consistency with the VRF for approved standard TPL-001-4 Requirement R1, which
is proposed for revision in the NERC filing dated August 29, 2014 (RM12-1-000). NERC
guidelines require consistency among Reliability Standards.
Rationale for R3:
Requirement R3 allows a responsible entity the flexibility to determine the System steady state
voltage criteria for System steady state performance in Table 1. Steady state voltage limits are
an example of System steady state performance criteria.
Page 43 of 45

Application Guidelines
Rationale for R4:
The GMD Vulnerability Assessment includes steady state power flow analysis and the
supporting study or studies using the models specified in Requirement R2 that account for the
effects of GIC. Performance criteria are specified in Table 1.
At least one System On-Peak Load and at least one System Off-Peak Load must be examined in
the analysis.
Distribution of GMD Vulnerability Assessment results provides a means for sharing relevant
information with other entities responsible for planning reliability. Results of GIC studies may
affect neighboring systems and should be taken into account by planners.
The GMD Planning Guide developed by the NERC GMD Task Force provides technical
information on GMD-specific considerations for planning studies. It is available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%
202013/GMD%20Planning%20Guide_approved.pdf
The provision of information in Requirement R4, Part 4.3, shall be subject to the legal and
regulatory obligations for the disclosure of confidential and/or sensitive information.
Rationale for R5:
This GIC information is necessary for determining the thermal impact of GIC on transformers in
the planning area and must be provided to entities responsible for performing the thermal
impact assessment so that they can accurately perform the assessment. GIC information should
be provided in accordance with Requirement R5 as part of the GMD Vulnerability Assessment
process since, by definition, the GMD Vulnerability Assessment includes documented
evaluation of susceptibility to localized equipment damage due to GMD.
The maximum effective GIC value provided in Part 5.1 is used for transformer thermal impact
assessment.
GIC(t) provided in Part 5.2 can alternatively be used to convert the steady -state GIC flows to
time-series GIC data for transformer thermal impact assessment. This information may be
needed by one or more of the methods for performing a thermal impact assessment. Additional
guidance is available in the Transformer Thermal Impact Assessment white paper:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
[http://www.nerc.com/pa/comp/guidance/Pages/default.aspx]
A Transmission Owner or Generator Owner that desires GIC(t) may request it from the planning
entity. The planning entity shall provide GIC(t) upon request once GIC has been calculated, but
no later than 90 calendar days after receipt of a request from the owner and after completion
of Requirement R5, Part 5.1.
The provision of information in Requirement R5 shall be subject to the legal and regulatory
obligations for the disclosure of confidential and/or sensitive information.
Rationale for R6:

Page 44 of 45

Application Guidelines
The transformer thermal impact screening criterion has been revised from 15 A per phase to 75
A per phase. [for the benchmark GMD event]. Only those transformers that experience an
effective GIC value of 75 A per phase or greater require evaluation in Requirement R6. The
justification is provided in the Thermal Screening Criterion white paper.
The thermal impact assessment may be based on manufacturer-provided GIC capability curves,
thermal response simulation, thermal impact screening, or other technically justified means.
The transformer thermal assessment will be repeated or reviewed using previous assessment
results each time the planning entity performs a GMD Vulnerability Assessment and provides
GIC information as specified in Requirement R5. Approaches for conducting the assessment are
presented in the Transformer Thermal Impact Assessment white paper posted on the project
page.
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
Thermal impact assessments are provided to the planning entity, as determined in Requirement
R1, so that identified issues can be included in the GMD Vulnerability Assessment (R4), and the
Corrective Action Plan (R7) as necessary.
Thermal impact assessments of non-BES transformers are not required because those
transformers do not have a wide-area effect on the reliability of the interconnected
Transmission system.
The provision of information in Requirement R6, Part 6.4, shall be subject to the legal and
regulatory obligations for the disclosure of confidential and/or sensitive information.
Rationale for R7:
Corrective Action Plans are defined in the NERC Glossary of Terms:
A list of actions and an associated timetable for implementation to remedy a specific
problem.
Corrective Action Plans must, subject to the vulnerabilities identified in the assessments,
contain strategies for protecting against the potential impact of the Benchmark[Bb]enchmark
GMD event, based on factors such as the age, condition, technical specifications, system
configuration, or location of specific equipment. Chapter 5 of the NERC GMD Task Force GMD
Planning Guide provides a list of mitigating measures that may be appropriate to address an
identified performance issue.
The provision of information in Requirement R7, Part 7.3, [Part 7.5 in TPL-007-2], shall be
subject to the legal and regulatory obligations for the disclosure of confidential and/or sensitive
information.
Rationale for Table 3:
Table 3 has been revised to use the same ground model designation, FL1, as is being used by
USGS. The calculated scaling factor for FL1 is 0.74. [The scaling factor associated with the
benchmark GMD event for the Florida earth model (FL-1) has been updated to 0.76 in TPL-0072 based on the earth model published on the USGS public website.]

Page 45 of 45

Implementation Plan

Project 2013-03 Geomagnetic Disturbance Mitigation
Reliability Standard TPL-007-2
Applicable Standard(s)
•

TPL-007-2 - Transmission System Planned Performance for Geomagnetic Disturbance Events

Requested Retirement(s)
•

TPL-007-1 - Transmission System Planned Performance for Geomagnetic Disturbance Events

Prerequisite Standard(s)
None
Applicable Entities
•
•
•
•

Planning Coordinator with a planning area that includes a Facility or Facilities specified in
Section 4.2 of the standard;
Transmission Planner with a planning area that includes a Facility or Facilities specified in
Section 4.2 of the standard;
Transmission Owner who owns a Facility or Facilities specified in Section 4.2 of the
standard;
Generator Owner who owns a Facility or Facilities specified in Section 4.2 of the standard.

Section 4.2 states that the standard applies to facilities that include power transformer(s) with a
high side, wye-grounded winding with terminal voltage greater than 200 kV.
Terms in the NERC Glossary of Terms
There are no new, modified, or retired terms.
Background
On September 22, 2016, the Federal Energy Regulatory Commission (FERC) issued Order No. 830
approving Reliability Standard TPL-007-1 and its associated five-year Implementation Plan. In the
Order, FERC also directed NERC to develop certain modifications to the standard. FERC established a
deadline of 18 months from the effective date of Order No. 830 for completing the revisions, which
is May 2018.
General Considerations
This Implementation Plan is intended to integrate the new requirements in TPL-007-2 with the GMD
Vulnerability Assessment process that is being implemented through approved TPL-007-1. At the
time of the May 2018 filing deadline, many requirements in approved standard TPL-007-1 that lead
to completion of the GMD Vulnerability Assessment will be in effect. Furthermore, many entities

may be taking steps to complete studies or assessments that are required by future enforceable
requirements in TPL-007-1. The Implementation Plan phases in the requirements in TPL-007-2 based
on the effective date of TPL-007-2, as follows:
•

Effective Date before January 1, 2021. Implementation timeline supports applicable entities
completing new requirements for supplemental GMD Vulnerability Assessments
concurrently with requirements for the benchmark GMD Vulnerability Assessment
(concurrent effective dates).

•

Effective Date on or after January 1, 2021. Implementation timeline supports applicable
entities completing the benchmark GMD Vulnerability Assessments before new
requirements for supplemental GMD Vulnerability Assessments become effective.

Effective Date and Phased-In Compliance Dates
The effective date for the proposed Reliability Standard is provided below. Where the standard
drafting team identified the need for a longer implementation period for compliance with a
particular section of a proposed Reliability Standard (e.g., an entire Requirement or a portion
thereof), the additional time for compliance with that section is specified below. The phased-in
compliance date for those particular sections represents the date that entities must begin to comply
with that particular section of the Reliability Standard, even where the Reliability Standard goes into
effect at an earlier date.
Standard TPL-007-2
Where approval by an applicable governmental authority is required, the standard shall become
effective on the first day of the first calendar quarter that is three (3) months after the effective date
of the applicable governmental authority’s order approving the standard, or as otherwise provided
for by the applicable governmental authority.
Where approval by an applicable governmental authority is not required, the standard shall become
effective on the first day of the first calendar quarter that is three (3) months after the date the
standard is adopted by the NERC Board of Trustees, or as otherwise provided for in that jurisdiction.
If TPL-007-2 becom es effective before January 1, 2021
Implementation timeline supports applicable entities completing new requirements for
supplemental GMD Vulnerability Assessments concurrently with requirements for the benchmark
GMD Vulnerability Assessment (concurrent effective dates).

Compliance Date for TPL-007-2 Requirement R9
Entities shall not be required to comply with Requirement R9 until six (6) months after the effective
date of Reliability Standard TPL-007-2.

Implementation Plan
Project 2013-03 GMD Mitigation | June 2017

2

Compliance Date for TPL-007-2 Requirements R11 and R12
Entities shall not be required to comply with Requirements R11 and R12 until 24 months after the
effective date of Reliability Standard TPL-007-2.
Compliance Date for TPL-007-2 Requirements R6 and R10
Entities shall not be required to comply with Requirements R6 and R10 until 30 months after the
effective date of Reliability Standard TPL-007-2.
Compliance Date for TPL-007-2 Requirements R3, R4, and R8
Entities shall not be required to comply with Requirements R3, R4, and R8 until 42 months after the
effective date of Reliability Standard TPL-007-2.
Compliance Date for TPL-007-2 Requirement R7
Entities shall not be required to comply with Requirement R7 until 54 months after the effective
date of Reliability Standard TPL-007-2.
If TPL-007-2 becom es effective on or after January 1, 2021
Implementation timeline supports applicable entities completing the benchmark GMD Vulnerability
Assessments before new requirements for supplemental GMD Vulnerability Assessments become
effective.

Compliance Date for TPL-007-2 Requirements R3 and R4
Entities shall not be required to comply with Requirements R3 and R4 until 12 months after the
effective date of Reliability Standard TPL-007-2.
Compliance Date for TPL-007-2 Requirements R7, R11, and R12
Entities shall not be required to comply with Requirements R7, R11, and R12 until 24 months after
the effective date of Reliability Standard TPL-007-2.
Compliance Date for TPL-007-2 Requirement R9
Entities shall not be required to comply with Requirement R9 until 36 months after the effective
date of Reliability Standard TPL-007-2.
Compliance Date for TPL-007-2 Requirement R10
Entities shall not be required to comply with Requirement R10 until 60 months after the effective
date of Reliability Standard TPL-007-2.
Compliance Date for TPL-007-2 Requirement R8
Entities shall not be required to comply with Requirement R8 until 72 months after the effective
date of Reliability Standard TPL-007-2.

Implementation Plan
Project 2013-03 GMD Mitigation | June 2017

3

Retirement Date
Standard TPL-007-1
Reliability Standard TPL-007-1 shall be retired immediately prior to the effective date of TPL-007-2 in
the particular jurisdiction in which the revised standard is becoming effective.
Initial Performance of Periodic Requirements
Transmission Owners and Generator Owners are not required to comply with Requirement R6 prior
to the compliance date for Requirement R6, regardless of when GIC flow information specified in
Requirement R5 Part 5.1 is received.
Transmission Owners and Generator Owners are not required to comply with Requirement R10
prior to the compliance date for Requirement R10, regardless of when GIC flow information
specified in Requirement R9 Part 9.1 is received.

Implementation Plan
Project 2013-03 GMD Mitigation | June 2017

4

Supplemental
Geomagnetic
Disturbance Event
Description
Project 2013-03 GMD Mitigation
June 2017

NERC | Report Title | Report Date
I

Table of Contents
Preface ....................................................................................................................................................................... iii
Introduction ............................................................................................................................................................... iv
Background ............................................................................................................................................................ iv
General Characteristics .......................................................................................................................................... iv
Supplemental GMD Event Description .......................................................................................................................1
Supplemental GMD Event Geoelectric Field Amplitude .........................................................................................1
Supplemental Geomagnetic Field Waveform .........................................................................................................1
Appendix I – Technical Considerations.......................................................................................................................3
Statistical Considerations........................................................................................................................................3
Extreme Value Analysis .......................................................................................................................................4
Spatial Considerations ............................................................................................................................................7
Local Enhancement Waveform............................................................................................................................ 13
Transformer Thermal Assessment ....................................................................................................................... 15
Appendix II – Scaling the Supplemental GMD Event ............................................................................................... 16
Scaling the Geomagnetic Field ............................................................................................................................. 16
Scaling the Geoelectric Field ................................................................................................................................ 18
References ............................................................................................................................................................... 22

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
ii

Preface
The North American Electric Reliability Corporation (NERC) is a not-for-profit international regulatory authority
whose mission is to assure the reliability and security of the bulk power system (BPS) in North America. NERC
develops and enforces Reliability Standards; annually assesses seasonal and long‐term reliability; monitors the
BPS through system awareness; and educates, trains, and certifies industry personnel. NERC’s area of
responsibility spans the continental United States, Canada, and the northern portion of Baja California, Mexico.
NERC is the Electric Reliability Organization (ERO) for North America, subject to oversight by the Federal Energy
Regulatory Commission (FERC) and governmental authorities in Canada. NERC’s jurisdiction includes users,
owners, and operators of the BPS, which serves more than 334 million people.
The North American BPS is divided into eight Regional Entity (RE) boundaries as shown in the map and
corresponding table below.

The North American BPS is divided into eight RE boundaries. The highlighted areas denote overlap as some load-serving
entities participate in one Region while associated transmission owners/operators participate in another.

FRCC

Florida Reliability Coordinating Council

MRO

Midwest Reliability Organization

NPCC

Northeast Power Coordinating Council

RF

ReliabilityFirst

SERC

SERC Reliability Corporation

SPP RE

Southwest Power Pool Regional Entity

Texas RE

Texas Reliability Entity

WECC

Western Electricity Coordinating Council

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
iii

Introduction
Background

Proposed TPL-007-2 includes requirements for entities to perform two types of GMD Vulnerability Assessments
to evaluate the potential impacts of GMD events on the Bulk Electric System (BES):
•

•

The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated with
TPL-007-1 which was approved by the Federal Energy Regulatory Commission (FERC) in Order No. 830 in
September 2016. The benchmark GMD event is derived from spatially-averaged geoelectric field values
to address potential wide-area effects that could be caused by a severe 1-in-100 year GMD event. 1
The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event described in
this white paper, is used by entities to evaluate localized enhancements of geomagnetic field during a
severe GMD event that "could potentially affect the reliable operation of the Bulk-Power System". 2
Localized enhancements of geomagnetic field can result in geoelectric field values above the spatiallyaveraged benchmark in a local area.

The purpose of the supplemental geomagnetic disturbance (GMD) event description is to provide a defined event
for assessing system performance for a GMD event which includes a local enhancement of the geomagnetic field.
In addition to varying with time, geomagnetic fields can be spatially non-uniform with higher and lower strengths
across a region. This spatial non-uniformity has been observed in a number of GMD events, so localized
enhancement of field strength above the average value is considered. The supplemental GMD event defines the
geomagnetic and geoelectric field values used to compute geomagnetically-induced current (GIC) flows for a
supplemental GMD Vulnerability Assessment.

General Characteristics

The supplemental GMD event described herein takes into consideration observed characteristics of a local
geomagnetic field enhancement, recognizing that the science and understanding of these events is evolving.
Based on observations and initial assessments, the characteristics of local enhancements include:
•
•
•
•

Geographic area – The extent of local enhancements is on the order of 100km in North-South (latitude)
direction but longer in East-West (longitude) direction. Further description of the geographic area is
provided later in the white paper.
Amplitude – The amplitude of the resulting geoelectric field is significantly higher than the geoelectric
field that is calculated in the spatially-averaged Benchmark GMD event.
Duration – The local enhancement in the geomagnetic field occurs over a time period of 2-5 minutes.
Geoelectric field waveform – The supplemental GMD event waveform is the benchmark GMD event
waveform with the addition of a local enhancement. The added local enhancement has amplitude and
duration characteristics described above. The geoelectric field waveform has a strong influence on the
hot spot heating of transformer windings and structural parts since thermal time constants of the
transformer and time to peak of storm maxima are both on the order of minutes. The frequency content
of the rate of change of the magnetic field (dB/dt) is a function of the waveform, which in turn has a direct
effect on the geoelectric field since the earth response to dB/dt is frequency-dependent. As with the
benchmark GMD event, the supplemental GMD event waveform is based on magnetic field data recorded
by the Natural Resources Canada (NRCan) Ottawa (OTT) geomagnetic observatory during the March 13-

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in
RM 15-11 on June 28, 2016.
2
See Order No. 830 P. 47. On September 22, 2016, FERC directed NERC to develop modifications to the
benchmark GMD event, included in TPL-007-1, such that assessments would not be based solely on spatially
averaged data.
1

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
iv

Introduction

14 1989 event. This GMD event data was selected because analysis of recorded events indicates that the
OTT observatory data for this period provides conservative results when performing thermal assessments
of power transformers. 3

3

See Benchmark Geomagnetic Disturbance Event Description white paper, page 5 and Appendix I.
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
ii

Supplemental GMD Event Description
Severe geomagnetic disturbance events are high-impact, low-frequency (HILF) events [1]; thus, GMD events used
in system planning should consider the probability that the event will occur, as well as the impact or consequences
of such an event. The supplemental GMD event is composed of the following elements: 1) a reference peak
geoelectric field amplitude (V/km) derived from statistical analysis of historical magnetometer data; 2) scaling
factors to account for local geomagnetic latitude; 3) scaling factors to account for local earth conductivity; and 4)
a reference geomagnetic field time series or waveform to facilitate time-domain analysis of GMD impact on
equipment.

Supplemental GMD Event Geoelectric Field Amplitude

The supplemental GMD event field amplitude was determined through statistical analysis using the plane wave
method [2]-[9] of geomagnetic field measurements from geomagnetic observatories in northern Europe [10] and
the reference (Quebec) earth model shown in Table 1 [11], supplemented by data from Greenland, Denmark and
Alaska. For details of the statistical considerations, see Appendix I. The Quebec earth model is generally resistive
and the geological structure is relatively well understood.
Table 1: Reference Earth Model (Quebec)
Thickness (km)
Resistivity (Ω-m)
15
20,000
10
200
125
1,000
200
100
∞
3
The statistical analysis (see Appendix I) resulted in conservative peak geoelectric field amplitude of approximately
12 V/km. For steady-state GIC and load flow analysis, the direction of the geoelectric field is assumed to be variable
meaning that it can be in any direction (Eastward, Northward, or a vectorial combination thereof).
The regional geoelectric field peak amplitude, Epeak, to be used in calculating GIC in the GIC system model can be
obtained from the reference value of 12 V/km using the following relationship
Epeak = 12 × 𝛼𝛼 × 𝛽𝛽 𝑠𝑠 (V/km)

(1)

where α is the scaling factor to account for local geomagnetic latitude, and βS is a scaling factor for the
supplemental GMD event to account for the local earth conductivity structure (see Appendix II).

Supplemental Geomagnetic Field Waveform

The supplemental geomagnetic field waveform is the benchmark geomagnetic field waveform with the addition
of a local enhancement. Both the benchmark and supplemental geomagnetic field waveforms are used to
calculate the GIC time series, GIC(t), required for transformer thermal impact assessments. The supplemental
waveform includes a local enhancement, inserted at UT 1:18 March 14 in Figure 1 below. This time corresponds
to the largest calculated geoelectric fields during the benchmark GMD event. The amplitude of the local
enhancement is based on a statistical analysis of a number of GMD events, discussed in Appendix I. The duration
of the enhancement is based on the characteristics of observed localized enhancements as discussed in Appendix
I.

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
1

Supplemental GMD Event Description

The geomagnetic latitude of the Ottawa geomagnetic observatory is 55°; therefore, the amplitude of the
geomagnetic field measurement data with a local enhancement was scaled up to the 60° reference geomagnetic
latitude (see Figure 1) such that the resulting peak geoelectric field amplitude computed using the reference earth
model was 12 V/km (see Figure 2). Sampling rate for the geomagnetic field waveform is 10 seconds.
4000

2000

Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

-10000

Figure 1: Supplemental Geomagnetic Field Waveform
Red Bx (Northward), Blue By (Eastward),
Referenced to pre-event quiet conditions
15000

Ex, Ey (mV/km)

10000

5000

0
200

400

600

800

1000

1200

1400

1600

Time (min)
-5000

-10000

Figure 2: Supplemental Geoelectric Field Waveform
Red Ey (Eastward), Blue Ex (Northward)
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
2

Appendix I – Technical Considerations
The following sections describe the technical justification of the assumptions that were made in the development
of the supplemental GMD event.

Statistical Considerations

The peak geoelectric field amplitude of the supplemental GMD event was determined through statistical analysis
of modern 10-second geomagnetic field data and corresponding calculated geoelectric field amplitudes. The
objective of the analysis was to estimate the geoelectric field amplitude that is associated with a 1 in 100 year
frequency of occurrence. The same data set and similar statistical techniques were used in determining the peak
geoelectric field amplitude of the benchmark GMD event, including extreme value analysis discussed in the
following section. 4 The fundamental difference in the supplemental GMD event amplitude is that it is based on
observations taken at each individual station (i.e., localized measurements), in contrast with the spatially averaged
geoelectric fields used in the Benchmark Geomagnetic Disturbance Event Description white paper. 5

See Benchmark Geomagnetic Disturbance Event Description white paper, Appendix I, pages 8-13.
Averaging the geoelectric field values of stations in geographic groups is referred to as spatial averaging
in the Benchmark Geomagnetic Disturbance Event Description. Spatial averaging was used to characterize GMD
events over a geographic area relevant to the interconnected transmission system for purposes of assessing area
effects such as voltage collapse and widespread equipment risk. See Benchmark Geomagnetic Disturbance Event
Description white paper, Appendix I, pages 9-10.
4
5

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
3

Appendix I – Technical Considerations

Extreme Value Analysis
The objective of extreme value analysis is to describe the behavior of a stochastic process at extreme deviations
from the median. In general, the intent is to quantify the probability of an event more extreme than any previously
observed. In particular, we are concerned with estimating the 95% confidence interval of the maximum
geoelectric field amplitude to be expected within a 100-year return period. 6
The data set consists of 23 years of daily maximum geoelectric field amplitudes derived from individual stations
in the IMAGE magnetometer chain, using the Quebec earth model as a reference. Figure I-1 shows a scatter plot
of geoelectric field amplitudes that exceed 2 V/km across the IMAGE stations. The plot indicates that there is
seasonality in extreme observations associated with the 11-year solar cycle.

Figure I-1: Scatter Plot of Geoelectric Fields that Exceed a 2 V/km Threshold
Data source: IMAGE magnetometer chain from 1993-2015.

6

A 95 percent confidence interval means that, if repeated samples were obtained, the return level would
lie within the confidence interval for 95 percent of the samples.
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
4

Appendix I – Technical Considerations

Several statistical methods can be used to conduct extreme value analysis. The most commonly applied include:
Generalized Extreme Value (GEV), Point Over Threshold (POT), R-Largest, and Point Process (PP). In general, all
methods assume independent and identically distributed (iid) data [12].
Table I-1 shows a summary of the estimated parameters and return levels obtained from different statistical
methods. The parameters were estimated using the Maximum Likelihood Estimator (MLE). Since the distribution
parameters do not have an intuitive interpretation, the expected geoelectric field amplitude for a 100-year return
period is also included in Table I-1. The 95% confidence interval of the 100-year return level was calculated using
the delta method and the profile likelihood. The delta method relies on the Gaussian approximation to the
distribution of the MLE; this approximation can be poor for long return periods. In general, the profile likelihood
provides a better description of the return level.
Table I-1: Extreme Value Analysis
Estimated
Parameters

Statistical Model

(1) GEV

(2) GEV,
reparametrization

t

µ = β 0 + β1 ⋅ sin  + φ 
T


(3) POT, threshold=2
V/km
3 day decluster.
143 observations >
2V/km.
(4) POT,
threshold=2V/km
reparametrization,

t

σ = β 0 + β1 ⋅ sin  + φ 
T


µ=2.976
(0.193)
σ=0.829
(0.1357)
ξ=-0.0655
(0.1446)
β0= 2.964
(0.151)
β1=0.582
(0.155)
σ=0.627
(0.114)
ξ=0.09
(0.183)
σ=0.592
(0.074)
ξ=0.077
(0.093)
β0=0.58
(0.073)
β1=0.107
(0.082)
ξ=0.037
(0.097)

100 Year Return Level
95% CI
95% CI
Delta
P-Likelihood
[V/km]
[V/km]

Hypothesis
Testing

Mean
[V/km]

H0: ξ=0
p = 0.66

6.9

[4.3, 8.2]

[5.2, 11.4]

7.1

[4, 10.2]

[5.5, 18]

6.9

[4.5, 9.4]

[5.4, 11.9]

7

[4.6, 9.3]

[5.5, 11.7]

H0: β1=0
p = 0.00
H0: ξ=0
p = 0.6

H0: B1=0
p = 0.2

Statistical model (1) in Table I-1 is the traditional GEV estimation using blocks of 1 year maxima; i.e., only 23 data
points are used in the estimation. The mean expected amplitude of the geoelectric field for a 100-year return level
is approximately 7 V/km. Since GEV works with blocks of maxima, it is typically regarded as a wasteful approach.

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
5

Appendix I – Technical Considerations

As discussed previously, GEV assumes that the data is iid. Based on the scatter plot shown in Figure I-1, the iid
statistical assumption is not warranted by the data. Statistical model (2) in Table I-1 is a reparametrization of the
GEV distribution contemplating the 11-year seasonality in the mean,

t

+φ
T


µ = β 0 + β1 ⋅ sin 

where β0 represents the offset in the mean, β1 describes the 11-year seasonality, T is the period (11 years), and φ
is a constant phase shift.
A likelihood ratio test is used to test the hypothesis that β1 is zero. The null hypothesis, H0: β1=0, is rejected with
a p-value of 0.0032; as expected, the 11-year seasonality has explanatory power. The blocks of maxima during the
solar minimum are better represented in the reparametrized GEV. The mean return level is still 7 V/km, but the
confidence interval is wider, [5.5, 18] V/km for the profile likelihood (calculated at solar maximum).
Statistical model (3) in Table I-1 is the traditional POT estimation using a threshold u of 2 V/km; the data was
declustered using a 1-day run. The data set consists of normalized excesses over a threshold, and therefore, the
sample size for POT is increased if more than one extreme observation per year is available (in the GEV approach,
only the maximum observation over the year was taken; in the POT method, a single year can have multiple
observations over the threshold). The selection of the threshold u is a compromise between bias and variance.
The asymptotic basis of the model relies on a high threshold; too low a threshold will likely lead to bias. On the
other hand, too high a threshold will reduce the sample size and result in high variance. A threshold of 2V/km was
determined to be a good choice, giving rise to 143 observations above the threshold.
The mean return level for statistical model (3), ~7 V/km, is consistent with the GEV estimates. However, due to
the larger sample size the POT method is more efficient rendering a confidence interval of [5.4, 11.9] V/km for the
profile likelihood method.
In an attempt to cope with potential heteroskedasticity in the data, a reparametrization of POT is proposed in
statistical model (4) in Table I-1,

t

+φ
T


σ = α 0 + α1 ⋅ sin 

where α0 represents the offset in the standard deviation, α1 describes the 11-year seasonality, T is the period
(365.25 ∙ 11), and φ is a constant phase shift.
The parameter α1 is not statistically significant; the null hypothesis, H0: α1=0, is not rejected with a p-value of 0.2.
The proposed reparametrization does not have explanatory power, and consequently, the mean return level 7
V/km and confidence intervals remain virtually unchanged [5.5, 11.7]. As a final remark, it is emphasized that the
confidence interval obtained using the profile likelihood is preferred over the delta method.

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
6

Appendix I – Technical Considerations

Figure I-2 shows the profile likelihood of the 100-year return level of statistical model (3). Note that the profile
likelihood is highly asymmetric with a positive skew, rendering a larger upper limit for the confidence interval.
Recall that the delta method assumes a normal distribution for the MLEs, and therefore, the confidence interval
is symmetric around the mean.

-79

-80

Profile Likelihood

-81

-82

-83

-84

-85
5

6

7

8

9

10

11

12

100 Year Return Period [V/km]

Figure I-2: Profile Likelihood for 100-year Return Level for Statistical Model (3)
To conclude, the traditional GEV (1) is misspecified; the statistical assumptions (iid) are not warranted by the data.
The model was reparametrized to cope with seasonality in the data. Statistical models (3) and (4) better utilize
the available extreme measurements and they are therefore preferred over statistical model (2). A geoelectric
field amplitude of 12 V/km is selected for the supplemental GMD event to represent the upper limit of the 95
percent confidence interval for a 100-year return interval.

Spatial Considerations

The spatial structure of high-latitude geomagnetic fields can be very complex during strong geomagnetic storm
events [13]-[14]. One reflection of this spatial complexity is localized geomagnetic field enhancements (local
enhancements) that result in high amplitude geoelectric fields in regions of a few hundred kilometers. Figure I-3
illustrates this spatial complexity of the storm-time geoelectric fields. 7 In areas indicated by the bright red location,
the geoelectric field can be substantially larger than at neighboring locations. These enhancements are primarily
the result of external (geomagnetic field) conditions, and not local geological factors such as coastal effects. 8

Figure I-3 is for illustration purposes only, and is not meant to suggest that a particular area is more
likely to experience a localized enhanced geoelectric field. The depiction is not to scale.
8
Localized externally-driven geomagnetic phenomena should not be confused with localized geoelectric
field enhancements due to complex electromagnetic response of the ground to external excitation. Complex 3D
geological conditions such as those at coastal regions can lead to localized geoelectric field enhancements but
those are not considered here.
7

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
7

Appendix I – Technical Considerations

Figure I-3: Illustration of the Spatial Scale between Localized Enhancements and Larger
Spatial Scale Amplitudes of Geoelectric Field during a Strong Geomagnetic Storm.
In this figure, the red rectangle illustrates a spatially localized field enhancement.
The supplemental GMD event is designed to address local effects caused by a severe GMD event, such as increased
var absorption and voltage depressions.
A number of GMD events were analyzed to identify the basic characteristics of local enhancements. Three (3)
solar storms studied and described below are:
•
•
•

March 13, 1989
October 29-30, 2003
March 17, 2015

Four localized events within those storms were identified and analyzed. Geomagnetic field recordings were
collected for these storms and the geoelectric field was computed using the 1D plane wave method and the
reference Quebec ground model. In each case, a local enhancement was correlated, generally oriented parallel
to the westward ionospheric electrojet associated with ongoing larger scale geomagnetic activity. (See Figures
I-4 ̶ I-7 below)

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
8

Appendix I – Technical Considerations

BFE Station

Spatially correlated enhancement

Figure I-4: March 13, 1989, at 21:44 UT, Brorfelde (BFE), Denmark

NAQ Station

Spatiallycorrelated
correlatedenhancement
enhancement
Spatially

Figure I-5: October 29, 2003, at 06:47 UT, Narsarsuaq (NAQ), Greenland

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
9

Appendix I – Technical Considerations

HOP Station

Figure I-6: October 30, 2003, at 16:49UT, Hopen Island (HOP), Svalbard, Norway

DED Station

Spatially correlated enhancement

Figure I-7: March 17, 2015, at 13:33 UT, Deadhorse, Alaska
All of the above events were analyzed by reviewing the time series magnetic field data and transforming it to an
electric field and focusing on the time period of the spatially correlated local enhancement. There were apparent
similarities in the character of the local enhancements. The local enhancements occurred during peak periods of
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
10

Appendix I – Technical Considerations

geomagnetic activity and were distinguished by relatively brief excursions of rapid magnetic field variation. With
respect to time duration, the local enhancements generally occurred over a period of 2-5 minutes. (See Figures
I-8 ̶ I-11)

Figure I-8: Geoelectric field March 13, 1989, at 21:44 UT, Brorfelde (BFE), Denmark.

Figure I-9: Geoelectric field October 29, 2003, at 06:47 UT, Narsarsuaq (NAQ), Greenland

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
11

Appendix I – Technical Considerations

Figure I-10: Geoelectric field October 30, 2003, at 16:49UT, Hopen Island (HOP), Norway

Figure I-11 – Geoelectric field March 17, 2015, at 13:33 UT, Deadhorse, Alaska
Based on the above analysis and the previous work associated with the benchmark GMD event, it is reasonable
to incorporate a second (or supplemental) assessment into TPL-007 to account for the potential impact of a local
enhancement in both the network analysis and the transformer thermal assessment(s).
With respect to geographic area of the localized enhancement, the historical geomagnetic field data analyzed so
far provides some insight. Analysis suggests that the enhancements will occur in a relatively narrow band of
geomagnetic latitude (on the order of 100 km) and wider longitudinal width (on the order of 500 km) as a
consequence of the westward-oriented structure of the source in the ionosphere.
Proposed TPL-007-2 provides flexibility for planners to determine how to apply the supplemental GMD event to
the planning area. Acceptable approaches include but are not limited to:
•

Apply the peak geoelectric field for the supplemental GMD event (12 V/km scaled to the planning area)
over the entire planning area;
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
12

Appendix I – Technical Considerations

•
•

Apply a spatially limited (e.g., 100 km in North-South direction and 500 km in East-West direction)
geoelectric field enhancement (12 V/km scaled to the planning area) over a portion(s) of the system, and
apply the benchmark GMD event over the rest of the system.
Other methods to adjust the benchmark GMD event analysis for localized geoelectric field enhancement.

Given the current state of knowledge regarding the spatial extent of a local geomagnetic field enhancements,
upper geographic boundaries, such as the values used in the approaches above, are reasonable but are not
definitive.

Local Enhancement Waveform

The supplemental geomagnetic field waveform was derived by modifying the benchmark GMD event waveform
to emulate the observed events described above. The temporal location of the enhancement corresponds to the
time of the benchmark event with the highest geoelectric field. The local enhancement was constructed by scaling
linearly a 5-minute portion of the benchmark geomagnetic field so that the peak geoelectric field is 12 V/km at a
geomagnetic latitude of 60° and reference earth model. Figure I-12 shows the benchmark geomagnetic field and
Figure I-13 shows the supplemental event geomagnetic field. Figure I-14 expands the view into Bx, with and
without the local enhancement. Figure I-15 is the corresponding expanded view of the geoelectric field magnitude
with and without the local enhancement.
4000

2000
Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

Time of highest geoelectric field

Figure I-12: Benchmark Geomagnetic Field. Red Bx (Northward), Blue By (Eastward)

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
13

Appendix I – Technical Considerations

4000

2000

Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

Local enhancement
-10000

Figure I-13: Supplemental Geomagnetic Field Waveform. Red Bx (Northward), Blue By
(Eastward)

-1000

5 minutes

-2000

Bx (nT)

-3000
-4000
-5000
-6000

Benchmark

-7000
-8000

Enhancement

-9000
1480

1490

1500

1510

1520

1530

1540

1550

Time (min)

Figure I-14: Red Benchmark Bx and Blue Supplemental Bx (Northward) – Expanded View

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
14

Appendix I – Technical Considerations

12000

Enhancement (12 V/km)

|E| (mV/km)

10000
8000

Benchmark (8V/km)

6000
4000
2000
0
1500

1510

1520

1530

1540

1550

Time (min)

Figure I-15: Magnitude of the Geoelectric Field. Benchmark Blue and Supplemental Red –
Expanded View

Transformer Thermal Assessment

The local enhancement of the supplemental GMD event waveform can have a material impact on the temperature
rise (hot-spot heating or metallic parts) even though the duration of the local enhancement is approximately 5
minutes. Thermal assessments based on the supplemental GMD event can be performed using the same methods
employed for benchmark thermal assessments. 9

9

See Transformer Thermal Impact Assessment white paper: http://www.nerc.com/pa/Stand/Pages/Project-2013-03Geomagnetic-Disturbance-Mitigation.aspx
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
15

Appendix II – Scaling the Supplemental GMD Event
The intensity of a GMD event depends on geographical considerations such as geomagnetic latitude and local
earth conductivity [2]. 10 Scaling factors for geomagnetic latitude take into consideration that the intensity of a
GMD event varies according to latitude-based geographical location. Scaling factors for earth conductivity take
into account that the induced geoelectric field depends on earth conductivity, and that different parts of the
continent have different earth conductivity and deep earth structure.
Scaling the supplemental GMD event differs from the benchmark GMD event in two ways:
•
•

Epeak is 12 V/km instead of 8 V/km
Beta factors for scaling the geoelectric field based on earth conductivity are different (see Table II-2)

More discussion, including example calculations, is contained in the Benchmark GMD Event Description white
paper.

Scaling the Geomagnetic Field
The supplemental GMD event is defined for geomagnetic latitude of 60° and it must be scaled to account for
regional differences based on geomagnetic latitude. To allow usage of the supplemental geomagnetic field
waveform in other locations, Table II-1 summarizes the scaling factor α correlating peak geoelectric field to
geomagnetic latitude as described in Figure II-1 [3]. This scaling factor α has been obtained from a large number
of global geomagnetic field observations of all major geomagnetic storms since the late 1980s [15]-[27], and can
be approximated with the empirical expression in (II.1)

α = 0.001 ⋅ e ( 0.115⋅L )

(II.1)

where L is the geomagnetic latitude in degrees and 0.1 ≤ α ≤ 1.0.

10

Geomagnetic latitude is analogous to geographic latitude, except that bearing is in relation to the magnetic poles, as opposed to
the geographic poles. Geomagnetic phenomena are often best organized as a function of geomagnetic coordinates. Local earth conductivity
refers to the electrical characteristics to depths of hundreds of km down to the earth’s mantle. In general terms, lower ground conductivity
results in higher geoelectric field amplitudes.
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
16

Appendix II – Scaling the Supplemental GMD Event

Figure II-1: Geomagnetic Latitude Lines in North America
Table II-1: Geomagnetic Field Scaling Factors
Geomagnetic Latitude
Scaling Factor1
(Degrees)
(α)
≤ 40
45
50
54
56
57
58
59
≥ 60

0.10
0.2
0.3
0.5
0.6
0.7
0.8
0.9
1.0

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
17

Appendix II – Scaling the Supplemental GMD Event

Scaling the Geoelectric Field

The supplemental GMD event is defined for the reference Quebec earth model provided in Table 1. This earth
model has been used in many peer-reviewed technical articles [11, 15]. The peak geoelectric field depends on the
geomagnetic field waveform and the local earth conductivity. Ideally, the peak geoelectric field, Epeak, is obtained
by calculating the geoelectric field from the scaled geomagnetic field waveform using the plane wave method and
taking the maximum value of the resulting waveforms

E N = ( z (t ) / µ o ) * BE (t )
E E = −( z (t ) / µ o ) * BN (t )

E peak = max{E E (t ), E N (t ) }

(II.2)

where,
* denotes convolution in the time domain,
z(t) is the impulse response for the earth surface impedance calculated from the laterally uniform or 1D earth
model,
BE(t), BN(t) are the scaled Eastward and Northward geomagnetic field waveforms,
EE(t), EN(t)| are the magnitudes of the calculated Eastward and Northward geoelectric field EE(t) and EN(t).
As noted previously, the response of the earth to B(t) (and dB/dt) is frequency dependent. Figure II-2 shows the
magnitude of Z(ω) for the reference earth model.

Figure II-2: Magnitude of the Earth Surface Impedance for the Reference Earth Model
If a utility does not have the capability of calculating the waveform or time series for the geoelectric field, an earth
conductivity scaling factor βS can be obtained from Table II-2. Using α and β, the peak geoelectric field Epeak for a
specific service territory shown in Figure II-3 can be obtained using (II.3)
Epeak 12 × 𝛼𝛼 × 𝛽𝛽 𝑠𝑠 (V/km)

It should be noted that (II.3) is an approximation based on the following assumptions:

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
18

(II.3)

Appendix II – Scaling the Supplemental GMD Event

•

•

•

•

The earth models used to calculate Table II-2 for the United States are from published information
available on the USGS website. These scaling factors are slightly lower than the ones in the benchmark
because the supplemental benchmark waveform has a higher frequency content at the time of the local
enhancement.
The models used to calculate Table II-2 for Canada were obtained from NRCan and reflect the average
structure for large regions. When models are developed for sub-regions, there will be variance (to a
greater or lesser degree) from the average model. For instance, detailed models for Ontario have been
developed by NRCan and consist of seven major sub-regions.
The conductivity scaling factor βS is calculated as the quotient of the local geoelectric field peak amplitude
in a physiographic region with respect to the reference peak amplitude value of 12 V/km. Both geoelectric
field peak amplitudes are calculated using the supplemental geomagnetic field time series. If a different
geomagnetic field time series were used, the calculated scaling factors (β) would be different than the
values in Table II-2 because the frequency content of storm maxima is, in principle, different for every
storm. If a utility has technically-sound earth models for its service territory and sub-regions thereof, then
the use of such earth models is preferable to estimate Epeak.
When a ground conductivity model is not available the planning entity should use the largest βs factor of
adjacent physiographic regions or a technically-justified value.

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
19

Appendix II – Scaling the Supplemental GMD Event

Physiographic Regions of the Continental United States

FL-1

Physiographic Regions of Canada

Figure II-3: Physiographic Regions of North America

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
20

Appendix II – Scaling the Supplemental GMD Event

Table II-2 Supplemental Geoelectric Field Scaling Factors
Earth model
Scaling Factor (β)
AK1A
AK1B
AP1
AP2
BR1
CL1
CO1
CP1
CP2
FL1
CS1
IP1
IP2
IP3
IP4
NE1
PB1
PB2
PT1
SL1
SU1
BOU
FBK
PRU
BC
PRAIRIES
SHIELD
ATLANTIC

0.51
0.51
0.30
0.78
0.22
0.73
0.25
0.77
0.86
0.73
0.37
0.90
0.25
0.90
0.35
0.77
0.55
0.39
1.19
0.49
0.90
0.24
0.56
0.22
0.62
0.88
1.0
0.76

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
21

References
[1]

High-Impact, Low-Frequency Event Risk to the North American Bulk Power System, A JointlyCommissioned Summary Report of the North American Reliability Corporation and the U.S.
Department of Energy’s November 2009 Workshop.

[2]

Application Guide: Computing Geomagnetically-Induced Current in the Bulk-Power System, NERC.
NERC.
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%20201
3/GIC%20Application%20Guide%202013_approved.pdf

[3]

Kuan Zheng, Risto Pirjola, David Boteler, Lian-guang Liu, “Geoelectric Fields Due to Small-Scale and
Large-Scale Source Currents”, IEEE Transactions on Power Delivery, Vol. 28, No. 1, January 2013, pp.
442-449.

[4]

Boteler, D. H. “Geomagnetically Induced Currents: Present Knowledge and Future Research”, IEEE
Transactions on Power Delivery, Vol. 9, No. 1, January 1994, pp. 50-58.

[5]

Boteler, D. H. “Modeling Geomagnetically Induced Currents Produced by Realistic and Uniform Electric
Fields”, IEEE Transactions on Power Delivery, Vol. 13, No. 4, January 1998, pp. 1303-1308.

[6]

J. L. Gilbert, W. A. Radasky, E. B. Savage, “A Technique for Calculating the Currents Induced by
Geomagnetic Storms on Large High Voltage Power Grids”, Electromagnetic Compatibility (EMC), 2012
IEEE International Symposium on.

[7]

How to Calculate Electric Fields to Determine Geomagnetically-Induced Currents. EPRI, Palo Alto, CA:
2013. 3002002149.

[8]

Pulkkinen, A., R. Pirjola, and A. Viljanen, Statistics of extreme geomagnetically induced current events,
Space Weather, 6, S07001, doi:10.1029/2008SW000388, 2008.

[9]

Boteler, D. H., Assessment of geomagnetic hazard to power systems in Canada, Nat. Hazards, 23, 101–
120, 2001.

[10] Finnish Meteorological Institute’s IMAGE magnetometer chain data available at:
http://image.gsfc.nasa.gov/
[11] Boteler, D. H., and R. J. Pirjola, The complex-image method for calculating the magnetic and electric
fields produced at the surface of the Earth by the auroral electrojet, Geophys. J. Int., 132(1), 31—40,
1998
[12] Coles, Stuart (2001). An Introduction to Statistical Modelling of Extreme Values. Springer.
[13] Pulkkinen, A., A. Thomson, E. Clarke, and A. Mckay, April 2000 geomagnetic storm: ionospheric drivers
of large geomagnetically induced currents, Annales Geophysicae, 21, 709-717, 2003.
[14] Pulkkinen, A., S. Lindahl, A. Viljanen, and R. Pirjola, Geomagnetic storm of 29–31 October 2003:
Geomagnetically induced currents and their relation to problems in the Swedish high-voltage power
transmission system, Space Weather, 3, S08C03, doi:10.1029/2004SW000123, 2005.
NERC | Supplemental GMD Event Description (DRAFT)| June 2017
22

References

[15] Pulkkinen, A., E. Bernabeu, J. Eichner, C. Beggan and A. Thomson, Generation of 100-year
geomagnetically induced current scenarios, Space Weather, Vol. 10, S04003,
doi:10.1029/2011SW000750, 2012.
[16] Ngwira, C., A. Pulkkinen, F. Wilder, and G. Crowley, Extended study of extreme geoelectric field event
scenarios for geomagnetically induced current applications, Space Weather, Vol. 11, 121–131,
doi:10.1002/swe.20021, 2013.
[17] Thomson, A., S. Reay, and E. Dawson. Quantifying extreme behavior in geomagnetic activity, Space
Weather, 9, S10001, doi:10.1029/2011SW000696, 2011.

NERC | Supplemental GMD Event Description (DRAFT)| June 2017
23

Screening Criterion for Transformer Thermal
Impact Assessment
Project 2013-03 (Geomagnetic Disturbance Mitigation)

TPL-007-2 Transmission System Planned Performance for Geomagnetic Disturbance
Events
Summary

Proposed TPL-007-2 includes requirements for entities to perform two types of GMD Vulnerability
Assessments to evaluate the potential impacts of GMD events on the Bulk Electric System (BES):
•

The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated
with TPL-007-1 which was approved by the Federal Energy Regulatory Commission (FERC) in Order
No. 830 in September 2016. The benchmark GMD event is derived from spatially-averaged
geoelectric field values to address potential wide-area effects that could be caused by a severe 1-in100 year GMD event.1

•

The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used
by entities to evaluate risks that localized peaks in geomagnetic field during a severe GMD event
"could potentially affect the reliable operation of the Bulk-Power System". 2 Localized
enhancements of geomagnetic field can result in geoelectric field values above the spatiallyaveraged benchmark in a local area.

The standard requires transformer thermal impact assessments to be performed on BES power
transformers with high side, wye-grounded windings with terminal voltage greater than 200 kV. Identified
BES transformers must undergo a thermal impact assessment if the maximum effective geomagneticallyinduced current (GIC) in the transformer is equal to or greater than:
•
•

75 A per phase for the benchmark GMD event
85 A per phase for the supplemental GMD event

Based on published power transformer measurement data as described below, the respective screening
criteria are conservative and, although derived from measurements in single-phase units, are applicable to
transformers with all core types (e.g., three-limb, three-phase).
1

2016.

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM15-11 on June 28,

See Order No. 830 P. 47. On September 22, 2016, FERC directed NERC to develop modifications to the benchmark GMD event,
included in TPL-007-1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event for
this assessment are in the Supplemental GMD Event Description white paper.

2

Outside of the differing screening criteria, the only difference between the thermal impact assessment for
the benchmark GMD event and the supplemental GMD event is that a different waveform is used, therefore
peak metallic hot spot temperatures are slightly different for a given GIC in the transformer.

Justification for the Benchmark Screening Criterion

Applicable entities are required to carry out a thermal assessment with GIC(t) calculated using the
benchmark GMD event geomagnetic field time series or waveform for effective GIC values above a
screening threshold. The calculated GIC(t) for every transformer will be different because the length and
orientation of transmission circuits connected to each transformer will be different even if the geoelectric
field is assumed to be uniform. However, for a given thermal model and maximum effective GIC there are
upper and lower bounds for the peak hot spot temperatures. These are shown in Figure 1 using three
available thermal models based on direct temperature measurements.
The results shown in Figure 1 summarize the peak metallic hot spot temperatures when GIC(t) is calculated
using (1), and systematically varying GICE and GICN to account for all possible orientation of circuits
connected to a transformer. The transformer GIC (in A/phase) for any value of EE(t) and EN(t) can be
calculated using equation (1) from reference [1].

GIC (t ) = E (t ) ⋅ {GIC E sin(ϕ (t )) + GIC N cos(ϕ (t ))}

(1)

E (t ) = E N2 (t ) + E E2 (t )

(2)

where

 E E (t ) 

 E N (t ) 

ϕ (t ) = tan −1 

GIC (t ) = EE (t ) ⋅ GICE + EN (t ) ⋅ GICN

(3)
(4)

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase per V/km.
It should be emphasized that with the thermal models used and the benchmark GMD event geomagnetic
field waveform, peak metallic hot spot temperatures will lie below the envelope shown in black in Figure 1.
The x-axis in Figure 1 corresponds to the absolute value of peak GIC(t). Effective maximum GIC for a
transformer corresponds to a worst-case geoelectric field orientation, which is network-specific. Figure 1
represents a possible range, not the specific thermal response for a given effective GIC and orientation.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

2

Figure 1: Metallic hot spot temperatures calculated using the benchmark GMD event.
Red: SVC coupling transformer model [2]. Blue: Fingrid model [3]. Green: Autotransformer model [4].

Consequently, with the most conservative thermal models known at this point in time, the peak metallic
hot spot temperature obtained with the benchmark GMD event waveform assuming an effective GIC
magnitude of 75 A per phase will result in a peak temperature between 160°C and 172°C when the bulk oil
temperature is 80°C (full load bulk oil temperature). The upper boundary of 172°C remains well below the
metallic hot spot 200°C threshold for short-time emergency loading suggested in IEEE Std C57.91-2011 ̶
Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators [5].
The selection of the 75 A per phase screening threshold is based on the following considerations:
•

•

A thermal assessment, which uses the most conservative thermal models known to date, indicates
that a GIC of 75A will not result in peak metallic hot spot temperatures above 172°C. Transformer
thermal assessments should not be required by Reliability Standards when results will fall well below
IEEE Std C57.91-2011 limits.
Applicable entities may choose to carry out a thermal assessment when the effective GIC is below
75 A per phase to take into account the age or condition of specific transformers where IEEE Std
C57.91- 2011 limits could be assumed to be lower than 200°C. Refer to IEEE Standard C57.163-2015

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

3

•
•

•

•
•

Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances for
additional information [6].
The models used to determine the 75 A per phase screening threshold are known to be conservative
at higher values of effective GIC, especially the SVC coupling transformer model in [2].
Thermal models in peer-reviewed technical literature, especially those calculated models without
experimental validation, are less conservative than the models used to determine the screening
threshold. Therefore, a technically-justified thermal assessment for effective GIC below 75 A per
phase using the benchmark GMD event geomagnetic field waveform will always result in a “pass”
on the basis of the state of the knowledge at this point in time.
Based on simulations, the 75 A per phase screening threshold will result in a maximum
instantaneous peak hot spot temperature of 172°C. However, IEEE Std C57.91- 2011 limits assume
short term emergency operation (typically 30 minutes). As illustrated in Figure 2, simulations of the
75 A per phase screening threshold result in 30-minute duration hot spot temperatures of about
155°C. The threshold provides an added measure of conservatism in not taking into account the
duration of hot spot temperatures.
The models used in the determination of the threshold are conservative but technically justified.
Winding hot spots are not the limiting factor in terms of hot spots due to half-cycle saturation,
therefore the screening criterion is focused on metallic part hot spots only.

The 75 A per phase screening threshold was determined using single-phase transformers, but is being
applied as a screening criterion for all types of transformer construction. While it is known that some
transformer types such as three-limb, three-phase transformers are intrinsically less susceptible to GIC, it
is not known by how much, on the basis of experimentally-supported models.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

4

Figure 2: Metallic hot spot temperatures calculated using the benchmark GMD event.
Red: metallic hot spot temperature. Blue: GIC(t) that produces the maximum hot spot temperature with
peak GIC(t) scaled to 75 A/phase.

Justification for the Supplemental Screening Criterion

As in the case for the benchmark GMD event discussed above, applicable entities are required to carry out
thermal assessments on their BES power transformers when the effective GIC values are above a screening
threshold. GIC(t) for supplemental thermal assessments is calculated using the supplemental GMD event
geomagnetic field time series or waveform.
Using the supplemental GMD event waveform, a thermal analysis was completed for the two
transformers that were limiting for the benchmark waveform. The results are shown in Figure 3. Peak
metallic hot spot temperatures for the supplemental GMD event will lie below the envelope shown by the
black line trace in Figure 3. Because the supplemental waveform has a sharper peak, the peak metallic hot
spot temperatures are slightly lower than those associated with the benchmark waveform. Applying the
most conservative thermal models known at this point in time, the peak metallic hot spot temperature
obtained with the supplemental GMD event waveform assuming an effective GIC magnitude of 85 A per
phase will result in a peak temperature of 172°C when the bulk oil temperature is 80°C (full load bulk oil
temperature). 3 Thus, 85 A per phase is the screening level for the supplemental waveform.

3

The temperature 172°C was selected as the screening criteria for the benchmark waveform as described in the preceding section.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

5

Figure 3: Metallic hot spot temperatures calculated using the supplemental GMD event.
Green: SVC coupling transformer model [2]. Red: Autotransformer model [4]

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

6

Appendix I - Transformer Thermal Models Used in the Development of
the Screening Criteria
The envelope used for thermal screening (Figure 1) is derived from two thermal models. The first is based
on laboratory measurements carried out on 500/16.5 kV 400 MVA single-phase Static Var Compensator
(SVC) coupling transformer [2]. Temperature measurements were carried out at relatively small values of
GIC (see Figure I-1). The asymptotic thermal response for this model is the linear extrapolation of the
known measurement values. Although the near-linear behavior of the asymptotic thermal response is
consistent with the measurements made on a Fingrid 400 kV 400 MVA five-leg core-type fully-wound
transformer [3] (see Figures I-2 and I-3), the extrapolation from low values of GIC is very conservative, but
reasonable for screening purposes.
The second transformer model is based on a combination of measurements and modeling for a 400 kV
400 MVA single-phase core-type autotransformer [4] (see Figures I-4 and I-5). The asymptotic thermal
behavior of this transformer shows a “down-turn” at high values of GIC as the tie plate increasingly
saturates but relatively high temperatures for lower values of GIC. The hot spot temperatures are higher
than for the two other models for GIC less than 125 A per phase.

18

Temperature (deg. C)

16
14
12
10
8
6
4
2
0
0

5

10

15

20

25

30

Time (min)

Figure I-1: Thermal step response of the tie plate of a 500 kV 400 MVA single-phase SVC
coupling transformer to a 5 A per phase dc step.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

7

35

Temperature (deg. C)

30
25
20
15
10
5
0
0

5

10

15

20

25

30

35

40

45

Time (min)

Figure I-2: Step thermal response of the top yoke clamp of a 400 kV 400 MVA five-leg coretype fully-wound transformer to a 16.67 A per phase dc step.

200

Temperature (deg. C)

180
160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure I-3: Asymptotic thermal response of the top yoke clamp of a 400 kV 400 MVA five-leg
core-type fully-wound transformer.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

8

70
Temperature (deg. C)

60
50
40
30
20
10
0
0

10

20

30

Time (min)

Figure I-4: Step thermal response of the tie plate of a 400 kV 400 MVA single-phase coretype autotransformer to a 10 A per phase dc step.

180

Temperature (deg. C)

160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure I-5: Asymptotic thermal response of the tie plate of a 400 kV 400 MVA single-phase
core-type autotransformer.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

9

The envelope in Figure 1 can be used as a conservative thermal assessment for effective GIC values of
associated with the benchmark waveform (see Table 1).
Table 1: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated
Using the Benchmark GMD Event
Effective GIC
(A/phase)
0
10
20
30
40
50
60
70
75
80
90

Metallic hot spot
Temperature (°C )
80
107
128
139
148
157
169
170
172
175
179

Effective GIC
(A/phase)
100
110
120
130
140
150
160
170
180
190
200

Metallic hot spot
Temperature (°C )
182
186
190
193
204
213
221
230
234
241
247

For instance, if effective GIC is 130 A per phase and oil temperature is assumed to be 80°C, peak hot spot
temperature is 193°C. This value is below the 200°C IEEE Std C57.91-2011 threshold for short time
emergency loading and this transformer will have passed the thermal assessment. If the full heat run oil
temperature is 67°C at maximum ambient temperature, then 150 A per phase of effective GIC translates
into a peak hot spot temperature of 200°C and the transformer will have passed. If the limit is lowered to
180°C to account for the condition of the transformer, then this would be an indication to “sharpen the
pencil” and perform a detailed assessment. Some methods are described in Reference [1].
The temperature envelope in Figure 1 corresponds to the values of effective GIC that result in the highest
temperature for the benchmark GMD event. Different values of effective GIC could result in lower
temperatures using the same model. For instance, the difference in upper and lower bounds of peak
temperatures for the SVC coupling transformer model for 150 A per phase is approximately 30°C. In this
case, GIC(t) should be generated to calculate the peak temperatures for the actual configuration of the
transformer within the system as described in Reference [1]. Alternatively, a more precise thermal
assessment could be carried out with a thermal model that more closely represents the thermal behavior
of the transformer under consideration.
Similar to the discussion above, the envelope in Figure 3 can be used as a conservative thermal
assessment for effective GIC values of associated with the supplemental waveform (see Table 2). Because
the supplemental waveform has a sharper peak, the peak metallic hot spot temperatures associated with

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

10

the supplemental waveform are slightly lower than those associated with the benchmark waveform.
Comparing Tables 1 and 2 shows the magnitude of this difference.
Table 2: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated
Using the Supplemental GMD Event
Effective GIC
(A/phase)
0
10
20
30
40
50
60
70
75
80
85
90
100
110

Metallic hot spot
Temperature (°C )
80
107
124
137
147
156
161
162
165
169
172
177
181
185

Effective
GIC(A/phase)
120
130
140
150
160
170
180
190
200
220
230
250
275
300

Metallic hot spot
Temperature (°C )
188
191
194
198
203
209
214
229
237
248
253
276
298
316

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

11

References
[1] Transformer Thermal Impact Assessment white paper. Developed by the Project 2013-03
(Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
[2] Marti, L., Rezaei-Zare, A., Narang, A., "Simulation of Transformer Hotspot Heating due to
Geomagnetically Induced Currents," IEEE Transactions on Power Delivery, vol.28, no.1, pp.320-327,
Jan. 2013.
[3] Lahtinen, Matti. Jarmo Elovaara. “GIC occurrences and GIC test for 400 kV system transformer”. IEEE
Transactions on Power Delivery, Vol. 17, No. 2. April 2002.
[4] J. Raith, S. Ausserhofer: “GIC Strength verification of Power Transformers in a High Voltage
Laboratory”, GIC Workshop, Cape Town, April 2014
[5] "IEEE Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators." IEEE Std
C57.91-2011 (Revision of IEEE Std C57.91-1995).
[6] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances.”
IEEE Std C57.163-2015.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | June 2017

12

Screening Criterion for Transformer Thermal
Impact Assessment
Project 2013-03 (Geomagnetic Disturbance Mitigation)

TPL-007-12 Transmission System Planned Performance for Geomagnetic
Disturbance Events
Summary

Proposed standard TPL-007-1 – Transmission System Planned Performance for Geomagnetic Disturbance
Events requires applicable entities to conduct assessments of the potential impact of benchmark GMD
events on their systems. The standard requires transformer thermal impact assessments to be performed
on power transformers with high side, wye-grounded windings with terminal voltage greater than 200 kV.
Transformers are exempt from the thermal impact assessment requirement if the maximum effective
geomagnetically-induced current (GIC) in the transformer is less than75 A per phase as determined by GIC
analysis of the system. Based on published power transformer measurement data as described below, an
effective GIC of 75 A per phase is a conservative screening criterion. To provide an added measure of
conservatism, the 75 A per phase threshold, although derived from measurements in single-phase units, is
applicable to transformers with all core types (e.g., three-limb, three-phase).
Proposed TPL-007-2 includes requirements for entities to perform two types of GMD Vulnerability
Assessments to evaluate the potential impacts of GMD events on the Bulk Electric System (BES):
•

The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated
with TPL-007-1 which was approved by the Federal Energy Regulatory Commission (FERC) in Order
No. 830 in September 2016. The benchmark GMD event is derived from spatially-averaged
geoelectric field values to address potential wide-area effects that could be caused by a severe 1-in100 year GMD event.1

•

The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used
by entities to evaluate risks that localized peaks in geomagnetic field during a severe GMD event
"could potentially affect the reliable operation of the Bulk-Power System". 2 Localized
enhancements of geomagnetic field can result in geoelectric field values above the spatiallyaveraged benchmark in a local area.

1

2016.

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM15-11 on June 28,

See Order No. 830 P. 47. On September 22, 2016, FERC directed NERC to develop modifications to the benchmark GMD event,
included in TPL-007-1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event for
this assessment are in the Supplemental GMD Event Description white paper.
2

The standard requires transformer thermal impact assessments to be performed on BES power
transformers with high side, wye-grounded windings with terminal voltage greater than 200 kV. Identified
BES transformers must undergo a thermal impact assessment if the maximum effective geomagneticallyinduced current (GIC) in the transformer is equal to or greater than:
•
•

75 A per phase for the benchmark GMD event
85 A per phase for the supplemental GMD event

Based on published power transformer measurement data as described below, the respective screening
criteria are conservative and, although derived from measurements in single-phase units, are applicable to
transformers with all core types (e.g., three-limb, three-phase).
Outside of the differing screening criteria, the only difference between the thermal impact assessment for
the benchmark GMD event and the supplemental GMD event is that a different waveform is used, therefore
peak metallic hot spot temperatures are slightly different for a given GIC in the transformer.

Justification for the Benchmark Screening Criterion

Applicable entities are required to carry out a thermal assessment with GIC(t) calculated using the
benchmark GMD event geomagnetic field time series or waveshapewaveform for effective GIC values
above a screening threshold. The calculated GIC(t) for every transformer will be different because the length
and orientation of transmission circuits connected to each transformer will be different even if the
geoelectric field is assumed to be uniform. However, for a given thermal model and maximum effective GIC
there are upper and lower bounds for the peak hot spot temperatures. These are shown in Figure 1 using
three available thermal models based on direct temperature measurements.
The results shown in Figure 1 summarize the peak metallic hot spot temperatures when GIC(t) is calculated
using (1), and systematically varying GICE and GICN to account for all possible orientation of circuits
connected to a transformer. The transformer GIC (in A/phase) for any value of EE(t) and EN(t) can be
calculated using equation (1) from reference [1].

GIC (t ) = E (t ) ⋅ {GIC E sin(ϕ (t )) + GIC N cos(ϕ (t ))}

(1)

E (t ) = E N2 (t ) + E E2 (t )

(2)

where

 E E (t ) 

 E N (t ) 

ϕ (t ) = tan −1 

(3)

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
2

GIC (t ) = EE (t ) ⋅ GICE + E N (t ) ⋅ GICN

(4)

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase/ per V/km.
It should be emphasized that with the thermal models used and the benchmark GMD event geomagnetic
field waveshapewaveform, peak metallic hot spot temperatures mustwill lie below the envelope shown in
black in Figure 1. The x-axis in Figure 1 corresponds to the absolute value of peak GIC(t). Effective maximum
GIC for a transformer corresponds to a worst-case geoelectric field orientation, which is network-specific.
Figure 1 represents a possible range, not the specific thermal response for a given effective GIC and
orientation.

Figure 1: Metallic hot spot temperatures calculated using the benchmark GMD event. Red:
SVC coupling transformer model [2]. Blue: Fingrid model [3]. Green: Autotransformer model [4].
Red: SVC coupling transformer model [2]. Blue: Fingrid model [3]. Green: Autotransformer model [4].

Consequently, with the most conservative thermal models known at this point in time, the peak metallic
hot spot temperature obtained with the benchmark GMD event waveshapewaveform assuming an
effective GIC magnitude of 75 A per phase will result in a peak temperature between 160°C and 172°C when
the bulk oil temperature is 80°C (full load bulk oil temperature). The upper boundary of 172°C remains well

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
3

below the metallic hot spot 200°C threshold for short-time emergency loading suggested in IEEE Std C57.912011 [5] (see Table 1). ̶ Guide for Loading Mineral-Oil-Immersed Transformers and Step-Voltage Regulators
[5].
TABLE 1:
Excerpt from Maximum Temperature Limits Suggested in IEEE C57.91-2011
Planned
loading
Normal life beyond
Long-time Short-time
expectancy nameplate emergency emergency
loading
rating
loading
loading
Insulated conductor hottest-spot
temperature °C
Other metallic hot-spot temperature
(in contact and not in contact with
insulation), °C
Top-oil temperature °C

120

130

140

180

140

150

160

200

105

110

110

110

The selection of the 75 A per phase screening threshold is based on the following considerations:
•

•

•
•

•

A thermal assessment using, which uses the most conservative thermal models known to date,
indicates that a GIC of 75A will not result in peak metallic hot spot temperatures above 172°C.
Transformer thermal assessments should not be required by Reliability Standards when results will
fall well below IEEE Std C57.91-2011 limits.
Applicable entities may choose to carry out a thermal assessment when the effective GIC is below
75 A per phase to take into account the age or condition of specific transformers where IEEE Std
C57.91- 2011 limits could be assumed to be lower than 200°C. Refer to IEEE Standard C57.163-2015
Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances for
additional information [6].
The models used to determine the 75 A per phase screening threshold are known to be conservative
at higher values of effective GIC, especially the SVC coupling transformer model in [2].
Thermal models in peer-reviewed technical literature, especially those calculated models without
experimental validation, are less conservative than the models used to determine the screening
threshold. Therefore, a technically-justified thermal assessment for effective GIC below 75 A per
phase using the benchmark GMD event geomagnetic field waveshapewaveform will always result
in a “pass” on the basis of the state of the knowledge at this point in time.
Based on simulations, the 75 A per phase screening threshold will result in a maximum
instantaneous peak hot spot temperature of 172°C. However, IEEE Std C57.91- 2011 limits assume
short term emergency operation (typically 30 minutes). As illustrated in Figure 2, simulations of the
75 A per phase screening threshold result in 30-minute duration hot spot temperatures of about

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
4

•
•

155°C. The threshold provides an added measure of conservatism in not taking into account the
duration of hot spot temperatures.
The models used in the determination of the threshold are conservative but technically justified.
Winding hot spots are not the limiting factor in terms of hot spots due to half-cycle saturation,
therefore the screening criterion is focused on metallic part hot spots only.

The 75 A per phase screening threshold was determined using single-phase transformers, but is applicable
tobeing applied as a screening criterion for all types of transformer construction. While it is known that
some transformer types such as three-limb, three-phase transformers are intrinsically less susceptible to
GIC, it is not known by how much, on the basis of experimentally-supported models.

Figure 2: Metallic hot spot temperatures calculated using the benchmark GMD event. Red:
metallic hot spot temperature. Blue: GIC(t) that produces the maximum hot spot temperature with peak
GIC(t) scaled to 75 A/phase.
Red: metallic hot spot temperature. Blue: GIC(t) that produces the maximum hot spot temperature with
peak GIC(t) scaled to 75 A/phase.

Justification for the Supplemental Screening Criterion

As in the case for the benchmark GMD event discussed above, applicable entities are required to carry out
thermal assessments on their BES power transformers when the effective GIC values are above a screening
threshold. GIC(t) for supplemental thermal assessments is calculated using the supplemental GMD event
geomagnetic field time series or waveform.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
5

Using the supplemental GMD event waveform, a thermal analysis was completed for the two
transformers that were limiting for the benchmark waveform. The results are shown in Figure 3. Peak
metallic hot spot temperatures for the supplemental GMD event will lie below the envelope shown by the
black line trace in Figure 3. Because the supplemental waveform has a sharper peak, the peak metallic hot
spot temperatures are slightly lower than those associated with the benchmark waveform. Applying the
most conservative thermal models known at this point in time, the peak metallic hot spot temperature
obtained with the supplemental GMD event waveform assuming an effective GIC magnitude of 85 A per
phase will result in a peak temperature of 172°C when the bulk oil temperature is 80°C (full load bulk oil
temperature). 3 Thus, 85 A per phase is the screening level for the supplemental waveform.

Figure 3: Metallic hot spot temperatures calculated using the supplemental GMD event.
Green: SVC coupling transformer model [2]. Red: Autotransformer model [4]

3

The temperature 172°C was selected as the screening criteria for the benchmark waveform as described in the preceding section.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
6

Appendix I - Transformer Thermal Models Used in the Development of
the Screening Criteria
The envelope used for thermal screening (Figure 1) is derived from two thermal models. The first is based
on laboratory measurements carried out on 500/16.5 kV 400 MVA single-phase Static Var Compensator
(SVC) coupling transformer [2]. Temperature measurements were carried out at relatively small values of
GIC (see Figure 3I-1). The asymptotic thermal response for this model is the linear extrapolation of the
known measurement values. Although the near-linear behavior of the asymptotic thermal response is
consistent with the measurements made on a Fingrid 400 kV 400 MVA five-leg core-type fully-wound
transformer [3] (see Figures 4I-2 and 5I-3), the extrapolation from low values of GIC is very conservative,
but reasonable for screening purposes.
The second transformer model is based on a combination of measurements and modeling for a 400 kV
400 MVA single-phase core-type autotransformer [4] (see Figures 6I-4 and 7I-5). The asymptotic thermal
behavior of this transformer shows a “down-turn” at high values of GIC as the tie plate increasingly
saturates but relatively high temperatures for lower values of GIC. The hot spot temperatures are higher
than for the two other models for GIC less than 125 A per phase.

18

Temperature (deg. C)

16
14
12
10
8
6
4
2
0
0

5

10

15

20

25

30

Time (min)

Figure 3: I-1: Thermal step response of the tie plate of a 500 kV 400 MVA single-phase SVC
coupling transformer to a 5 A per phase dc step.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
7

35

Temperature (deg. C)

30
25
20
15
10
5
0
0

5

10

15

20

25

30

35

40

45

Time (min)

Figure 4I-2: Step thermal response of the top yoke clamp of a 400 kV 400 MVA five-leg coretype fully-wound transformer to a 16.67 A per phase dc step.

200

Temperature (deg. C)

180
160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure 5: I-3: Asymptotic thermal response of the top yoke clamp of a 400 kV 400 MVA fiveleg core-type fully-wound transformer.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
8

60

Temperature (deg. C)

50
40
30
20
10
0
0

5

10

15

20

25

30

Time (min)

70
Temperature (deg. C)

60
50
40
30
20
10
0
0

10

20

30

Time (min)

Figure 6I-4: Step thermal response of the tie plate of a 400 kV 400 MVA single-phase coretype autotransformer to a 10 A per phase dc step.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
9

180

Temperature (deg. C)

160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure 7I-5: Asymptotic thermal response of the tie plate of a 400 kV 400 MVA single-phase
core-type autotransformer.

The envelope in Figure 1 can be used as a conservative thermal assessment for effective GIC values of 75
A per phase and greaterassociated with the benchmark waveform (see Table 21).
Table 21: Upper Bound of Peak Metallic Hot Spot Temperatures
Calculated Using the Benchmark GMD Event
Effective GIC
(A/phase)
0
10
20
30
40
50
60
70
75
80
90

Metallic hot spot
Temperature (°C )
80
107
128
139
148
157
169
170
172
175
179

Effective GIC
(A/phase)
100
110
120
130
140
150
160
170
180
190
200

Metallic hot spot
Temperature (°C )
182
186
190
193
204
213
221
230
234
241
247

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
10

For instance, if effective GIC is 130 A per phase and oil temperature is assumed to be 80°C, peak hot spot
temperature is 193°C. This value is below the 200°C IEEE Std C57.91-2011 threshold for short time
emergency loading and this transformer will have passed the thermal assessment. If the full heat run oil
temperature is 67°C at maximum ambient temperature, then 150 A per phase of effective GIC translates
into a peak hot spot temperature of 200°C and the transformer will have passed. If the limit is lowered to
180°C to account for the condition of the transformer, then this would be an indication to “sharpen the
pencil” and perform a detailed assessment. Some methods are described in Reference [1].
The temperature envelope in Figure 1 corresponds to the values of effective GIC that result in the highest
temperature for the benchmark GMD event. Different values of effective GIC could result in lower
temperatures using the same model. For instance, the difference in upper and lower bounds of peak
temperatures for the SVC coupling transformer model for 150 A per phase is approximately 30°C. In this
case, GIC(t) should be generated to calculate the peak temperatures for the actual configuration of the
transformer within the system as described in Reference [1]. Alternatively, a more precise thermal
assessment could be carried out with a thermal model that more closely represents the thermal behavior
of the transformer under consideration.
Similar to the discussion above, the envelope in Figure 3 can be used as a conservative thermal
assessment for effective GIC values of associated with the supplemental waveform (see Table 2). Because
the supplemental waveform has a sharper peak, the peak metallic hot spot temperatures associated with
the supplemental waveform are slightly lower than those associated with the benchmark waveform.
Comparing Tables 1 and 2 shows the magnitude of this difference.
Table 2: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated
Using the Supplemental GMD Event
Effective GIC
(A/phase)
0
10
20
30
40
50
60
70
75
80
85
90

Metallic hot spot
Temperature (°C )
80
107
124
137
147
156
161
162
165
169
172
177

Effective
GIC(A/phase)
120
130
140
150
160
170
180
190
200
220
230
250

Metallic hot spot
Temperature (°C )
188
191
194
198
203
209
214
229
237
248
253
276

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
11

100
110

181
185

275
300

298
316

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
12

References
[1] Transformer Thermal Impact Assessment white paper. Developed by the Project 2013-03
(Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspxhttp://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
[2] Marti, L., Rezaei-Zare, A., Narang, A., "Simulation of Transformer Hotspot Heating due to
Geomagnetically Induced Currents," IEEE Transactions on Power Delivery, vol.28, no.1, pp.320-327,
Jan. 2013.
[3] Lahtinen, Matti. Jarmo Elovaara. “GIC occurrences and GIC test for 400 kV system transformer”. IEEE
Transactions on Power Delivery, Vol. 17, No. 2. April 2002.
[4] J. Raith, S. Ausserhofer: “GIC Strength verification of Power Transformers in a High Voltage
Laboratory”, GIC Workshop, Cape Town, April 2014
[5] [5] "IEEE Guide for loading mineral-oil-immersed transformersLoading Mineral-Oil-Immersed
Transformers and step-voltage regulatorsStep-Voltage Regulators." IEEE Std C57.91-2011 (Revision of
IEEE Std C57.91-1995).
[6] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances.”
IEEE Std C57.163-2015.

Screening Criterion for Transformer Thermal Impact Assessment: Project 2013-03 (Geomagnetic Disturbance Mitigation) | May 2016June
2017
13

Transformer Thermal Impact Assessment
White Paper

TPL-007-2 ̶ Transmission System Planned Performance for Geomagnetic
Disturbance Events
Background

Proposed TPL-007-2 includes requirements for entities to perform two types of GMD Vulnerability
Assessments to evaluate the potential impacts of GMD events on the Bulk Electric System (BES):
•

The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated
with TPL-007-1 which was approved by the Federal Energy Regulatory Commission (FERC) in Order
No. 830 in September 2016. The benchmark GMD event is derived from spatially-averaged
geoelectric field values to address potential wide-area effects that could be caused by a severe 1-in100 year GMD event.1

•

The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used
by entities to evaluate localized peaks in geomagnetic field during a severe GMD event that "could
potentially affect the reliable operation of the Bulk-Power System."2 Localized enhancements of
geomagnetic field can result in geoelectric field values above the spatially-averaged benchmark in
a local area.

The standard requires transformer thermal impact assessments to be performed on BES power
transformers with high side, wye-grounded windings with terminal voltage greater than 200 kV. Large
power transformers connected to the EHV transmission system can experience both winding and structural
hot spot heating as a result of GMD events. TPL-007-2 requires owners of such BES transformers to conduct
thermal analyses to determine if the BES transformers will be able to withstand the thermal transient
effects associated with the GMD events. BES Transformers must undergo a thermal impact assessment if
the maximum effective geomagnetically-induced current (GIC) in the transformer is equal to or greater
than: 3
•
•

1

2016.

75 A per phase for the benchmark GMD event
85 A per phase for the supplemental GMD event

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM15-11 on June 28,

See Order No. 830 P. 47. On September 22, 2016, FERC directed NERC to develop modifications to the benchmark GMD event,
included in TPL-007-1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event for
this assessment are in the Supplemental GMD Event Description white paper.
3
See Screening Criterion for Transformer Thermal Impact Assessment for technical justification.
2

This white paper discusses methods that can be employed to conduct transformer thermal impact
assessments, including example calculations. The first version of the white paper was developed by the
Project 2013-03 GMD Standards Drafting Team (SDT) for TPL-007-1 and was endorsed by the Electric
Reliability Organization (ERO) as implementation guidance in October 2016. The SDT has updated the white
paper to include the supplemental GMD event that is added in TPL-007-2 to address directives in FERC
Order No. 830.
The primary impact of GMDs on large power transformers is a result of the quasi-dc current that flows
through wye-grounded transformer windings. This geomagnetically-induced current (GIC) results in an
offset of the ac sinusoidal flux resulting in asymmetric or half-cycle saturation (see Figure 1).
Half-cycle saturation results in a number of known effects:
• Hot spot heating of transformer windings due to harmonics and stray flux;
• Hot spot heating of non-current carrying transformer metallic members due to stray flux;
• Harmonics;
• Increase in reactive power absorption; and
• Increase in vibration and noise level.

λ

λ

λdc

Lair-core

λm
Lu
θ

o

π/2

im

o
o

im
π
GIC

Vm

− π/2

θ = ωt
θ

ibias

Figure 1: Mapping Magnetization Current to Flux through Core Excitation Characteristics

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

2

This paper focuses on hot spot heating of transformer windings and non current-carrying metallic parts.
Effects such as the generation of harmonics, increase in reactive power absorption, vibration, and noise
are not within the scope of this document.

Technical Considerations

The effects of half-cycle saturation on HV and EHV transformers, namely localized “hot spot” heating, are
relatively well understood, but are difficult to quantify. A transformer GMD impact assessment must
consider GIC amplitude, duration, and transformer physical characteristics such as design and condition
(e.g., age, gas content, and moisture in the oil). A single threshold value of GIC cannot be justified as a “pass
or fail” screening criterion where “fail” means that the transformer will suffer damage. A single threshold
value of GIC only makes sense in the context where “fail” means that a more detailed study is required.
Such a threshold would have to be technically justifiable and sufficiently low to be considered a conservative
value of GIC.
The following considerations should be taken into account when assessing the thermal susceptibility of a
transformer to half-cycle saturation:
•

In the absence of manufacturer specific information, use the temperature limits for safe transformer
operation such as those suggested in the IEEE Std C57.91-2011 (IEEE Guide for Loading Mineral-oilimmersed Transformers and Step-voltage Regulators) for hot spot heating during short-term
emergency operation [1]. This standard does not suggest that exceeding these limits will result in
transformer failure, but rather that it will result in additional aging of cellulose in the paper-oil
insulation and the potential for the generation of gas bubbles in the bulk oil. Thus, from the point
of view of evaluating possible transformer damage due to increased hot spot heating, these
thresholds can be considered conservative for a transformer in good operational condition.

•

The worst case temperature rise for winding and metallic part (e.g., tie plate) heating should be
estimated taking into consideration the construction characteristics of the transformer as they
pertain to dc flux offset in the core (e.g., single-phase, shell, 5 and 3-leg three-phase construction).

•

Bulk oil temperature due to ambient temperature and transformer loading must be added to the
incremental temperature rise caused by hot spot heating. For planning purposes, maximum ambient
and loading temperature should be used unless there is a technically justified reason to do
otherwise.

•

The time series or “waveform” of the reference GMD event in terms of peak amplitude, duration,
and frequency of the geoelectric field has an important effect on hot spot heating. Winding and
metallic part hot spot heating have different thermal time constants, and their temperature rise will
be different if the GIC currents are sustained for 2, 10, or 30 minutes for a given GIC peak amplitude.

•

The “effective” GIC in autotransformers (reflecting the different GIC ampere-turns in the common
and the series windings) must be used in the assessment. The effective current Idc,eq in an
autotransformer is defined by [2].

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

3

I dc , eq = I H + ( I N / 3 − I H )VX / VH

(1)

where
IH is the dc current in the high voltage winding;
IN is the neutral dc current;
VH is the rms rated voltage at HV terminals;
VX is the rms rated voltage at the LV terminals.

Transformer Thermal Impact Assessment Process

A simplified thermal assessment may be based on the appropriate tables from the “Screening Criterion for
Transformer Thermal Impact Assessment” white paper [3]. 4 Each table below provides the peak metallic
hot spot temperatures that can be reached for the given GMD event using conservative thermal models.
To use each table, one must select the bulk oil temperature and the threshold for metallic hot spot
heating, for instance, from reference [1] after allowing for possible de-rating due to transformer
condition. If the effective GIC results in higher than threshold temperatures, then the use of a detailed
thermal assessment as described below should be carried out.5
Table 1: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated
Using the Benchmark GMD Event
Effective GIC Metallic hot spot
Effective GIC
Metallic hot spot
(A/phase)
Temperature (°C )
(A/phase)
Temperature (°C )
0
80
100
182
10
107
110
186
20
128
120
190
30
139
130
193
40
148
140
204
50
157
150
213
60
169
160
221
70
170
170
230
75
172
180
234
80
175
190
241
90
179
200
247

Table 1 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound temperatures for
the benchmark GMD event. Table 2 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound
temperatures for the supplemental GMD event.
5
Effective GIC in the table is the peak GIC(t) for the GMD event being assessed. Peak GIC(t) is not steady-state GIC.
4

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

4

Table 2: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated
Using the Supplemental GMD Event
Effective GIC Metallic hot spot
Effective
Metallic hot spot
(A/phase)
Temperature (°C )
GIC(A/phase)
Temperature (°C )
0
80
120
188
10
107
130
191
20
124
140
194
30
137
150
198
40
147
160
203
50
156
170
209
60
161
180
214
70
162
190
229
75
165
200
237
80
169
220
248
85
172
230
253
90
177
250
276
100
181
275
298
110
185
300
316
Two different ways to carry out a detailed thermal impact assessment are discussed below. In addition,
other approaches and models approved by international standard-setting organizations such as the
Institute of Electrical and Electronic Engineers (IEEE) or International Council on Large Electric Systems
(CIGRE) may also provide technically justified methods for performing thermal assessments. 6 All thermal
assessment methods should be demonstrably equivalent to assessments that use the GMD events
associated with TPL-007-2.
1. Transformer manufacturer GIC capability curves. These curves relate permissible peak GIC
(obtained by the user from a steady-state GIC calculation) and loading, for a specific transformer.
An example of manufacturer capability curves is provided in Figure 2. Presentation details vary
between manufacturers, and limited information is available regarding the assumptions used to
generate these curves, in particular, the assumed waveshape or duration of the effective GIC.
Some manufacturers assume that the waveform of the GIC in the transformer windings is a square
pulse of 2, 10, or 30 minutes in duration. In the case of the transformer capability curve shown in
Figure 2, a square pulse of 900 A/phase with a duration of 2 minutes would cause the Flitch plate
hot spot to reach a temperature of 180°C at full load [5]. While GIC capability curves are relatively
simple to use, an amount of engineering judgment is necessary to ascertain which portion of a GIC
waveform is equivalent to, for example, a 2 minute pulse. Also, manufacturers generally maintain
that in the absence of transformer standards defining thermal duty due to GIC, such capability
curves must be developed for every transformer design and vintage.
6

For example, C57.163-2015 – IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances. [4]

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

5

100
Flitch Plate Temp = 180 C for 2 Minutes

90

Flitch Plate Temp = 160 C for 30 Minutes

% MVA Rating

80

70

60

50

40

30
600

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

GIC, Amps/Phase

Figure 2: Sample GIC Manufacturer Capability Curve of a Large Single-Phase Transformer
Design using the Flitch Plate Temperature Criteria [5]

2. Thermal response simulation.7 The input to this type of simulation is the time series or waveform
of effective GIC flowing through a transformer (taking into account the actual configuration of the
system), and the result of the simulation is the hot spot temperature (winding or metallic part)
time sequence for a given transformer. An example of GIC input and hotspot temperature time
series values from [6] are shown in Figure 3. The hot spot thermal transfer functions can be
obtained from measurements or calculations provided by transformer manufacturers.
Conservative default values can be used (e.g., those provided in [6]) when specific data are not
available. Hot spot temperature thresholds shown in Figure 3 are consistent with IEEE Std C57.912011 emergency loading hot spot limits. Emergency loading time limit is usually 30 minutes.

7

Technical details of this methodology can be found in [6].

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

6

Figure 3: Sample Tie Plate Temperature Calculation
Blue trace is incremental temperature and red trace is the magnitude of the GIC/phase [6]

It is important to reiterate that the characteristics of the time sequence or “waveform” are very important
in the assessment of the thermal impact of GIC on transformers. Transformer hot spot heating is not
instantaneous. The thermal time constants of transformer windings and metallic parts are typically on the
order of minutes to tens of minutes; therefore, hot spot temperatures are heavily dependent on GIC
history and rise time, amplitude and duration of GIC in the transformer windings, bulk oil temperature
due to loading, ambient temperature and cooling mode.
Calculation of the GIC Waveform for a Transformer

The following procedure can be used to generate time series GIC data (i.e., GIC(t)) using a software
program capable of computing GIC in the steady-state. The steps are as follows:
1. Calculate contribution of GIC due to eastward and northward geoelectric fields for the transformer
under consideration;
2. Scale the GIC contribution according to the reference geoelectric field time series to produce the
GIC time series for the transformer under consideration.
Most available GIC–capable software packages can calculate GIC in steady-state in a transformer assuming
a uniform eastward geoelectric field of 1 V/km (GICE) while the northward geoelectric field is zero. Similarly,
GICN can be obtained for a uniform northward geoelectric field of 1 V/km while the eastward geoelectric
field is zero. GICE and GICN are the normalized GIC contributions for the transformer under consideration.
If the earth conductivity is assumed to be uniform (or laterally uniform) in the transmission system of
interest, then the transformer GIC (in A/phase) for any value of EE(t) and EN(t) can be calculated using (2)
[2].

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

7

GIC (t ) = E (t ) ⋅ {GIC E sin(ϕ (t )) + GIC N cos(ϕ (t ))}

(2)

E (t ) = E N2 (t ) + E E2 (t )

(3)

where

 E (t ) 
ϕ (t ) = tan −1  E 
 E N (t ) 

GIC (t ) = EE (t ) ⋅ GICE + EN (t ) ⋅ GICN

(4)
(5)

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase per V/km)
The geoelectric field time series EN(t) and EE(t) is obtained, for instance, from the reference geomagnetic
field time series (from [7] and/or [8]) after the appropriate geomagnetic latitude scaling factor α is applied.8
The reference geoelectric field time series is calculated using the reference earth model. When using this
geoelectric field time series where a different earth model is applicable, it should be scaled with the
appropriate conductivity scaling factor β. 9 Alternatively, the geoelectric field can be calculated from the
reference geomagnetic field time series after the appropriate geomagnetic latitude scaling factor α is
applied and the appropriate earth model is used. In such case, the conductivity scaling factor β is not applied
because it is already accounted for by the use of the appropriate earth model.
Applying (5) to each point in EN(t) and EE(t) results in GIC(t).
GIC(t) Calculation Example

Let us assume that from the steady-state solution, the effective GIC in this transformer is GICE = -20 A/phase
if EN=0, EE=1 V/km and GICN = 26 A/phase if EN=1 V/km, EE=0. Let us also assume the geomagnetic field time
series corresponds to a geomagnetic latitude where α = 1 and that the earth conductivity corresponds to
the reference earth model in [7]. The resulting geoelectric field time series is shown in Figure 4. Therefore:

GIC (t ) = EE (t ) ⋅ GICE + EN (t ) ⋅ GICN (A/phase)

(6)

GIC (t ) = − E E (t ) ⋅ 20 + ⋅E N (t ) ⋅ 26 (A/phase)

(7)

The geomagnetic factor α is described in [2] and is used to scale the geomagnetic field according to geomagnetic latitude. The
lower the geomagnetic latitude (closer to the equator), the lower the amplitude of the geomagnetic field.
9
The conductivity scaling factor β is described in [2], and is used to scale the geoelectric field according to the conductivity of
different physiographic regions. Lower conductivity results in higher β scaling factors.
8

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

8

The resulting GIC waveform GIC(t) is shown in Figures 5 and 6 and can subsequently be used for thermal
analysis.
It should be emphasized that even for the same reference event, the GIC(t) waveform in every transformer
will be different, depending on the location within the system and the number and orientation of the
circuits connecting to the transformer station. Assuming a single generic GIC(t) waveform to test all
transformers is incorrect.

Figure 4: Calculated Geoelectric Field EN(t) and EE(t) Assuming α=1 and β=1
(Reference Earth Model).
Zoom area for subsequent graphs is highlighted.
Dashed lines approximately show the close-up area for subsequent Figures.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

9

Figure 5: Calculated GIC(t) Assuming α=1 and β=1
Reference Earth Model

Figure 6: Calculated Magnitude of GIC(t) Assuming α=1 and β=1
Reference Earth Model
Transformer Thermal Assessment Examples

There are two basic ways to carry out a transformer thermal analysis once the GIC time series GIC(t) is
known for a given transformer: 1) calculating the thermal response as a function of time; and 2) using
manufacturer’s capability curves.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

10

Ex am ple 1: Calculating therm al response as a function of tim e using a therm al response tool
The thermal step response of the transformer can be obtained for both winding and metallic part hot
spots from: 1) measurements; 2) manufacturer’s calculations; or 3) generic published values. Figure 7
shows the measured metallic hot spot thermal response to a dc step of 16.67 A/phase of the top yoke
clamp from [9] that will be used in this example. Figure 8 shows the measured incremental temperature
rise (asymptotic response) of the same hot spot to long duration GIC steps. 10

Figure 7: Thermal Step Response to a 16.67 Amperes per Phase dc Step
Metallic hot spot heating

Figure 8: Asymptotic Thermal Step Response
Metallic hot spot heating

Heating of bulk oil due to the hot spot temperature increase is not included in the asymptotic response because the time constant
of bulk oil heating is at least an order of magnitude larger than the time constants of hot spot heating.

10

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

11

The step response in Figure 7 was obtained from the first GIC step of the tests carried out in [6]. The
asymptotic thermal response in Figure 8 was obtained from the final or near-final temperature values
after each subsequent GIC step. Figure 9 shows a comparison between measured temperatures and the
calculated temperatures using the thermal response model used in the rest of this discussion.

Figure 9: Comparison of measured temperatures (red) and simulation results (blue).
Injected current is represented by magenta.

To obtain the thermal response of the transformer to a GIC waveform such as the one in Figure 6, a thermal
response model is required. To create a thermal response model, the measured or manufacturer-calculated
transformer thermal step responses (winding and metallic part) for various GIC levels are required. The
GIC(t) time series or waveform is then applied to the thermal model to obtain the incremental temperature
rise as a function of time θ(t) for the GIC(t) waveform. The total temperature is calculated by adding the oil
temperature, for example, at full load.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

12

Figure 10 illustrates the calculated GIC(t) and the corresponding metallic hot spot temperature time series
θ(t). Figure 11 illustrates a close-up view of the peak transformer temperatures calculated in this
example.

Figure 10: Magnitude of GIC(t) and Metallic Hot Spot Temperature θ(t) Assuming Full Load
Oil Temperature of 85.3°C (40°C ambient).
Dashed lines approximately show the close-up area for subsequent figures

Figure 11: Close-up of Metallic Hot Spot Temperature Assuming a Full Load
Blue trace is θ(t). Red trace is GIC(t)

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

13

In this example, the IEEE Std C57.91-2011 emergency loading hot spot threshold of 200°C for metallic hot
spot heating is not exceeded. Peak temperature is 186°C. The IEEE standard is silent as to whether the
temperature can be higher than 200°C for less than 30 minutes. Manufacturers can provide guidance on
individual transformer capability.
It is not unusual to use a lower temperature threshold of 180°C to account for calculation and data margins,
as well as transformer age and condition. Figure 11 shows that 180°C will be exceeded for 5 minutes.
At 75% loading, the initial temperature is 64.6°C rather than 85.3°C, and the hot spot temperature peak is
165°C, well below the 180°C threshold (see Figure 12).
If a conservative threshold of 160°C were used to account for the age and condition of the transformer,
then the full load limits would be exceeded for approximately 22 minutes.

Figure 12: Close-up of Metallic Hot Spot Temperature Assuming a 75% Load
Oil temperature of 64.5°C

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

14

Ex am ple 2: Using a M anufacturer’s Capability Curves
The capability curves used in this example are shown in Figure 13. To maintain consistency with the
previous example, these particular capability curves have been reconstructed from the thermal step
response shown in Figures 7 and 8, and the simplified loading curve shown in Figure 14 (calculated using
formulas from IEEE Std C57.91-2011).

Figure 13: Capability Curve of a Transformer Based on the Thermal Response Shown in
Figures 8 and 9.

Figure 14: Simplified Loading Curve Assuming 40°C Ambient Temperature.

The basic notion behind the use of capability curves is to compare the calculated GIC in a transformer with
the limits at different GIC pulse widths. A narrow GIC pulse has a higher limit than a longer duration or wider
one. If the calculated GIC and assumed pulse width falls below the appropriate pulse width curve, then the
transformer is within its capability.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

15

To use these curves, it is necessary to estimate an equivalent square pulse that matches the waveform of
GIC(t), generally at a GIC(t) peak. Figure 15 shows a close-up of the GIC near its highest peak
superimposed to a 255 Amperes per phase, 2 minute pulse at 100% loading from Figure 13. Since a
narrow 2-minute pulse is not representative of GIC(t) in this case, a 5 minute pulse with an amplitude of
180 A/phase at 100% loading has been superimposed on Figure 16. It should be noted that a 255 A/phase,
2 minute pulse is equivalent to a 180 A/phase 5 minute pulse from the point of view of transformer
capability. Deciding what GIC pulse is equivalent to the portion of GIC(t) under consideration is a matter
of engineering judgment.

Figure 15: Close-up of GIC(t) and a 2 minute 255 A/phase GIC pulse at full load

Figure 16: Close-up of GIC(t) and a Five Minute 180 A/phase GIC Pulse at Full Load

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

16

When using a capability curve, it should be understood that the curve is derived assuming that there is no
hot spot heating due to prior GIC at the time the GIC pulse occurs (only an initial temperature due to
loading). Therefore, in addition to estimating the equivalent pulse that matches GIC(t), prior metallic hot
spot heating must be accounted for. From these considerations, it is unclear whether the capability curves
would be exceeded at full load with a 180°C threshold in this example.
At 70% loading, the two and five minute pulses from Figure 13 would have amplitudes of 310 and 225
A/phase, respectively. The 5 minute pulse is illustrated in Figure 17. In this case, judgment is also required
to assess if the GIC(t) is within the capability curve for 70% loading. In general, capability curves are easier
to use when GIC(t) is substantially above, or clearly below the GIC thresholds for a given pulse duration.
If a conservative threshold of 160°C were used to account for the age and condition of the transformer,
then a new set of capability curves would be required.

Figure 17: Close-up of GIC(t) and a 5 Minute 225 A/phase GIC Pulse Assuming 75% Load

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

17

References
[1] "IEEE Guide for loading mineral-oil-immersed transformers and step-voltage regulators." IEEE Std
C57.91-2011 (Revision of IEEE Std C57.91-1995).
[2] Application Guide: Computing Geomagnetically-Induced Current in the Bulk-Power System, NERC.
Available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%20
2013/GIC%20Application%20Guide%202013_approved.pdf
[3] “Screening Criterion for Transformer Thermal Impact Assessment”. Developed by the Project
2013-03 (Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
[4] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic
Disturbances.” IEEE Std C57.163-2015
[5] Girgis, R.; Vedante, K. “Methodology for evaluating the impact of GIC and GIC capability of power
transformer designs.” IEEE PES 2013 General Meeting Proceedings. Vancouver, Canada.
[6] Marti, L., Rezaei-Zare, A., Narang, A. "Simulation of Transformer Hotspot Heating due to
Geomagnetically Induced Currents." IEEE Transactions on Power Delivery, vol.28, no.1. pp 320327. January 2013.
[7] Benchmark Geomagnetic Disturbance Event Description white paper. Developed by the Project
2013-03 (Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
[8] Supplemental Geomagnetic Disturbance Event Description white paper. Developed by the Project
2013-03 (Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
[9] Lahtinen, Matti. Jarmo Elovaara. “GIC occurrences and GIC test for 400 kV system transformer”.
IEEE Transactions on Power Delivery, Vol. 17, No. 2. April 2002.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

18

Transformer Thermal Impact Assessment
White Paper

Project 2013-03 (Geomagnetic Disturbance Mitigation)
TPL-007-12 ̶ Transmission System Planned Performance for Geomagnetic
Disturbance Events
Background

On May 16, 2013, FERC issued Order No. 779, directing NERC to develop Standards that address risks to
reliability caused by geomagnetic disturbances (GMDs) in two stages:
• Stage 1 Standard(s) that require applicable entities to develop and implement Operating
Procedures. EOP-010-1 – Geomagnetic Disturbance Operations was approved by FERC in June 2014.
• Stage 2 Standard(s) that require applicable entities to conduct assessments of the potential impact
of benchmark GMD events on their systems. If the assessments identify potential impacts, the
Standard(s) will require the applicable entity to develop and implement a plan to mitigate the risk.
TPL-007-1 is a new Reliability Standard to specifically address the Stage 2 directives in Order No. 779.
Large power transformers connected to the EHV transmission system can experience both winding and
structural hot spot heating as a result of GMD events. TPL-007-1 will require owners of such transformers
to conduct thermal analyses of their transformers to determine if the transformers will be able to withstand
the thermal transient effects associated with the Benchmark GMD event. This paper discusses methods
that can be employed to conduct such analyses, including example calculations.
Proposed TPL-007-2 includes requirements for entities to perform two types of GMD Vulnerability
Assessments to evaluate the potential impacts of GMD events on the Bulk Electric System (BES):
•

The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated
with TPL-007-1 which was approved by the Federal Energy Regulatory Commission (FERC) in Order
No. 830 in September 2016. The benchmark GMD event is derived from spatially-averaged
geoelectric field values to address potential wide-area effects that could be caused by a severe 1-in100 year GMD event.1

•

The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used
by entities to evaluate localized peaks in geomagnetic field during a severe GMD event that "could

1

2016.

See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM15-11 on June 28,

potentially affect the reliable operation of the Bulk-Power System."2 Localized enhancements of
geomagnetic field can result in geoelectric field values above the spatially-averaged benchmark in
a local area.
The standard requires transformer thermal impact assessments to be performed on BES power
transformers with high side, wye-grounded windings with terminal voltage greater than 200 kV. Large
power transformers connected to the EHV transmission system can experience both winding and structural
hot spot heating as a result of GMD events. TPL-007-2 requires owners of such BES transformers to conduct
thermal analyses to determine if the BES transformers will be able to withstand the thermal transient
effects associated with the GMD events. BES Transformers must undergo a thermal impact assessment if
the maximum effective geomagnetically-induced current (GIC) in the transformer is equal to or greater
than: 3
•
•

75 A per phase for the benchmark GMD event
85 A per phase for the supplemental GMD event

This white paper discusses methods that can be employed to conduct transformer thermal impact
assessments, including example calculations. The first version of the white paper was developed by the
Project 2013-03 GMD Standards Drafting Team (SDT) for TPL-007-1 and was endorsed by the Electric
Reliability Organization (ERO) as implementation guidance in October 2016. The SDT has updated the white
paper to include the supplemental GMD event that is added in TPL-007-2 to address directives in FERC
Order No. 830.
The primary impact of GMDs on large power transformers is a result of the quasi-dc current that flows
through wye-grounded transformer windings. This geomagnetically-induced current (GIC) results in an
offset of the ac sinusoidal flux resulting in asymmetric or half-cycle saturation (see Figure 1).
Half-cycle saturation results in a number of known effects:
• Hot spot heating of transformer windings due to harmonics and stray flux;
• Hot spot heating of non-current carrying transformer metallic members due to stray flux;
• Harmonics;
• Increase in reactive power absorption; and
• Increase in vibration and noise level.

See Order No. 830 P. 47. On September 22, 2016, FERC directed NERC to develop modifications to the benchmark GMD event,
included in TPL-007-1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event for
this assessment are in the Supplemental GMD Event Description white paper.
3
See Screening Criterion for Transformer Thermal Impact Assessment for technical justification.
2

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

2

λ

λdc

λ

Lair-core

λm
Lu
θ

o

π/2

im

o
o

im
π
GIC

Vm

− π/2

θ = ωt
θ

ibias

Figure 1: Mapping Magnetization Current to Flux through Core Excitation Characteristics

This paper focuses on hot spot heating of transformer windings and non current-carrying metallic parts.
Effects such as the generation of harmonics, increase in reactive power absorption, vibration, and noise
are not within the scope of this document.

Technical Considerations

The effects of half-cycle saturation on HV and EHV transformers, namely localized “hot spot” heating, are
relatively well understood, but are difficult to quantify. A transformer GMD impact assessment must
consider GIC amplitude, duration, and transformer physical characteristics such as design and condition
(e.g., age, gas content, and moisture in the oil). A single threshold value of GIC cannot be justified as a “pass
or fail” screening criterion where “fail” means that the transformer will suffer damage. A single threshold
value of GIC only makes sense in the context where “fail” means that a more detailed study is required and
that “pass” means that GIC in a particular transformer is so low that a detailed study is unnecessary.. Such
a threshold would have to be technically justifiable and sufficiently low to be considered a conservative
value within the scope of the benchmark.of GIC.
The following considerations should be taken into account when assessing the thermal susceptibility of a
transformer to half-cycle saturation:
•

In the absence of manufacturer specific information, use the temperature limits for safe transformer
operation such as those suggested in the IEEE Std C57.91-2011 standard [1](IEEE Guide for Loading
Mineral-oil-immersed Transformers and Step-voltage Regulators) for hot spot heating during short-

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

3

term emergency operation. [1]. This standard does not suggest that exceeding these limits will result
in transformer failure, but rather that it will result in additional aging of cellulose in the paper-oil
insulation and the potential for the generation of gas bubbles in the bulk oil. Thus, from the point
of view of evaluating possible transformer damage due to increased hot spot heating, these
thresholds can be considered conservative for a transformer in good operational condition.
•

The worst case temperature rise for winding and metallic part (e.g., tie plate) heating should be
estimated taking into consideration the construction characteristics of the transformer as they
pertain to dc flux offset in the core (e.g., single-phase, shell, 5 and 3-leg three-phase construction).

•

Bulk oil temperature due to ambient temperature and transformer loading must be added to the
incremental temperature rise caused by hot spot heating. For planning purposes, maximum ambient
and loading temperature should be used unless there is a technically justified reason to do
otherwise.

•

The time series or “waveshapewaveform” of the reference GMD event in terms of peak amplitude,
duration, and frequency of the geoelectric field has an important effect on hot spot heating. Winding
and metallic part hot spot heating have different thermal time constants, and their temperature rise
will be different if the GIC currents are sustained for 2, 10, or 30 minutes for a given GIC peak
amplitude.

•

The “effective” GIC in autotransformers (reflecting the different GIC ampere-turns in the common
and the series windings) must be used in the assessment. The effective current Idc,eq in an
autotransformer is defined by [2].

I dc ,eq = I H + ( I N / 3 − I H )V X / VH

(1)

where
IH is the dc current in the high voltage winding;
IN is the neutral dc current;
VH is the rms rated voltage at HV terminals;
VX is the rms rated voltage at the LV terminals.

Transformer Thermal Impact Assessment Process

A simplified thermal assessment may be based on Table 2the appropriate tables from the “Screening
Criterion for Transformer Thermal Impact Assessment” white paper [7]. This3].4 Each table, shown as
Table 1 below, provides the peak metallic hot spot temperatures that can be reached for the given GMD
event using conservative thermal models. To use Table 1each table, one must select the bulk oil
temperature and the threshold for metallic hot spot heating, for instance, from reference [1] after
Table 1 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound temperatures for
the benchmark GMD event. Table 2 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound
temperatures for the supplemental GMD event.
4

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

4

allowing for possible de-rating due to transformer condition. If the effective GIC results in higher than
threshold temperatures, then the use of a detailed thermal assessment as described below should be
carried out.5
Table 1: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated
Using the Benchmark GMD Event
Effective GIC Metallic hot spot
Effective GIC
Metallic hot spot
(A/phase)
Temperature (°C )
(A/phase)
Temperature (°C )
0
80
100
182
10
107
110
186
20
128
120
190
30
139
130
193
40
148
140
204
50
157
150
213
60
169
160
221
70
170
170
230
75
172
180
234
80
175
190
241
90
179
200
247

Table 2: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated
Using the Supplemental GMD Event
Effective GIC Metallic hot spot
Effective
Metallic hot spot
(A/phase)
Temperature (°C )
GIC(A/phase)
Temperature (°C )
0
80
120
188
10
107
130
191
20
124
140
194
30
137
150
198
40
147
160
203
50
156
170
209
60
161
180
214
70
162
190
229
75
165
200
237
80
169
220
248
85
172
230
253
5

Effective GIC in the table is the peak GIC(t) for the GMD event being assessed. Peak GIC(t) is not steady-state GIC.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

5

90
100
110

177
181
185

250
275
300

276
298
316

Two different ways to carry out a detailed thermal impact assessment are discussed below. In addition,
other approaches and models approved by international standard-setting organizations such as the
Institute of Electrical and Electronic Engineers (IEEE) or International Council on Large Electric Systems
(CIGRE) may also provide technically justified methods for performing thermal assessments. 6 All thermal
assessment methods should be demonstrably equivalent to assessments that use the benchmark GMD
event.GMD events associated with TPL-007-2.
1. Transformer manufacturer GIC capability curves. These curves relate permissible peak GIC
(obtained by the user from a steady-state GIC calculation) and loading, for a specific transformer.
An example of manufacturer capability curves is provided in Figure 2. Presentation details vary
between manufacturers, and limited information is available regarding the assumptions used to
generate these curves, in particular, the assumed waveshape or duration of the effective GIC.
Some manufacturers assume that the waveshapewaveform of the GIC in the transformer windings
is a square pulse of 2, 10, or 30 minutes in duration. In the case of the transformer capability curve
shown in Figure 2 [3],, a square pulse of 900 A/phase with a duration of 2 minutes would cause
the Flitch plate hot spot to reach a temperature of 180 °°C at full load. [5]. While GIC capability
curves are relatively simple to use, an amount of engineering judgment is necessary to ascertain
which portion of a GIC waveshapewaveform is equivalent to, for example, a 2 minute pulse. Also,
manufacturers generally maintain that in the absence of transformer standards defining thermal
duty due to GIC, such capability curves must be developed for every transformer design and
vintage.

6

For example, C57.163-2015 – IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances. [4]

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

6

100
Flitch Plate Temp = 180 C for 2 Minutes

90

Flitch Plate Temp = 160 C for 30 Minutes

% MVA Rating

80

70

60

50

40

30
600

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

GIC, Amps/Phase

Figure 2: Sample GIC Manufacturer Capability Curve of a Large Single-Phase Transformer
Design using the Flitch Plate Temperature Criteria [35]

2. Thermal response simulation.7. The input to this type of simulation is the time series or
waveshapewaveform of effective GIC flowing through a transformer (taking into account the
actual configuration of the system), and the result of the simulation is the hot spot temperature
(winding or metallic part) time sequence for a given transformer. An example of GIC input and
hotspot temperature time series values from [46] are shown in Figure 3. The hot spot thermal
transfer functions can be obtained from measurements or calculations provided by transformer
manufacturers. Conservative default values can be used (e.g.., those provided in [46]) when
specific data are not available. Hot spot temperature thresholds shown in Figure 3 are consistent
with IEEE Std C57.91-2011 emergency loading hot spot limits. Emergency loading time limit is
usually 30 minutes.

7

Technical details of this methodology can be found in [46].

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

7

GIC

Figure 3: Sample Tie Plate Temperature Calculation
Blue trace is incremental temperature and red trace is the magnitude of the GIC/phase [4] 6]

It is important to reiterate that the characteristics of the time sequence or “waveshapewaveform” are
very important in the assessment of the thermal impact of GIC on transformers. Transformer hot spot
heating is not instantaneous. The thermal time constants of transformer windings and metallic parts are
typically on the order of minutes to tens of minutes; therefore, hot spot temperatures are heavily
dependent on GIC history and rise time, amplitude and duration of GIC in the transformer windings, bulk
oil temperature due to loading, ambient temperature and cooling mode.
Calculation of the GIC WaveshapeWaveform for a Transformer

The following procedure can be used to generate time series GIC data, (i.e.., GIC(t),)) using a software
program capable of computing GIC in the steady-state. The steps are as follows:
1. Calculate contribution of GIC due to eastward and northward geoelectric fields for the transformer
under consideration;
2. Scale the GIC contribution according to the reference geoelectric field time series to produce the
GIC time series for the transformer under consideration.
Most available GIC–capable software packages can calculate GIC in steady-state in a transformer assuming
a uniform eastward geoelectric field of 1 V/km (GICE) while the northward geoelectric field is zero. Similarly,
GICN can be obtained for a uniform northward geoelectric field of 1 V/km while the eastward geoelectric
field is zero. GICE and GICN are the normalized GIC contributions for the transformer under consideration.
If the earth conductivity is assumed to be uniform (or laterally uniform) in the transmission system of
interest, then the transformer GIC (in A/phase) for any value of EE(t) and EN(t) can be calculated using (2)
[2].

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

8

GIC (t ) = E (t ) ⋅ {GIC E sin(ϕ (t )) + GIC N cos(ϕ (t ))}

(2)

E (t ) = E N2 (t ) + E E2 (t )

(3)

where

 E E (t ) 

(
)
E
t
N



ϕ (t ) = tan −1 

GIC (t ) = EE (t ) ⋅ GICE + E N (t ) ⋅ GICN

(4)
(5)

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase/ per V/km)
The geoelectric field time series EN(t) and EE(t) is obtained, for instance, from the reference geomagnetic
field time series [5](from [7] and/or [8]) after the appropriate geomagnetic latitude scaling factor α is
applied. 8. The reference geoelectric field time series is calculated using the reference earth model. When
using this geoelectric field time series where a different earth model is applicable, it should be scaled with
the appropriate conductivity scaling factor ββ.9. Alternatively, the geoelectric field can be calculated from
the reference geomagnetic field time series after the appropriate geomagnetic latitude scaling factor α is
applied and the appropriate earth model is used. In such case, the conductivity scaling factor β is not applied
because it is already accounted for by the use of the appropriate earth model.
Applying (5) to each point in EN(t) and EE(t) results in GIC(t).
GIC(t) Calculation Example

Let us assume that from the steady-state solution, the effective GIC in this transformer is GICE = -20 A/phase
if EN=0, EE=1 V/km and GICN = 26 A/phase if EN=1 V/km, EE=0. Let us also assume the geomagnetic field time
series corresponds to a geomagnetic latitude where α = 1 and that the earth conductivity corresponds to
the reference earth model in [57]. The resulting geoelectric field time series is shown in Figure 4. Therefore:

GIC (t ) = EE (t ) ⋅ GICE + E N (t ) ⋅ GICN (A/phase)

(6)

GIC (t ) = − E E (t ) ⋅ 20 + ⋅E N (t ) ⋅ 26 (A/phase)

(7)

The geomagnetic factor α is described in [2] and is used to scale the geomagnetic field according to geomagnetic latitude. The
lower the geomagnetic latitude (closer to the equator), the lower the amplitude of the geomagnetic field.
9
The conductivity scaling factor β is described in [2], and is used to scale the geoelectric field according to the conductivity of
different physiographic regions. Lower conductivity results in higher β scaling factors.
8

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

9

The resulting GIC waveshapewaveform GIC(t) is shown in Figures 5 and 6 and can subsequently be used for
thermal analysis.
It should be emphasized that even for the same reference event, the GIC(t) waveshapewaveform in every
transformer will be different, depending on the location within the system and the number and orientation
of the circuits connecting to the transformer station. Assuming a single generic GIC(t) waveshapewaveform
to test all transformers is incorrect.

Figure 4: Calculated Geoelectric Field EN(t) and EE(t) Assuming α=1 and β=1
(Reference Earth Model).
Zoom area for subsequent graphs is highlighted.
Dashed lines approximately show the close-up area for subsequent Figures.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

10

Figure 5: Calculated GIC(t) Assuming α=1 and β=1
(Reference Earth Model)

Figure 6: Calculated Magnitude of GIC(t) Assuming α=1 and β=1
(Reference Earth Model)
Transformer Thermal Assessment Examples

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

11

There are two basic ways to carry out a transformer thermal analysis once the GIC time series GIC(t) is
known for a given transformer: 1) calculating the thermal response as a function of time; and 2) using
manufacturer’s capability curves.
Ex am ple 1: Calculating therm al response as a function of tim e using a therm al response tool
The thermal step response of the transformer can be obtained for both winding and metallic part hot
spots from: 1) measurements; 2) manufacturer’s calculations; or 3) generic published values. Figure 7
shows the measured metallic hot spot thermal response to a dc step of 16.67 A/phase of the top yoke
clamp from [69] that will be used in this example. Figure 8 shows the measured incremental temperature
rise (asymptotic response) of the same hot spot to long duration GIC steps. 10

Figure 7: Thermal Step Response to a 16.67 Amperes per Phase dc Step
Metallic hot spot heating.

Heating of bulk oil due to the hot spot temperature increase is not included in the asymptotic response because the time constant
of bulk oil heating is at least an order of magnitude larger than the time constants of hot spot heating.

10

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

12

Figure 8: Asymptotic Thermal Step Response
Metallic hot spot heating.

The step response in Figure 7 was obtained from the first GIC step of the tests carried out in [6]. The
asymptotic thermal response in Figure 8 was obtained from the final or near-final temperature values
after each subsequent GIC step. Figure 9 shows a comparison between measured temperatures and the
calculated temperatures using the thermal response model used in the rest of this discussion.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

13

Figure 9: Comparison of measured temperatures (red trace) and simulation results (blue
trace). ).
Injected current is represented by the magenta trace.

To obtain the thermal response of the transformer to a GIC waveshapewaveform such as the one in Figure
6, a thermal response model is required. To create a thermal response model, the measured or
manufacturer-calculated transformer thermal step responses (winding and metallic part) for various GIC
levels are required. The GIC(t) time series or waveshapewaveform is then applied to the thermal model to
obtain the incremental temperature rise as a function of time θ(t) for the GIC(t) waveshapewaveform. The
total temperature is calculated by adding the oil temperature, for example, at full load.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

14

Figure 10 illustrates the calculated GIC(t) and the corresponding metallic hot spot temperature time series
θ(t). Figure 11 illustrates a close-up view of the peak transformer temperatures calculated in this
example.

Figure 10: Magnitude of GIC(t) and Metallic Hot Spot Temperature θ(t) Assuming Full Load
Oil Temperature of 85.3°C (40°C ambient). Dashed lines approximately show the close-up

area for subsequent Figures.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

15

Figure 11: Close-up of Metallic Hot Spot Temperature Assuming a Full Load
(Blue trace is θ(t). Red trace is GIC(t)))

In this example, the IEEE Std C57.91-2011 emergency loading hot spot threshold of 200°C for metallic hot
spot heating is not exceeded. Peak temperature is 186°C. The IEEE standard is silent as to whether the
temperature can be higher than 200°C for less than 30 minutes. Manufacturers can provide guidance on
individual transformer capability.
It is not unusual to use a lower temperature threshold of 180°C to account for calculation and data margins,
as well as transformer age and condition. Figure 11 shows that 180°C will be exceeded for 5 minutes.
At 75% loading, the initial temperature is 64.6 °°C rather than 85.3 °°C, and the hot spot temperature peak
is 165°C, well below the 180°C threshold (see Figure 12).
If a conservative threshold of 160°C were used to account for the age and condition of the transformer,
then the full load limits would be exceeded for approximately 22 minutes.

Figure 12: Close-up of Metallic Hot Spot Temperature Assuming a 75% Load
(Oil temperature of 64.5°C)

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

16

Ex am ple 2: Using a M anufacturer’s Capability Curves
The capability curves used in this example are shown in Figure 13. To maintain consistency with the
previous example, these particular capability curves have been reconstructed from the thermal step
response shown in Figures 7 and 8, and the simplified loading curve shown in Figure 14 (calculated using
formulas from IEEE Std C57.91). -2011).

Figure 13: Capability Curve of a Transformer Based on the Thermal Response Shown in
Figures 8 and 9.

Figure 14: Simplified Loading Curve Assuming 40°C Ambient Temperature.

The basic notion behind the use of capability curves is to compare the calculated GIC in a transformer with
the limits at different GIC pulse widths. A narrow GIC pulse has a higher limit than a longer duration or wider
one. If the calculated GIC and assumed pulse width falls below the appropriate pulse width curve, then the
transformer is within its capability.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

17

To use these curves, it is necessary to estimate an equivalent square pulse that matches the
waveshapewaveform of GIC(t), generally at a GIC(t) peak. Figure 15 shows a close-up of the GIC near its
highest peak superimposed to a 255 Amperes per phase, 2 minute pulse at 100% loading from Figure 13.
Since a narrow 2-minute pulse is not representative of GIC(t) in this case, a 5 minute pulse with an
amplitude of 180 A/phase at 100% loading has been superimposed on Figure 16. It should be noted that a
255 A/phase, 2 minute pulse is equivalent to a 180 A/phase 5 minute pulse from the point of view of
transformer capability. Deciding what GIC pulse is equivalent to the portion of GIC(t) under consideration
is a matter of engineering judgment.

Figure 15: Close-up of GIC(t) and a 2 minute 255 A/phase GIC pulse at full load

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

18

Figure 16: Close-up of GIC(t) and a Five Minute 180 A/phase GIC Pulse at Full Load

When using a capability curve, it should be understood that the curve is derived assuming that there is no
hot spot heating due to prior GIC at the time the GIC pulse occurs (only an initial temperature due to
loading). Therefore, in addition to estimating the equivalent pulse that matches GIC(t), prior metallic hot
spot heating must be accounted for. From these considerations, it is unclear whether the capability curves
would be exceeded at full load with a 180 °°C threshold in this example.
At 70% loading, the two and five minute pulses from Figure 13 would have amplitudes of 310 and 225
A/phase, respectively. The 5 minute pulse is illustrated in Figure 17. In this case, judgment is also required
to assess if the GIC(t) is within the capability curve for 70% loading. In general, capability curves are easier
to use when GIC(t) is substantially above, or clearly below the GIC thresholds for a given pulse duration.
If a conservative threshold of 160°C were used to account for the age and condition of the transformer,
then a new set of capability curves would be required.

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

19

Figure 17: Close-up of GIC(t) and a 5 Minute 225 A/phase GIC Pulse Assuming 75% Load

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

20

References
[1] "IEEE Guide for loading mineral-oil-immersed transformers and step-voltage regulators." IEEE Std
C57.91-2011 (Revision of IEEE Std C57.91-1995).
[2] Application Guide: Computing Geomagnetically-Induced Current in the Bulk-Power System, NERC.
Available at:
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%20
2013/GIC%20Application%20Guide%202013_approved.pdf
[3] “Screening Criterion for Transformer Thermal Impact Assessment”. Developed by the Project
2013-03 (Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
[4] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic
Disturbances.” IEEE Std C57.163-2015
[3][5] Girgis, R.; Vedante, K. “Methodology for evaluating the impact of GIC and GIC capability of power
transformer designs.” IEEE PES 2013 General Meeting Proceedings. Vancouver, Canada.
[4][6] Marti, L., Rezaei-Zare, A., Narang, A. "Simulation of Transformer Hotspot Heating due to
Geomagnetically Induced Currents." IEEE Transactions on Power Delivery, vol.28, no.1. pp 320327. January 2013.
[5][7] Benchmark Geomagnetic Disturbance Event Description white paper. Developed by the Project
2013-03 (Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx
[8] Supplemental Geomagnetic Disturbance Event Description white paper. Developed by the Project
2013-03 (Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx
[6][9] Lahtinen, Matti. Jarmo Elovaara. “GIC occurrences and GIC test for 400 kV system transformer”.
IEEE Transactions on Power Delivery, Vol. 17, No. 2. April 2002.
[7][1] “Screening Criterion for Transformer Thermal Impact Assessment”. Developed by the Project
2013-03 (Geomagnetic Disturbance) standard drafting team. Available at:
http://www.nerc.com/pa/Stand/Pages/Project-2013-03-Geomagnetic-DisturbanceMitigation.aspx

Transformer Thermal Impact Assessment: Project 2013-03 Geomagnetic Disturbance Mitigation | May 2016
June 2017

21

Unofficial Comment Form

Project 2013-03 Geomagnetic Disturbance Mitigation
DO NOT use this form for submitting comments. Use the electronic form to submit comments on
proposed TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events.
The electronic comment form must be completed by 8:00 p.m. Eastern, Friday, August 11, 2017.
Documents and information about this project are available on the project page. If you have any
questions, contact Standards Developer, Mark Olson (via email), or at (404) 446-9760.
Background Information

On September 22, 2016, the Federal Energy Regulatory Commission (FERC) issued Order No. 830 approving
Reliability Standard TPL-007-1 − Transmission System Planned Performance for Geomagnetic Disturbance
Events. In the order, FERC directed NERC to develop certain modifications to the Standard, including:
•
•
•
•

Modify the benchmark geomagnetic disturbance (GMD) event definition used for GMD
Vulnerability Assessments;
Make related modifications to requirements pertaining to transformer thermal impact
assessments;
Require collection of GMD-related data; and
Require deadlines for Corrective Action Plans (CAPs) and GMD mitigating actions.

FERC established a deadline of 18 months from the effective date of Order No. 830 for completing the
revisions, which is May 2018.
The standard drafting team (SDT) has developed proposed TPL-007-2 to address the above directives.
Questions

You do not have to answer all questions. Enter comments in simple text format. Bullets, numbers, and
special formatting will not be retained.
1. The SDT developed proposed Requirements R8 – R10 and the supplemental GMD event to address
FERC concerns with the benchmark GMD event used in GMD Vulnerability Assessments. (Order No. 830
P.44, P.47-49, P.65). The requirements will obligate responsible entities to perform a supplemental GMD
Vulnerability Assessment based on the supplemental GMD event that accounts for potential impacts of
localized peak geoelectric fields. Do you agree with the proposed requirements? If you do not agree, or if

you agree but have comments or suggestions for the proposed requirements provide your
recommendation and explanation.
Yes
No
Comments:
2. The SDT developed the Supplemental GMD Event Description white paper to provide technical
justification for the supplemental GMD event. The purpose of the supplemental GMD event description is
to provide a defined event for assessing system performance for a GMD event which includes a local
enhancement of the geomagnetic field. Do you agree with the proposed supplemental GMD event and
the description in the white paper? If you do not agree, or if you agree but have comments or suggestions
for the supplemental GMD event and the description in the white paper provide your recommendation
and explanation.
Yes
No
Comments:
3. The SDT established an 85 A per phase screening criterion for determining which power transformers
are required to be assessed for thermal impacts from a supplemental GMD event in Requirement R10.
Justification for this threshold is provided in the revised Screening Criterion for Transformer Thermal
Impact Assessment white paper. Do you agree with the proposed 85 A per phase screening criterion and
the technical justification for this criterion that has been added to the white paper? If you do not agree, or
if you agree but have comments or suggestions for the screening criterion and revisions to the white
paper provide your recommendation and explanation.
Yes
No
Comments:
4. The SDT revised the Transformer Thermal Impact Assessment white paper to include the supplemental
GMD event. Do you agree with the revisions to the white paper? If you do not agree, or if you agree but
have comments or suggestions on the revisions to the white paper provide your recommendation and
explanation.
Yes
No
Comments:

Unofficial Comment Form
Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

2

5. The SDT developed proposed Requirement R7 to address FERC directives in Order No. 830 for
establishing Corrective Action Plan (CAP) deadlines associated with GMD Vulnerability Assessments (P.
101, 102). Do you agree with the proposed requirement? If you do not agree, or if you agree but have
comments or suggestions for the proposed requirement provide your recommendation and explanation.
Yes
No
Comments:
6. The SDT developed Requirements R11 and R12 to address FERC directives in Order No. 830 for
requiring responsible entities to collect GIC monitoring and magnetometer data (P. 88; P. 90-92). Do you
agree with the proposed requirements? If you do not agree, or if you agree but have comments or
suggestions for the proposed requirements provide your recommendation and explanation.
Yes
No
Comments:

7. Do you agree with the proposed Implementation Plan for TPL-007-2? If you do not agree, or if you
agree but have comments or suggestions for the Implementation Plan provide your recommendation and
explanation.
Yes
No
Comments:
8. Do you agree with the Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs) for the
requirements in proposed TPL-007-2? If you do not agree, or if you agree but have comments or
suggestions for the VRFs and VSLs provide your recommendation and explanation.
Yes
No
Comments:

Unofficial Comment Form
Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

3

9. The SDT believes proposed TPL-007-2 provide entities with flexibility to meet the reliability objectives in
the project Standards Authorization Request (SAR) in a cost effective manner. Do you agree? If you do not
agree, or if you agree but have suggestions for improvement to enable additional cost effective
approaches to meet the reliability objectives, please provide your recommendation and, if appropriate,
technical justification.
Yes
No
Comments:

10. Provide any additional comments for the SDT to consider, if desired.
Comments:

Unofficial Comment Form
Project 2013-03 Geomagnetic Disturbance Mitigation | June 2017

4

Violation Risk Factor and Violation Severity Level
Justifications

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events

This document provides the Standard Drafting Team’s (SDT) justification for assignment of Violation Risk Factors (VRFs) and Violation
Severity Levels (VSLs) for each requirement in TPL-007-2 – Transmission System Planned Performance for Geomagnetic Disturbance Events.
Each requirement is assigned a VRF and a VSL. These elements support the determination of an initial value range for the Base Penalty
Amount regarding violations of requirements in FERC-approved Reliability Standards, as defined in the ERO Sanction Guidelines. The SDT
applied the following NERC criteria and FERC Guidelines when proposing VRFs and VSLs for the requirements under this project.

NERC Criteria - Violation Risk Factors
High Risk Requirement

A requirement that, if violated, could directly cause or contribute to Bulk Electric System instability, separation, or a cascading sequence of
failures, or could place the Bulk Electric System at an unacceptable risk of instability, separation, or cascading failures; or, a requirement in a
planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly
cause or contribute to Bulk Electric System instability, separation, or a cascading sequence of failures, or could place the Bulk Electric
System at an unacceptable risk of instability, separation, or cascading failures, or could hinder restoration to a normal condition.
Medium Risk Requirement

A requirement that, if violated, could directly affect the electrical state or the capability of the Bulk Electric System, or the ability to
effectively monitor and control the Bulk Electric System. However, violation of a medium risk requirement is unlikely to lead to Bulk Electric
System instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency,
abnormal, or restorative conditions anticipated by the preparations, directly and adversely affect the electrical state or capability of the Bulk
Electric System, or the ability to effectively monitor, control, or restore the Bulk Electric System. However, violation of a medium risk
requirement is unlikely, under emergency, abnormal, or restoration conditions anticipated by the preparations, to lead to Bulk Electric
System instability, separation, or cascading failures, nor to hinder restoration to a normal condition.

Lower Risk Requirement

A requirement that is administrative in nature and a requirement that, if violated, would not be expected to adversely affect the electrical
state or capability of the Bulk Electric System, or the ability to effectively monitor and control the Bulk Electric System; or, a requirement
that is administrative in nature and a requirement in a planning time frame that, if violated, would not, under the emergency, abnormal, or
restorative conditions anticipated by the preparations, be expected to adversely affect the electrical state or capability of the Bulk Electric
System, or the ability to effectively monitor, control, or restore the Bulk Electric System.

FERC Violation Risk Factor Guidelines
Guideline (1) – Consistency with the Conclusions of the Final Blackout Report

The Commission seeks to ensure that VRFs assigned to Requirements of Reliability Standards in these identified areas appropriately reflect
their historical critical impact on the reliability of the Bulk-Power System. In the VSL Order, FERC listed critical areas (from the Final Blackout
Report) where violations could severely affect the reliability of the Bulk-Power System:
•

Emergency operations

•

Vegetation management

•

Operator personnel training

•

Protection systems and their coordination

•

Operating tools and backup facilities

•

Reactive power and voltage control

•

System modeling and data exchange

•

Communication protocol and facilities

•

Requirements to determine equipment ratings

•

Synchronized data recorders

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

2

•

Clearer criteria for operationally critical facilities

•

Appropriate use of transmission loading relief.

Guideline (2) – Consistency within a Reliability Standard

The Commission expects a rational connection between the sub-Requirement VRF assignments and the main Requirement VRF assignment.
Guideline (3) – Consistency among Reliability Standards

The Commission expects the assignment of VRFs corresponding to requirements that address similar reliability goals in different Reliability
Standards would be treated comparably.
Guideline (4) – Consistency with NERC’s Definition of the Violation Risk Factor Level

Guideline (4) was developed to evaluate whether the assignment of a particular VRF level conforms to NERC’s definition of that risk level.
Guideline (5) –Treatment of Requirements that Co-mingle More Than One Obligation

Where a single Requirement co-mingles a higher risk reliability objective and a lesser risk reliability objective, the VRF assignment for such
requirements must not be watered down to reflect the lower risk level associated with the less important objective of the Reliability
Standard.

NERC Criteria - Violation Severity Levels

VSLs define the degree to which compliance with a requirement was not achieved. Each requirement must have at least one VSL. While it
is preferable to have four VSLs for each requirement, some requirements do not have multiple “degrees” of noncompliant performance and
may have only one, two, or three VSLs.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

3

VSLs should be based on NERC’s overarching criteria shown in the table below:
Lower VSL

Moderate VSL

The performance or product
measured almost meets the full
intent of the requirement.

The performance or product
measured meets the majority of
the intent of the requirement.

High VSL
The performance or product
measured does not meet the
majority of the intent of the
requirement, but does meet
some of the intent.

Severe VSL
The performance or product
measured does not
substantively meet the intent of
the requirement.

FERC Order of Violation Severity Levels

FERC’s VSL guidelines are presented below, followed by an analysis of whether the VSLs proposed for each requirement in the standard
meet the FERC Guidelines for assessing VSLs:
Guideline 1 – Violation Severity Level Assignments Should Not Have the Unintended Consequence of Lowering the Current
Level of Compliance
Compare the VSLs to any prior levels of non-compliance and avoid significant changes that may encourage a lower level of compliance than was
required when levels of non-compliance were used.
Guideline 2 – Violation Severity Level Assignments Should Ensure Uniformity and Consistency in the Determination of
Penalties

A violation of a “binary” type requirement must be a “Severe” VSL.
Do not use ambiguous terms such as “minor” and “significant” to describe noncompliant performance.

Guideline 3 – Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement

VSLs should not expand on what is required in the requirement.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

4

Guideline 4 – Violation Severity Level Assignment Should Be Based on A Single Violation, Not on A Cumulative Number of
Violations

Unless otherwise stated in the requirement, each instance of non-compliance with a requirement is a separate violation. Section 4 of the
Sanction Guidelines states that assessing penalties on a per-violation per-day basis is the “default” for penalty calculations.
VRF Justifications – TPL-007-2, R1
Proposed VRF

Low

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report. N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard. The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Lower is consistent with Reliability
Standard TPL-001-4 Requirement R7, which requires the Planning Coordinator, in conjunction with
each of its Transmission Planners, to identify each entity’s individual and joint responsibilities for
performing required studies for the Planning Assessment. Proposed TPL-007-2 Requirement R1
requires Planning Coordinators, in conjunction with Transmission Planners, to identify individual and
joint responsibilities for maintaining models and performing studies needed to complete the
benchmark and supplemental GMD Vulnerability Assessments, and implementing process(es) to
obtain GMD measurement data as specified in the Standard.
Guideline 4- Consistency with NERC Definitions of VRFs. A VRF of Lower is consistent with the NERC
VRF definition. The requirement for identifying individual and joint responsibilities of the Planning
Coordinator and each of the Transmission Planners in the Planning Coordinator’s planning area for
maintaining models, performing GMD studies, and obtaining GMD measurement data, if violated,
would not be expected to adversely affect the electrical state or capability of the Bulk Electric System,
or the ability to effectively monitor, control, or restore the Bulk Electric System under conditions of a
GMD event.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

5

VRF Justifications – TPL-007-2, R1
FERC VRF G5 Discussion

Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. The requirement
contains one objective, therefore a single VRF is assigned.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

6

Proposed VSLs – TPL-007-2, R1
Lower

N/A

Moderate

N/A

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

High

N/A

Severe

The Planning Coordinator, in
conjunction with its
Transmission Planner(s), failed
to determine and identify
individual or joint
responsibilities of the Planning
Coordinator and Transmission
Planner(s) in the Planning
Coordinator’s planning area for
maintaining models, performing
the study or studies needed to
complete benchmark and
supplemental GMD Vulnerability
Assessments, and implementing
process(es) to obtain GMD
measurement data as specified
in the Standard.

7

VSL Justifications – TPL-007-2, R1

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to
evaluate degrees of compliance. A VSL of Severe is assigned for non-compliance.
The VSL is not changed in TPL-007-2.

FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

FERC VSL G3
Violation Severity Level
Assignment Should Be

The proposed VSL is worded consistently with the corresponding requirement.

Guideline 2a: The proposed VSL is binary and assigned a Severe VSL.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

8

Consistent with the
Corresponding Requirement
FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

9

VRF Justifications – TPL-007-2, R2
Proposed VRF

High

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of High is consistent with the VRF for
Reliability Standard TPL-001-4 Requirement R1 as amended in NERC's filing dated August 29, 2014,
which requires Transmission Planners and Planning Coordinators to maintain models within its
respective planning area for performing studies needed to complete its Planning Assessment.
Proposed TPL-007-2, Requirement R2 requires responsible entities to maintain System models and GIC
System models of the responsible entity’s planning area for performing the studies needed to
complete benchmark and supplemental GMD Vulnerability Assessments.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC
VRF Definition. The System Models and GIC System Models serve as the foundation for all conditions
and events that are required to be studied and evaluated in the benchmark and supplemental GMD
Vulnerability Assessments. For this reason, failure to maintain models of the responsible entity’s
planning area for performing GMD studies could, under GMD conditions that are as severe as the
benchmark and supplemental GMD event, place the Bulk Electric System at an unacceptable risk of
instability, separation, or cascading failures.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

10

Proposed VSLs – TPL-007-2, R2
Lower

N/A

Moderate

N/A

High

Severe

The responsible entity did not
maintain either System models
or GIC System models of the
responsible entity’s planning
area for performing the study or
studies or studies needed to
complete benchmark and
supplemental GMD Vulnerability
Assessments.

The responsible entity did not
maintain both System models
and GIC System models of the
responsible entity’s planning
area for performing the study or
studies or studies needed to
complete benchmark and
supplemental GMD Vulnerability
Assessments.

VSL Justifications – TPL-007-2, R2

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance
FERC VSL G2

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Two VSLs are specified for a graduated scale.
The VSL is not changed in TPL-007-2.

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

11

VSL Justifications – TPL-007-2, R2

Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

Guideline 2a: The proposed VSL is not binary.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

12

VRF Justifications – TPL-007-2, R3
Proposed VRF

Medium

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability
Standard TPL-001-4 Requirement R5 which requires Transmission Planners and Planning Coordinators
to have criteria for acceptable System steady state voltage limits. Proposed TPL-007-2 Requirement R4
requires responsible entities to have criteria for acceptable System steady state voltage performance
for its System during the benchmark GMD event; these criteria may be different from the voltage
limits determined in Reliability Standard TPL-001-4 Requirement R5.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the
NERC VRF Definition. Failure to have criteria for acceptable System steady state voltage limits for its
System during a GMD planning event could directly and adversely affect the electrical state or
capability of the Bulk Electric System, or the ability to effectively monitor, control, or restore the Bulk
Electric System during an actual GMD event. However, it is unlikely that such a failure by itself would
lead to Bulk Electric System instability, separation, or cascading.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

Proposed VSLs – TPL-007-2, R3
Lower

N/A

Moderate

N/A

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

High

N/A

Severe

The responsible entity did not
have criteria for acceptable

13

Proposed VSLs – TPL-007-2, R3

System steady state voltage
performance for its System
during the GMD events
described in Attachment 1 as
required.

VSL Justifications – TPL-007-2, R3

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance
FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to
evaluate degrees of compliance. A VSL of Severe is assigned for non-compliance.
The VSL is not changed in TPL-007-2.

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

Guideline 2a: The proposed VSL is binary and assigned a Severe VSL.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

14

VSL Justifications – TPL-007-2, R3

"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

15

VRF Justifications – TPL-007-2, R4
Proposed VRF

High

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of High is consistent with Reliability
Standard TPL-001-4 Requirement R2 which requires Transmission Planners and Planning Coordinators
to prepare an annual Planning Assessment to ensure its portion of the Bulk Electric System meets
performance criteria. Proposed TPL-007-2 Requirement R4 requires responsible entities to complete a
benchmark GMD Vulnerability Assessment to ensure the system meets performance criteria during the
benchmark GMD event.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC
VRF Definition. Failure to complete a benchmark GMD Vulnerability Assessment could, under GMD
conditions that are as severe as the benchmark GMD event, place the Bulk Electric System at an
unacceptable risk of instability, separation, or cascading failures.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

Proposed VSLs – TPL-007-2, R4
Lower

Moderate

The responsible entity
completed a benchmark GMD
Vulnerability Assessment, but it
was more than 60 calendar

The responsible entity's
completed benchmark GMD
Vulnerability Assessment failed
to satisfy one of elements listed

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

High

The responsible entity's
completed benchmark GMD
Vulnerability Assessment failed
to satisfy two of the elements

Severe

The responsible entity's
completed benchmark GMD
Vulnerability Assessment failed
to satisfy three of the elements

16

Proposed VSLs – TPL-007-2, R4

months and less than or equal
to 64 calendar months since the
last benchmark GMD
Vulnerability Assessment.

in Requirement R4, Parts 4.1
through 4.3;
OR
The responsible entity
completed a benchmark GMD
Vulnerability Assessment, but it
was more than 64 calendar
months and less than or equal
to 68 calendar months since the
last benchmark GMD
Vulnerability Assessment.

listed in Requirement R4, Parts
4.1 through 4.3;
OR
The responsible entity
completed a benchmark GMD
Vulnerability Assessment, but it
was more than 68 calendar
months and less than or equal
to 72 calendar months since the
last benchmark GMD
Vulnerability Assessment.

listed in Requirement R4, Parts
4.1 through 4.3;
OR
The responsible entity
completed a benchmark GMD
Vulnerability Assessment, but it
was more than 72 calendar
months since the last
benchmark GMD Vulnerability
Assessment;
OR
The responsible entity does not
have a completed benchmark
GMD Vulnerability Assessment.

VSL Justifications – TPL-007-2, R4

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale.
The VSL is not changed in TPL-007-2.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

17

VSL Justifications – TPL-007-2, R4

Lowering the Current Level of
Compliance
FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A

The proposed VSL is not based on a cumulative number of violations.

Guideline 2a: The proposed VSL is not binary.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

18

VSL Justifications – TPL-007-2, R4

Cumulative Number of
Violations

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

19

VRF Justifications – TPL-007-2, R5
Proposed VRF

Medium

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability
Standard MOD-032-1 Requirement R2 which requires applicable entities to provide modeling data to
Transmission Planners and Planning Coordinators. A VRF of Medium is also consistent with Reliability
Standard IRO-010-2 Requirement R3 which requires entities to provide data necessary for the
Reliability Coordinator to perform its Operational Planning Analysis and Real-time Assessments.
Proposed TPL-007-2 Requirement R5 requires responsible entities to provide specific geomagneticallyinduced currents (GIC) flow information to Transmission Owners and Generator Owners for
performing transformer thermal impact assessments.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the
NERC VRF Definition. Failure to provide GIC flow information for the benchmark GMD event could
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or
cascading.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

20

Proposed VSLs – TPL-007-2, R5
Lower

Moderate

High

The responsible entity provided
the effective GIC time series,
GIC(t), in response to written
request, but did so more than
90 calendar days and less than
or equal to 100 calendar days
after receipt of a written
request.

The responsible entity provided
the effective GIC time series,
GIC(t), in response to written
request, but did so more than
100 calendar days and less than
or equal to 110 calendar days
after receipt of a written
request.

The responsible entity provided
the effective GIC time series,
GIC(t), in response to written
request, but did so more than
110 calendar days after receipt
of a written request.

Severe

The responsible entity did not
provide the maximum effective
GIC value to the Transmission
Owner and Generator Owner
that owns each applicable BES
power transformer in the
planning area;
OR
The responsible entity did not
provide the effective GIC time
series, GIC(t), upon written
request.

VSL Justifications – TPL-007-2, R5

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale.
The VLS is not changed in TPL-007-2.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

21

VSL Justifications – TPL-007-2, R5

FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

Guideline 2a: The proposed VSL is not binary.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

22

VRF Justifications – TPL-007-2, R6
Proposed VRF

Medium

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability
Standard FAC-008-3 Requirement R6 which requires Transmission Owners and Generator Owners to
have Facility Ratings for all solely and jointly owned Facilities that are consistent with the associated
Facility Ratings methodology or documentation. Proposed TPL-007-2 Requirement R6 requires
responsible entities to conduct a benchmark thermal impact assessment for solely and jointly owned
applicable transformers and provide results including suggested actions to mitigate identified impacts
to planning entities.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the
NERC VRF Definition. Failure to conduct a benchmark transformer thermal impact assessment could
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or
cascading.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

23

Proposed VSLs – TPL-007-2, R6
Lower

Moderate

High

Severe

The responsible entity failed to
conduct a benchmark thermal
impact assessment for 5% or
less or one of its solely owned
and jointly owned applicable
BES power transformers
(whichever is greater) where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater per
phase;
OR
The responsible entity
conducted a benchmark thermal
impact assessment for its solely
owned and jointly owned
applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater per
phase but did so more than 24
calendar months and less than
or equal to 26 calendar months

The responsible entity failed to
conduct a benchmark thermal
impact assessment for more
than 5% up to (and including)
10% or two of its solely owned
and jointly owned applicable
BES power transformers
(whichever is greater) where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater per
phase;
OR
The responsible entity
conducted a benchmark thermal
impact assessment for its solely
owned and jointly owned
applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater per
phase but did so more than 26
calendar months and less than
or equal to 28 calendar months

The responsible entity failed to
conduct a benchmark thermal
impact assessment for more
than 10% up to (and including)
15% or three of its solely owned
and jointly owned applicable
BES power transformers
(whichever is greater) where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater per
phase;
OR
The responsible entity
conducted a benchmark thermal
impact assessment for its solely
owned and jointly owned
applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater per
phase but did so more than 28
calendar months and less than
or equal to 30 calendar months

The responsible entity failed to
conduct a benchmark thermal
impact assessment for more
than 15% or more than three of
its solely owned and jointly
owned applicable BES power
transformers (whichever is
greater) where the maximum
effective GIC value provided in
Requirement R5, Part 5.1, is 75
A or greater per phase;
OR
The responsible entity
conducted a benchmark thermal
impact assessment for its solely
owned and jointly owned
applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R5,
Part 5.1, is 75 A or greater per
phase but did so more than 30
calendar months of receiving
GIC flow information specified in
Requirement R5, Part 5.1;

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

24

Proposed VSLs – TPL-007-2, R6

of receiving GIC flow
information specified in
Requirement R5, Part 5.1.

of receiving GIC flow
information specified in
Requirement R5, Part 5.1;
OR
The responsible entity failed to
include one of the required
elements as listed in
Requirement R6, Parts 6.1
through 6.3.

of receiving GIC flow
information specified in
Requirement R5, Part 5.1;
OR
The responsible entity failed to
include two of the required
elements as listed in
Requirement R6, Parts 6.1
through 6.3.

OR
The responsible entity failed to
include three of the required
elements as listed in
Requirement R6, Parts 6.1
through 6.3.

VSL Justifications – TPL-007-2, R6

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance
FERC VSL G2
Violation Severity Level
Assignments Should Ensure

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale.
The VSL is not changed in TPL-007-2.

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

25

VSL Justifications – TPL-007-2, R6

Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

Guideline 2a: The proposed VSL is not binary.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

26

VRF Justifications – TPL-007-2, R7
Proposed VRF

High

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of High is consistent with Reliability
Standard TPL-001-4 Requirement R2 which requires Transmission Planners and Planning Coordinators
to include a Corrective Action Plan that addresses identified performance issues in the annual Planning
Assessment. Proposed TPL-007-2 Requirement R7 requires responsible entities to develop a Corrective
Action Plan when results of the benchmark GMD Vulnerability Assessment indicate that the System
does not meet performance requirements. While Reliability Standard TPL-001-4 has a single
requirement for performing the Planning Assessment and developing the Corrective Action Plan,
proposed TPL-007-2 has split the requirements for performing a benchmark GMD Vulnerability
Assessment and developing the Corrective Action Plan into two separate requirements because the
transformer thermal impact assessments performed by Transmission Owners and Generator Owners
must be considered. The sequencing with separate requirements follows a logical flow of the GMD
Vulnerability Assessment process.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC
VRF Definition. Failure to develop a Corrective Action Plan that addresses issues identified in a GMD
Vulnerability Assessment could, under GMD conditions that are as severe as the benchmark GMD
event, place the Bulk Electric System at an unacceptable risk of instability, separation, or cascading
failures.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

27

Proposed VSLs – TPL-007-2, R7
Lower

The responsible entity's
Corrective Action Plan failed to
comply with one of the
elements in Requirement R7,
Parts 7.1 through 7.5.

Moderate

The responsible entity's
Corrective Action Plan failed to
comply with two of the
elements in Requirement R7,
Parts 7.1 through 7.5.

High

The responsible entity's
Corrective Action Plan failed to
comply with three of the
elements in Requirement R7,
Parts 7.1 through 7.5.

Severe

The responsible entity's
Corrective Action Plan failed to
comply with four or more of the
elements in Requirement R7,
Parts 7.1 through 7.5;
OR
The responsible entity did not
have a Corrective Action Plan as
required by Requirement R7.

VSL Justifications – TPL-007-2, R7

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance
FERC VSL G2
Violation Severity Level
Assignments Should Ensure

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale.
The proposed requirement is a significant revision to TPL-007-2 to address the directive for Corrective
Action Plan deadlines contained in FERC Order No. 830. There is no prior compliance obligation
related to the directive. However, the requirement uses the same construct for a graduated scale as
TPL-007-1 Requirement R7 and is similar to Reliability Standard TPL-001-4, Requirement R2.

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

28

VSL Justifications – TPL-007-2, R7

Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language
FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement
FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

Guideline 2a: The proposed VSL is not binary.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.
The proposed VSL is worded consistently with the corresponding requirement.

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

29

VRF Justifications – TPL-007-2, R8
Proposed VRF

High

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of High is consistent with Reliability
Standard TPL-001-4 Requirement R2 which requires Transmission Planners and Planning Coordinators
to prepare an annual Planning Assessment to ensure its portion of the Bulk Electric System meets
performance criteria. The proposed requirement is also consistent with approved TPL-007-1
Requirement R4 (unchanged in proposed TPL-007-2 Requirement R4). Proposed TPL-007-2
Requirement R8 requires responsible entities to complete a supplemental GMD Vulnerability
Assessment to assess system performance during a supplemental GMD event.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC
VRF Definition. Failure to complete a supplemental GMD Vulnerability Assessment could, under GMD
conditions that are as severe as the supplemental GMD event, place the Bulk Electric System at an
unacceptable risk of instability, separation, or cascading failures by precluding responsible entities
from considering actions to mitigate risk of Cascading.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

Proposed VSLs – TPL-007-2, R8
Lower

The responsible entity
completed a supplemental GMD

Moderate

The responsible entity's
completed supplemental GMD

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

High

The responsible entity's
completed supplemental GMD

Severe

The responsible entity's
completed supplemental GMD

30

Proposed VSLs – TPL-007-2, R8

Vulnerability Assessment, but it
was more than 60 calendar
months and less than or equal
to 64 calendar months since the
last supplemental GMD
Vulnerability Assessment;
OR
The responsible entity's
completed supplemental GMD
Vulnerability Assessment failed
to satisfy one of elements listed
in Requirement R8, Parts 8.1
through 8.4;

Vulnerability Assessment failed
to satisfy two of elements listed
in Requirement R8, Parts 8.1
through 8.4;
OR
The responsible entity
completed a supplemental GMD
Vulnerability Assessment, but it
was more than 64 calendar
months and less than or equal
to 68 calendar months since the
last supplemental GMD
Vulnerability Assessment.

Vulnerability Assessment failed
to satisfy three of the elements
listed in Requirement R8, Parts
8.1 through 8.4;
OR
The responsible entity
completed a supplemental GMD
Vulnerability Assessment, but it
was more than 68 calendar
months and less than or equal
to 72 calendar months since the
last supplemental GMD
Vulnerability Assessment.

Vulnerability Assessment failed
to satisfy four of the elements
listed in Requirement R8, Parts
8.1 through 8.4;
OR
The responsible entity
completed a supplemental GMD
Vulnerability Assessment, but it
was more than 72 calendar
months since the last
supplemental GMD Vulnerability
Assessment;
OR
The responsible entity does not
have a completed supplemental
GMD Vulnerability Assessment.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

31

VSL Justifications – TPL-007-2, R8

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale.
There is no prior compliance obligation related to supplemental GMD Vulnerability Assessment.
However, the requirement is similar to approved TPL-007-1, Requirement R4 (unchanged in proposed
TPL-007-2 Requirement R4). That requirement also has a graduated scale for VSLs.

FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

FERC VSL G3
Violation Severity Level
Assignment Should Be

The proposed VSL is worded consistently with the corresponding requirement.

Guideline 2a: The proposed VSL is not binary.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

32

VSL Justifications – TPL-007-2, R8

Consistent with the
Corresponding Requirement
FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

33

VRF Justifications – TPL-007-2, R9
Proposed VRF

Medium

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Medium is consistent with approved
TPL-007-1 Requirement R5 (unchanged in proposed TPL-007-2 Requirement R5) which requires
responsible entities to provide specific geomagnetically-induced currents (GIC) flow information to
Transmission Owners and Generator Owners for performing transformer thermal impact assessments.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the
NERC VRF Definition. Failure to provide GIC flow information for the supplemental GMD event could
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or
cascading.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

Proposed VSLs – TPL-007-2, R9
Lower

Moderate

High

The responsible entity provided
the effective GIC time series,
GIC(t), in response to written
request, but did so more than

The responsible entity provided
the effective GIC time series,
GIC(t), in response to written
request, but did so more than

The responsible entity provided
the effective GIC time series,
GIC(t), in response to written
request, but did so more than

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

Severe

The responsible entity did not
provide the maximum effective
GIC value to the Transmission
Owner and Generator Owner

34

Proposed VSLs – TPL-007-2, R9

90 calendar days and less than
or equal to 100 calendar days
after receipt of a written
request.

100 calendar days and less than
or equal to 110 calendar days
after receipt of a written
request.

110 calendar days after receipt
of a written request.

that owns each applicable BES
power transformer in the
planning area;
OR
The responsible entity did not
provide the effective GIC time
series, GIC(t), upon written
request.

VSL Justifications – TPL-007-2, R9

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance
FERC VSL G2
Violation Severity Level
Assignments Should Ensure

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale.
There is no prior compliance obligation related to supplemental GMD Vulnerability Assessment.
However, the requirement is similar to approved TPL-007-1, Requirement R5 (unchanged in proposed
TPL-007-2 Requirement R5). That requirement also has a graduated scale for VSLs.

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

35

VSL Justifications – TPL-007-2, R9

Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

Guideline 2a: The proposed VSL is not binary.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

36

VRF Justifications – TPL-007-2, R10
Proposed VRF

Medium

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Medium is consistent with approved
TPL-007-1 Requirement R6 (unchanged in proposed TPL-007-2 Requirement R6), which requires
responsible entities to conduct a benchmark thermal impact assessment for solely and jointly owned
applicable transformers and provide results including suggested actions to mitigate identified impacts
to planning entities.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the
NERC VRF Definition. Failure to conduct a supplemental transformer thermal impact assessment could
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or
cascading.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion

FERC VRF G4 Discussion

FERC VRF G5 Discussion

Proposed VSLs – TPL-007-2, R10
Lower

Moderate

The responsible entity failed to
conduct a supplemental thermal
impact assessment for 5% or

The responsible entity failed to
conduct a supplemental thermal
impact assessment for more

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

High

Severe

The responsible entity failed to
The responsible entity failed to
conduct a supplemental thermal conduct a supplemental thermal
impact assessment for more
impact assessment for more

37

Proposed VSLs – TPL-007-2, R10

less or one of its solely owned
and jointly owned applicable
BES power transformers
(whichever is greater) where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater per
phase;
OR
The responsible entity
conducted a supplemental
thermal impact assessment for
its solely owned and jointly
owned applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater per
phase but did so more than 24
calendar months and less than
or equal to 26 calendar months
of receiving GIC flow
information specified in
Requirement R9, Part 9.1.

than 5% up to (and including)
10% or two of its solely owned
and jointly owned applicable
BES power transformers
(whichever is greater) where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater per
phase;
OR
The responsible entity
conducted a supplemental
thermal impact assessment for
its solely owned and jointly
owned applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater per
phase but did so more than 26
calendar months and less than
or equal to 28 calendar months
of receiving GIC flow
information specified in
Requirement R9, Part 9.1;
OR

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

than 10% up to (and including)
15% or three of its solely owned
and jointly owned applicable
BES power transformers
(whichever is greater) where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater per
phase;
OR
The responsible entity
conducted a supplemental
thermal impact assessment for
its solely owned and jointly
owned applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater per
phase but did so more than 28
calendar months and less than
or equal to 30 calendar months
of receiving GIC flow
information specified in
Requirement R9, Part 9.1;
OR

than 15% or more than three of
its solely owned and jointly
owned applicable BES power
transformers (whichever is
greater) where the maximum
effective GIC value provided in
Requirement R9, Part 9.1, is 85
A or greater per phase;
OR
The responsible entity
conducted a supplemental
thermal impact assessment for
its solely owned and jointly
owned applicable BES power
transformers where the
maximum effective GIC value
provided in Requirement R9,
Part 9.1, is 85 A or greater per
phase but did so more than 30
calendar months of receiving
GIC flow information specified in
Requirement R9, Part 9.1;
OR
The responsible entity failed to
include three of the required
elements as listed in

38

Proposed VSLs – TPL-007-2, R10

The responsible entity failed to
include one of the required
elements as listed in
Requirement R10, Parts 10.1
through 10.3.

The responsible entity failed to
include two of the required
elements as listed in
Requirement R10, Parts 10.1
through 10.3.

Requirement R10, Parts 10.1
through 10.3.

VSL Justifications – TPL-007-2, R10

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance
FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale.
There is no prior compliance obligation related to supplemental thermal impact assessment. However,
the requirement is similar to approved TPL-007-1, Requirement R6 (unchanged in proposed TPL-007-2
Requirement R6). That requirement also has a graduated scale for VSLs.

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

Guideline 2a: The proposed VSL is not binary.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

39

VSL Justifications – TPL-007-2, R10

Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

40

VRF Justifications – TPL-007-2, R11
Proposed VRF

Lower

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Lower is consistent with approved
Reliability Standards requiring entities to implement processes to obtain data. These include Reliability
Standard MOD-032-1 Requirement R1 and Reliability Standard IRO-010-2 Requirement R1.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of Lower is consistent with the NERC
VRF Definition. Failure to obtain GIC monitor data from at least one GIC monitor located in the system
would not be expected to adversely affect the electrical state or capability of the Bulk Electric System,
or the ability to effectively monitor, control, or restore the Bulk Electric System.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion
FERC VRF G4 Discussion

FERC VRF G5 Discussion

Proposed VSLs – TPL-007-2, R11
Lower

N/A

Moderate

N/A

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

High

N/A

Severe

The responsible entity did not
implement a process to obtain
GIC monitor data from at least
one GIC monitor located in the
Planning Coordinator’s planning
area or other part of the system
included in the Planning

41

Proposed VSLs – TPL-007-2, R11

Coordinator’s GIC System
Model.

VSL Justifications – TPL-007-2, R11

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance
FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to
evaluate degrees of compliance. A VSL of Severe is assigned for non-compliance.
There is no prior compliance obligation for this requirement.

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

Guideline 2a: The proposed VSL is binary and assigned a Severe VSL.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

42

VSL Justifications – TPL-007-2, R11

Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

FERC VSL G3
Violation Severity Level
Assignment Should Be
Consistent with the
Corresponding Requirement

The proposed VSL is worded consistently with the corresponding requirement.

FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

43

VRF Justifications – TPL-007-2, R12
Proposed VRF

Lower

FERC VRF G1 Discussion

Guideline 1- Consistency w/ Blackout Report: N/A

FERC VRF G2 Discussion

Guideline 2- Consistency within a Reliability Standard: The requirement has no sub-requirements so a
single VRF was assigned.
Guideline 3- Consistency among Reliability Standards. A VRF of Lower is consistent with approved
Reliability Standards requiring entities to implement processes to obtain data. These include Reliability
Standard MOD-032-1 Requirement R1 and Reliability Standard IRO-010-2 Requirement R1.
Guideline 4- Consistency with NERC Definitions of VRFs. The VRF of Lower is consistent with the NERC
VRF Definition. Failure to obtain geomagnetic field data for the planning area would not be expected
to adversely affect the electrical state or capability of the Bulk Electric System, or the ability to
effectively monitor, control, or restore the Bulk Electric System.
Guideline 5- Treatment of Requirements that Co-mingle More than One Obligation. This requirement
does not co-mingle a higher-risk reliability objective with a lesser- risk reliability objective.

FERC VRF G3 Discussion
FERC VRF G4 Discussion

FERC VRF G5 Discussion

Proposed VSLs – TPL-007-2, R12
Lower

N/A

Moderate

N/A

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

High

N/A

Severe

The responsible entity did not
implement a process to obtain
geomagnetic field data for its
Planning Coordinator’s planning
area.

44

VSL Justifications – TPL-007-2, R12

NERC VSL Guidelines
FERC VSL G1
Violation Severity Level
Assignments Should Not Have
the Unintended Consequence of
Lowering the Current Level of
Compliance

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to
evaluate degrees of compliance. A VSL of Severe is assigned for non-compliance.
There is no prior compliance obligation for this requirement.

FERC VSL G2
Violation Severity Level
Assignments Should Ensure
Uniformity and Consistency in
the Determination of Penalties
Guideline 2a: The Single
Violation Severity Level
Assignment Category for
"Binary" Requirements Is Not
Consistent
Guideline 2b: Violation Severity
Level Assignments that Contain
Ambiguous Language

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties.

FERC VSL G3
Violation Severity Level
Assignment Should Be

The proposed VSL is worded consistently with the corresponding requirement.

Guideline 2a: The proposed VSL is binary and assigned a Severe VSL.

Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency
in the determination of similar penalties for similar violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

45

VSL Justifications – TPL-007-2, R12

Consistent with the
Corresponding Requirement
FERC VSL G4
Violation Severity Level
Assignment Should Be Based on
A Single Violation, Not on A
Cumulative Number of
Violations

The proposed VSL is not based on a cumulative number of violations.

TPL-007-2 − Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8, 2017

46

Consideration of Directives
Reliability Standard for Transmission System Planned Performance for Geomagnetic Disturbance Events
Order No. 830, 156 FERC ¶ 61,215 (Sep. 22, 2016)
approving Reliability Standard TPL-007-1

# P
1) PP 44
47-49

Directive/Guidance
MODIFY THE BENCHMARK GMD EVENT re SPATIAL AVERAGING
P44: “[T]he Commission, as proposed in the NOPR, directs NERC to
develop revisions to the benchmark GMD event definition so that the
reference peak geoelectric field amplitude component is not based
solely on spatially-averaged data.”
P47: “Without prejudging how NERC proposes to address the
Commission’s directive, NERC’s response to this directive should
satisfy the NOPR’s concern that reliance on spatially-averaged data
alone does not address localized peaks that could potentially affect
the reliable operation of the Bulk-Power System.”
P48: “NERC could revise [the standard] to apply a higher reference
peak geoelectric field amplitude value to assess the impact of
localized hot spots on the Bulk-Power System, as suggested by the
Trade Associations.”

Resolution
The directive is addressed in proposed TPL-007-2
through Requirements for applicable entities to perform
supplemental GMD Vulnerability Assessments based on
the supplemental GMD event. The supplemental GMD
event is a defined event for assessing system
performance that is not based on spatially-averaged
data.
The supplemental GMD event is described in the
standard drafting team's (SDT) white paper available on
the project page:
http://www.nerc.com/pa/Stand/Pages/Project-201303-Geomagnetic-Disturbance-Mitigation.aspx

P49: “Consistent with Order No. 779, the Commission does not
specify a particular reference peak geoelectric field amplitude value
that should be applied to hot spots given present uncertainties.”

2) P65

REVISE R6 RE SPATIAL AVERAGING
P65: “Consistent with our determination above regarding the
reference peak geoelectric field amplitude value, the Commission
directs NERC to revise Requirement R6 to require registered entities
2

The directive is addressed in proposed TPL-007-2
Requirements R9 and R10. Applicable entities use
geomagnetically-induced current (GIC) information for
the supplemental GMD event to perform supplemental
thermal impact assessments of applicable power

#

P

Directive/Guidance
to apply spatially averaged and non-spatially averaged peak
geoelectric field values, or some equally efficient and effective
alternative, when conducting thermal impact assessments.”

Resolution
transformers.
Requirement R9 obligates responsible Planning
Coordinators and Transmission Planners to provide GIC
flow information to Transmission Owners and Generator
Owners for performing supplemental thermal impact
assessments. The GIC flow information is based on the
supplemental GMD event.
Requirement R10 obligates Transmission Owners and
Generator Owners to perform supplemental thermal
impact assessments on applicable power transformers
and provide results to responsible Planning Coordinators
and Transmission Planners.

3) PP 88
90,
91, 92

REVISE STANDARD TO REQUIRE COLLECTION OF GMD DATA
P 88: “The Commission … adopts the NOPR proposal in relevant part
an directs NERC to develop revisions to Reliability Standard TPL-007-1
to require responsible entities to collect GIC monitoring and
magnetometer data as necessary to enable model validation and
situational awareness, including from any devices that must be added
to meet this need.
The NERC standard drafting team should address the criteria for
collecting GIC monitoring and magnetometer data discussed below
and provide registered entities with sufficient guidance in terms of
defining the data that must be collected, and NERC should propose in
the GMD research work plan how it will determine and report on the
degree to which industry is following that guidance.”
GIC Requirements
P 91: “Each responsible entity that is a transmission owner should be
3

The directive is addressed in proposed TPL-007-2
Requirements R11 and R12.
Requirement R11 obligates responsible Planning
Coordinators and Transmission Planners to implement a
process to obtain GIC monitor data from at least one GIC
monitor located in the Planning Coordinator's planning
area or other part of the system included in the Planning
Coordinator's GIC System model. The SDT described GIC
data collection criteria in the guidance section to
promote consistency in achieving the reliability objective
and provide responsible entities with flexibility to tailor
procedures to their planning area. The guidance
addresses the following considerations: monitor
locations, monitor specifications, sampling interval,
collection periods, data format, and data retention.

#

P

Directive/Guidance
required to collect necessary GIC monitoring data. However, a
transmission owner should be able to apply for an exemption from
the GIC monitoring data collection requirement if it demonstrates
that little or no value would be added to planning and operations.
In developing a requirement regarding the collection of GIC
monitoring data, NERC should consider the following criteria
discussed at the March 1, 2016 Technical Conference: (1) the GIC data
is from areas found to have high GIC based on system studies; (2) the
GIC data comes from sensitive installations and key parts of the
transmission grid; and (3) the data comes from GIC monitors that are
not situated near transportation systems using direct current (e.g.,
subways or light rail.”
Magnetometer Requirements
P90: “In developing a requirement regarding the collection of
magnetometer data, NERC should consider the following criteria
discussed at the March 1, 2016 Technical Conference: (1) the data is
sampled at a cadence of at least 10-seconds or faster; (2) the data
comes from magnetometers that are physically close to GIC monitors;
(3) the data comes from magnetometers that are not near sources of
magnetic interference (e.g., roads and local distribution networks);
and (4) data is collected from magnetometers spread across wide
latitudes and longitudes and from diverse physiographic regions.”
***
P 91: GIC monitoring and magnetometer locations should also be
revisited after GIC system models are run with improved ground
conductivity models. NERC may also propose to incorporate the GIC
monitoring and magnetometer data collection requirements in a
different Reliability Standard (e.g., real-time reliability monitoring and
analysis capabilities as part of the TOP Reliability Standards).

4

Resolution
Requirement R12 obligates responsible Planning
Coordinators and Transmission Planners to implement a
process to obtain geomagnetic field data for its Planning
Coordinator’s planning area. Sources of geomagnetic
field data include government observatories, installed
equipment owned or operated by the entity, and thirdparty sources. Entities are referred to INTRAMAGNET
guidance for criteria and considerations including data
sampling rate (10-s or faster) and data format. By
requiring responsible Planning Coordinators and
Transmission Planners to obtain geomagnetic field data
for their planning areas, the requirement ensures data is
obtained from diverse geographic areas (latitudes and
longitudes) of the North American Bulk-Power System.

#

P

4) P 101,
102

Directive/Guidance
P 92: “[T]he Commission determines that requiring responsible
entities to collect necessary GIC monitoring and magnetometer data,
rather than install GIC monitors and magnetometers, affords greater
flexibility while obtaining significant benefits.”

Resolution

REVISE TPL-007 TO REQUIRE DEADLINES FOR THE DEVELOPMENT
AND COMPLETION OF CORRECTIVE ACTION PLANS

The directive is addressed in proposed TPL-007-2
Requirement R7.

P 101: “The Commission directs NERC to modify Reliability Standard
TPL-007-1 to include a deadline of one year from the completion of
the GMD Vulnerability Assessments to complete the development of
corrective action plans.”

Part 7.2 specifies that responsible entities must develop
Corrective Action Plans (CAP) within one year of
completing the benchmark GMD Vulnerability
Assessment.

P 102: “The Commission also directs NERC to modify Reliability
Standard TPL-007-1 to include a two-year deadline after the
development of the corrective action plan to complete the
implementation of non-hardware mitigation and four-year deadline
to complete hardware mitigation…”

Part 7.3 requires responsible entities to include a
timetable in the CAP that must specify:
• Implementation of non-hardware mitigation
within two years of the development of the CAP;
and
• Implementation of hardware mitigation within
four years of the development of the CAP.
Part 7.4 provides responsible entities with flexibility to
revise the CAP and timetables if situations beyond the
control of the responsible entity prevent
implementation of the CAP within the specified
timetable. The provision is necessary to account for
potential planning, siting, budgeting approval, or
regulatory uncertainties associated with transmission
system projects that are not within the responsible
entity’s control. Responsible entities are obligated to
document the revised CAP and update the revised CAP
every 12 calendar months until implemented.

5

#

P

Directive/Guidance

Resolution
Requirement R8 requires responsible entities to
complete a supplemental GMD Vulnerability
Assessment, based on the supplemental GMD event, to
evaluate localized enhancements of geomagnetic field
during a severe GMD event that could potentially affect
the reliable operation of the Bulk-Power System.
Localized enhancements of geomagnetic field can result
in geoelectric field values above the spatially-averaged
benchmark in a local area. Part 8.3 specifies that if the
responsible entity concludes that there is Cascading
caused by the supplemental GMD event, then the
responsible entity shall conduct an analysis of possible
actions to reduce the likelihood or mitigate the impacts
and the event.
Proposed TPL-007-2 does not require responsible
entities to implement a Corrective Action Plan to
address impacts identified in the supplemental GMD
Vulnerability Assessment because mandatory mitigation
on the basis of the supplemental GMD Vulnerability
Assessment may not provide effective reliability benefit
or use industry resources optimally. As discussed in the
Supplemental GMD Event Description white paper, the
supplemental GMD event is based on a small number of
observed localized enhancement events that provide
only general insight into the geographic size of localized
events during severe solar storms. Additionally, the
state-of-the-art modeling tools do not provide entities
with capabilities to realistically model localized
enhancements within a severe GMD event, and as a
result entities may need to employ conservative
approaches in the GMD Vulnerability Assessment such
as applying the localized peak geoelectric field over an
6

#

P

Directive/Guidance

Resolution
entire planning area.
The approach taken in TPL-007-2 to mitigating impacts
identified in the supplemental GMD Vulnerability
Assessment provides responsible entities with flexibility
to consider and select actions based on entity-specific
factors. This is similar to the approach taken in
Reliability Standard TPL-001-4 for extreme events (TPL001-4 Requirement R3 Part 3.5).

7

Standards Announcement

Project 2013-03 Geomagnetic Disturbance Mitigation
TPL-007-2
Reminder: Initial Ballot and Non-binding Poll Open through August 11, 2017
Now Available

An initial ballot for TPL-007-2 - Transmission System Planned Performance for Geomagnetic
Disturbance Events and non-binding poll of the associated Violation Risk Factors and Violation
Severity Levels are open through 8 p.m. Eastern, Friday, August 11, 2017.
Balloting

Members of the ballot pools associated with this project can log in and submit their vote for the
standard and non-binding poll by clicking here. If you experience any difficulties in using the Standards
Balloting and Commenting System (SBS), contact Nasheema Santos.
If you are having difficulty accessing the SBS due to a forgotten password, incorrect credential error
messages, or system lock-out, contact NERC IT support directly at https://support.nerc.net/ (Monday –
Friday, 8 a.m. - 5 p.m. Eastern).
•

Passwords expire every 6 months and must be reset.

•

The SBS is not supported for use on mobile devices.

•

Please be mindful of ballot and comment period closing dates. We ask to allow at least 48 hours
for NERC support staff to assist with inquiries. Therefore, it is recommended that users try logging
into their SBS accounts prior to the last day of a comment/ballot period.

Next Steps

The ballot results will be announced and posted on the project page. The drafting team will review all
responses received during the comment period and determine the next steps of the project.
For more information on the Standards Development Process, refer to the Standard Processes
Manual.
For more information or assistance, contact Senior Standards Developer, Scott Barfield-McGinnis
(via email or at (404) 446-9689.
North American Electric Reliability Corporation
3353 Peachtree Rd, NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

Standards Announcement

Project 2013-03 Geomagnetic Disturbance Mitigation
TPL-007-2
Formal Comment Period Open through August 11, 2017
Ballot Pools Forming through July 27, 2017
Now Available

A 45-day formal comment period for TPL-007-2 - Transmission System Planned Performance for
Geomagnetic Disturbance Events, is open through 8 p.m. Eastern, Friday, August 11, 2017.
Commenting

Use the electronic form to submit comments on the standard. If you experience any difficulties in using
the electronic form, contact Nasheema Santos. An unofficial Word version of the comment form is
posted on the project page.
Join the Ballot Pools

Ballot pools are being formed through 8 p.m. Eastern, Thursday, July 27, 2017. Registered Ballot
Body members may join the ballot pools here.
If you are having difficulty accessing the SBS due to a forgotten password, incorrect credential error
messages, or system lock-out, contact NERC IT support directly at https://support.nerc.net/ (Monday
– Friday, 8 a.m. - 5 p.m. Eastern).
•

Passwords expire every 6 months and must be reset.

•

The SBS is not supported for use on mobile devices.

•

Please be mindful of ballot and comment period closing dates. We ask to allow at least 48
hours for NERC support staff to assist with inquiries. Therefore, it is recommended that users
try logging into their SBS accounts prior to the last day of a comment/ballot period.

Next Steps

Initial ballots for the standard and non-binding poll of the associated Violation Risk Factors and
Violation Severity Levels will be conducted August 2-11, 2017.
For more information on the Standards Development Process, refer to the Standard Processes Manual.
For more information or assistance, contact Senior Standards Developer, Mark Olson (via email) or at (404)
446-9760.

North American Electric Reliability Corporation
3353 Peachtree Rd, NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

Standards Announcement
Project 2013-03 Geomagnetic Disturbance Mitigation | June 28, 2017

2

NERC Balloting Tool (/)

Dashboard (/)

Users

Ballots

Comment Forms

Login (/Users/Login) / Register (/Users/Register)

BALLOT RESULTS
Comment: View Comment Results (/CommentResults/Index/95)
Ballot Name: 2013-03 Geomagnetic Disturbance Mitigation TPL-007-2 IN 1 ST
Voting Start Date: 8/2/2017 12:01:00 AM
Voting End Date: 8/11/2017 8:00:00 PM
Ballot Type: ST
Ballot Activity: IN
Ballot Series: 1
Total # Votes: 242
Total Ballot Pool: 303
Quorum: 79.87
Weighted Segment Value: 72.67
Negative
Fraction
w/
Comment

Negative
Votes w/o
Comment

Abstain

No
Vote

Ballot
Pool

Segment
Weight

Affirmative
Votes

Affirmative
Fraction

Negative
Votes w/
Comment

Segment:
1

76

1

39

0.684

18

0.316

0

8

11

Segment:
2

7

0.4

3

0.3

1

0.1

0

0

3

Segment:
3

71

1

37

0.698

16

0.302

0

5

13

Segment:
4

16

1

7

0.636

4

0.364

0

2

3

Segment:
5

70

1

31

0.674

15

0.326

0

7

17

Segment:
6

50

1

24

0.686

11

0.314

0

4

11

Segment:
7

1

0

0

0

0

0

0

0

1

Segment:
8

3

0.2

2

0.2

0

0

0

0

1

0

0

0

0

0

Segment

Segment: 1
0.1
1
0.1
9 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
© 2018

Ballot
Pool

Segment
Weight

Affirmative
Votes

Affirmative
Fraction

Negative
Votes w/
Comment

Negative
Fraction
w/
Comment

Segment:
10

8

0.6

6

0.6

0

0

0

1

1

Totals:

303

6.3

150

4.578

65

1.722

0

27

61

Segment

Negative
Votes w/o
Comment

Abstain

No
Vote

BALLOT POOL MEMBERS
Show

All

Segment

Search: Search

entries

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

1

AEP - AEP Service
Corporation

Dennis Sauriol

Negative

Comments
Submitted

1

Allete - Minnesota Power,
Inc.

Jamie Monette

Abstain

N/A

1

Ameren - Ameren Services

Eric Scott

None

N/A

1

American Transmission
Company, LLC

Lauren Price

Affirmative

N/A

1

APS - Arizona Public
Service Co.

Michelle
Amarantos

Negative

Comments
Submitted

1

Associated Electric
Cooperative, Inc.

Mark Riley

Affirmative

N/A

1

Balancing Authority of
Northern California

Kevin Smith

Affirmative

N/A

1

BC Hydro and Power
Authority

Patricia
Robertson

Abstain

N/A

Negative

Comments
Submitted

1

Berkshire Hathaway
Terry Harbour
Energy - MidAmerican
© 2018 - NERC Ver 4.0.3.0
Name: ERODVSBSWB01
EnergyMachine
Co.

Joe Tarantino

Segment

Designated
Proxy

Organization

Voter

1

Bonneville Power
Administration

Kammy
RogersHolliday

Affirmative

N/A

1

Brazos Electric Power
Cooperative, Inc.

Tony Kroskey

Negative

Third-Party
Comments

1

CenterPoint Energy
Houston Electric, LLC

John Brockhan

Negative

Comments
Submitted

1

Central Hudson Gas &
Electric Corp.

Frank Pace

Affirmative

N/A

1

City Utilities of Springfield,
Missouri

Michael Buyce

None

N/A

1

Cleco Corporation

John Lindsey

Affirmative

N/A

1

Con Ed - Consolidated
Edison Co. of New York

Daniel
Grinkevich

Affirmative

N/A

1

CPS Energy

Gladys DeLaO

None

N/A

1

Duke Energy

Doug Hils

Affirmative

N/A

1

Entergy - Entergy Services,
Inc.

Oliver Burke

Affirmative

N/A

1

Eversource Energy

Quintin Lee

Affirmative

N/A

1

Exelon

Chris Scanlon

Negative

Comments
Submitted

1

FirstEnergy - FirstEnergy
Corporation

Karen Yoder

Affirmative

N/A

1

Georgia Transmission
Corporation

Jason
Snodgrass

Greg Davis

Affirmative

N/A

1

Great Plains Energy Kansas City Power and
Light Co.

James McBee

Douglas Webb

Affirmative

N/A

1

Great River Energy

Gordon Pietsch

Affirmative

N/A

1

Hydro One Networks, Inc.

Payam
Farahbakhsh

Negative

Comments
Submitted

Negative

Comments
Submitted

1

Hydro-Qu?bec
Nicolas
TransEnergie
Turcotte
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Louis Guidry

Ballot

NERC
Memo

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

1

IDACORP - Idaho Power
Company

Laura Nelson

Affirmative

N/A

1

Imperial Irrigation District

Jesus Sammy
Alcaraz

None

N/A

1

International Transmission
Company Holdings
Corporation

Michael
Moltane

None

N/A

1

KAMO Electric Cooperative

Walter Kenyon

None

N/A

1

Lakeland Electric

Larry Watt

None

N/A

1

Lincoln Electric System

Danny Pudenz

Affirmative

N/A

1

Long Island Power
Authority

Robert Ganley

Affirmative

N/A

1

Los Angeles Department of
Water and Power

faranak sarbaz

Abstain

N/A

1

M and A Electric Power
Cooperative

William Price

Affirmative

N/A

1

Manitoba Hydro

Mike Smith

Negative

Comments
Submitted

1

MEAG Power

David Weekley

Abstain

N/A

1

Minnkota Power
Cooperative Inc.

Theresa Allard

Abstain

N/A

1

Muscatine Power and
Water

Andy Kurriger

Affirmative

N/A

1

N.W. Electric Power
Cooperative, Inc.

Mark Ramsey

Affirmative

N/A

1

National Grid USA

Michael Jones

Affirmative

N/A

1

Nebraska Public Power
District

Jamison
Cawley

Abstain

N/A

1

New York Power Authority

Salvatore
Spagnolo

Affirmative

N/A

1

NextEra Energy - Florida
Power and Light Co.

Mike ONeil

Affirmative

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Stephanie Burns

Scott Miller

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

1

NiSource - Northern
Indiana Public Service Co.

Steve
Toosevich

Negative

Comments
Submitted

1

Northeast Missouri Electric
Power Cooperative

Kevin White

Affirmative

N/A

1

NorthWestern Energy

Belinda Tierney

None

N/A

1

OGE Energy - Oklahoma
Gas and Electric Co.

Terri Pyle

Affirmative

N/A

1

Omaha Public Power
District

Doug
Peterchuck

Negative

Comments
Submitted

1

Oncor Electric Delivery

Lee Maurer

Affirmative

N/A

1

Peak Reliability

Scott Downey

Affirmative

N/A

1

Platte River Power
Authority

Matt Thompson

Affirmative

N/A

1

PNM Resources - Public
Service Company of New
Mexico

Laurie Williams

Negative

Comments
Submitted

1

Portland General Electric
Co.

Scott Smith

None

N/A

1

PPL Electric Utilities
Corporation

Brenda Truhe

Affirmative

N/A

1

PSEG - Public Service
Electric and Gas Co.

Joseph Smith

Affirmative

N/A

1

Public Utility District No. 1
of Snohomish County

Long Duong

Abstain

N/A

1

Sacramento Municipal
Utility District

Arthur
Starkovich

Affirmative

N/A

1

Salt River Project

Steven Cobb

Negative

Comments
Submitted

1

Santee Cooper

Shawn Abrams

Negative

Comments
Submitted

1

SCANA - South Carolina
Electric and Gas Co.

Tom Hanzlik

Affirmative

N/A

None

N/A

1
Seattle City Light
Pawel Krupa
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Eric Shaw

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

NERC
Memo

Ballot

Bret Galbraith

Negative

Comments
Submitted

1

Seminole Electric
Cooperative, Inc.

Mark Churilla

1

Sempra - San Diego Gas
and Electric

Martine Blair

Affirmative

N/A

1

Sho-Me Power Electric
Cooperative

Peter Dawson

Affirmative

N/A

1

Southern Company Southern Company
Services, Inc.

Katherine
Prewitt

Negative

Comments
Submitted

1

Sunflower Electric Power
Corporation

Paul Mehlhaff

Negative

Third-Party
Comments

1

Tacoma Public Utilities
(Tacoma, WA)

John Merrell

Affirmative

N/A

1

Tallahassee Electric (City of
Tallahassee, FL)

Scott Langston

Abstain

N/A

1

Tennessee Valley Authority

Howell Scott

Affirmative

N/A

1

Tri-State G and T
Association, Inc.

Tracy Sliman

Negative

Comments
Submitted

1

VELCO -Vermont Electric
Power Company, Inc.

Randy Buswell

None

N/A

1

Westar Energy

Kevin Giles

Affirmative

N/A

1

Western Area Power
Administration

sean erickson

Affirmative

N/A

1

Xcel Energy, Inc.

Dean Schiro

Affirmative

N/A

2

California ISO

Richard Vine

None

N/A

2

Electric Reliability Council
of Texas, Inc.

Brandon
Gleason

None

N/A

2

ISO New England, Inc.

Michael Puscas

Negative

Comments
Submitted

2

Midcontinent ISO, Inc.

Ellen Oswald

None

N/A

2

New York Independent
System Operator

Gregory
Campoli

Affirmative

N/A

Affirmative

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
2
PJM Interconnection, L.L.C.
Mark Holman

Joshua Eason

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

2

Southwest Power Pool, Inc.
(RTO)

Charles Yeung

Affirmative

N/A

3

AEP

Aaron Austin

Negative

Comments
Submitted

3

AES - Indianapolis Power
and Light Co.

Bette White

None

N/A

3

Ameren - Ameren Services

David Jendras

None

N/A

3

APS - Arizona Public
Service Co.

Vivian Vo

Negative

Comments
Submitted

3

Austin Energy

W. Dwayne
Preston

Affirmative

N/A

3

Avista - Avista Corporation

Scott Kinney

None

N/A

3

Basin Electric Power
Cooperative

Jeremy Voll

Affirmative

N/A

3

BC Hydro and Power
Authority

Hootan
Jarollahi

Abstain

N/A

3

Berkshire Hathaway
Energy - MidAmerican
Energy Co.

Annette
Johnston

Darnez Gresham

Negative

Comments
Submitted

3

Black Hills Corporation

Eric Egge

Maryanne
Darling-Reich

None

N/A

3

Bonneville Power
Administration

Rebecca
Berdahl

Affirmative

N/A

3

Central Electric Power
Cooperative (Missouri)

Adam Weber

Affirmative

N/A

3

City of Vero Beach

Ginny Beigel

Negative

Comments
Submitted

3

Clark Public Utilities

Jack Stamper

None

N/A

3

Cleco Corporation

Michelle Corley

Affirmative

N/A

3

CMS Energy - Consumers
Energy Company

Karl
Blaszkowski

Affirmative

N/A

3

Colorado Springs Utilities

Hillary Dobson

None

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Brandon
McCormick

Louis Guidry

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

3

Con Ed - Consolidated
Edison Co. of New York

Peter Yost

Affirmative

N/A

3

Cowlitz County PUD

Russell Noble

Affirmative

N/A

3

Dominion - Dominion
Resources, Inc.

Connie Lowe

Affirmative

N/A

3

DTE Energy - Detroit
Edison Company

Karie Barczak

Affirmative

N/A

3

Duke Energy

Lee Schuster

Affirmative

N/A

3

Edison International Southern California Edison
Company

Romel Aquino

Affirmative

N/A

3

Eversource Energy

Mark Kenny

None

N/A

3

Exelon

John Bee

Negative

Comments
Submitted

3

FirstEnergy - FirstEnergy
Corporation

Aaron
Ghodooshim

Affirmative

N/A

3

Florida Municipal Power
Agency

Joe McKinney

Negative

Comments
Submitted

3

Gainesville Regional
Utilities

Ken Simmons

Negative

Third-Party
Comments

3

Georgia System Operations
Corporation

Scott McGough

Affirmative

N/A

3

Great Plains Energy Kansas City Power and
Light Co.

Jessica Tucker

Affirmative

N/A

3

Great River Energy

Brian Glover

Affirmative

N/A

3

Hydro One Networks, Inc.

Paul
Malozewski

Negative

Third-Party
Comments

3

Lakeland Electric

David Hadzima

None

N/A

3

Lincoln Electric System

Jason Fortik

Affirmative

N/A

3

M and A Electric Power
Cooperative

Stephen Pogue

Affirmative

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Brandon
McCormick

Douglas Webb

Segment

Organization

Voter

3

Manitoba Hydro

Karim AbdelHadi

3

MEAG Power

Roger Brand

3

Modesto Irrigation District

Jack Savage

3

Muscatine Power and
Water

3

Designated
Proxy

Ballot

NERC
Memo

Negative

Comments
Submitted

Scott Miller

Abstain

N/A

Nick Braden

Affirmative

N/A

Seth
Shoemaker

Affirmative

N/A

National Grid USA

Brian
Shanahan

Affirmative

N/A

3

Nebraska Public Power
District

Tony Eddleman

Abstain

N/A

3

New York Power Authority

David Rivera

Affirmative

N/A

3

NiSource - Northern
Indiana Public Service Co.

Aimee Harris

Negative

Comments
Submitted

3

NW Electric Power
Cooperative, Inc.

John Stickley

Affirmative

N/A

3

Ocala Utility Services

Randy Hahn

Negative

Third-Party
Comments

3

OGE Energy - Oklahoma
Gas and Electric Co.

Donald
Hargrove

Affirmative

N/A

3

Omaha Public Power
District

Aaron Smith

Negative

Comments
Submitted

3

Owensboro Municipal
Utilities

Thomas Lyons

Affirmative

N/A

3

Platte River Power
Authority

Jeff Landis

Affirmative

N/A

3

PNM Resources - Public
Service Company of New
Mexico

Lynn Goldstein

None

N/A

3

Portland General Electric
Co.

Angela Gaines

Abstain

N/A

3

PPL - Louisville Gas and
Electric Co.

Charles
Freibert

Affirmative

N/A

Affirmative

N/A

3
PSEG - Public Service
Jeffrey Mueller
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
Electric and Gas Co.

Shelly Dineen

Segment

Organization

Voter

3

Puget Sound Energy, Inc.

Lynda Kupfer

3

Sacramento Municipal
Utility District

Nicole Looney

3

Salt River Project

3

Designated
Proxy

Ballot

NERC
Memo

None

N/A

Affirmative

N/A

Rudy Navarro

Negative

Comments
Submitted

Santee Cooper

James Poston

Negative

Comments
Submitted

3

SCANA - South Carolina
Electric and Gas Co.

Clay Young

None

N/A

3

Seattle City Light

Tuan Tran

Affirmative

N/A

3

Seminole Electric
Cooperative, Inc.

James Frauen

Negative

Comments
Submitted

3

Sempra - San Diego Gas
and Electric

Bridget Silvia

Affirmative

N/A

3

Snohomish County PUD
No. 1

Mark Oens

Abstain

N/A

3

Southern Company Alabama Power Company

R. Scott Moore

Negative

Comments
Submitted

3

Southern Indiana Gas and
Electric Co.

Fred Frederick

Affirmative

N/A

3

Tacoma Public Utilities
(Tacoma, WA)

Marc
Donaldson

Affirmative

N/A

3

Tallahassee Electric (City of
Tallahassee, FL)

John Williams

None

N/A

3

TECO - Tampa Electric Co.

Ronald
Donahey

None

N/A

3

Tennessee Valley Authority

Ian Grant

Affirmative

N/A

3

WEC Energy Group, Inc.

Thomas
Breene

Affirmative

N/A

3

Westar Energy

Bo Jones

Affirmative

N/A

3

Xcel Energy, Inc.

Michael Ibold

Affirmative

N/A

None

N/A

4
American Public Power
Jack Cashin
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
Association

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

4

Austin Energy

Esther Weekes

Affirmative

N/A

4

FirstEnergy - FirstEnergy
Corporation

Anthony Solic

Affirmative

N/A

4

Florida Municipal Power
Agency

Carol Chinn

Negative

Comments
Submitted

4

Georgia System Operations
Corporation

Guy Andrews

Affirmative

N/A

4

Keys Energy Services

Jeffrey
Partington

Brandon
McCormick

Negative

Comments
Submitted

4

North Carolina Electric
Membership Corporation

John Lemire

Scott Brame

Negative

Third-Party
Comments

4

Oklahoma Municipal Power
Authority

Ashley Stringer

None

N/A

4

Public Utility District No. 1
of Snohomish County

John Martinsen

Abstain

N/A

4

Sacramento Municipal
Utility District

Beth Tincher

Affirmative

N/A

4

Seattle City Light

Hao Li

Affirmative

N/A

4

Seminole Electric
Cooperative, Inc.

Michael Ward

Negative

Comments
Submitted

4

South Mississippi Electric
Power Association

Steve
McElhaney

None

N/A

4

Tacoma Public Utilities
(Tacoma, WA)

Hien Ho

Affirmative

N/A

4

Utility Services, Inc.

Brian EvansMongeon

Abstain

N/A

4

WEC Energy Group, Inc.

Anthony
Jankowski

Affirmative

N/A

5

AEP

Thomas Foltz

Negative

Comments
Submitted

5

Ameren - Ameren Missouri

Sam Dwyer

None

N/A

Negative

Comments
Submitted

5

APS - Arizona Public
Kasey
Service Co.
Bohannon
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Brandon
McCormick

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

5

Associated Electric
Cooperative, Inc.

Brad Haralson

Affirmative

N/A

5

Austin Energy

Jeanie Doty

Affirmative

N/A

5

Avista - Avista Corporation

Glen Farmer

Affirmative

N/A

5

Basin Electric Power
Cooperative

Mike Kraft

Affirmative

N/A

5

Berkshire Hathaway - NV
Energy

Eric
Schwarzrock

Negative

Comments
Submitted

5

Boise-Kuna Irrigation
District - Lucky Peak Power
Plant Project

Mike Kukla

Affirmative

N/A

5

Bonneville Power
Administration

Francis Halpin

Affirmative

N/A

5

Brazos Electric Power
Cooperative, Inc.

Shari Heino

None

N/A

5

California Department of
Water Resources

ASM Mostafa

None

N/A

5

Choctaw Generation
Limited Partnership, LLLP

Rob Watson

Negative

Third-Party
Comments

5

City of Independence,
Power and Light
Department

Jim Nail

None

N/A

5

Cleco Corporation

Stephanie
Huffman

Affirmative

N/A

5

CMS Energy - Consumers
Energy Company

David
Greyerbiehl

Affirmative

N/A

5

Colorado Springs Utilities

Jeff Icke

None

N/A

5

Con Ed - Consolidated
Edison Co. of New York

Dermot Smyth

Affirmative

N/A

5

Duke Energy

Dale Goodwine

Affirmative

N/A

5

Edison International Southern California Edison
Company

Thomas
Rafferty

Affirmative

N/A

Affirmative

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
5
Eversource Energy
Timothy Reyher

Jeffrey Watkins

Louis Guidry

Colby Bellville

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

5

Exelon

Ruth Miller

Negative

Comments
Submitted

5

FirstEnergy - FirstEnergy
Solutions

Robert Loy

Affirmative

N/A

5

Florida Municipal Power
Agency

David
Schumann

Brandon
McCormick

Negative

Comments
Submitted

5

Great Plains Energy Kansas City Power and
Light Co.

Harold Wyble

Douglas Webb

Affirmative

N/A

5

Great River Energy

Preston Walsh

Affirmative

N/A

5

Herb Schrayshuen

Herb
Schrayshuen

Affirmative

N/A

5

JEA

John Babik

None

N/A

5

Kissimmee Utility Authority

Mike Blough

Negative

Comments
Submitted

5

Lakeland Electric

Jim Howard

Affirmative

N/A

5

Lincoln Electric System

Kayleigh
Wilkerson

Affirmative

N/A

5

Lower Colorado River
Authority

Wesley Maurer

Negative

Comments
Submitted

5

Luminant - Luminant
Generation Company LLC

Alshare
Hughes

Abstain

N/A

5

Manitoba Hydro

Yuguang Xiao

Negative

Comments
Submitted

5

Massachusetts Municipal
Wholesale Electric
Company

David Gordon

Abstain

N/A

5

MEAG Power

Steven Grego

Abstain

N/A

5

Muscatine Power and
Water

Neal Nelson

None

N/A

5

National Grid USA

Elizabeth
Spivak

None

N/A

Abstain

N/A

5
NB Power Corporation
Laura McLeod
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Brandon
McCormick

Scott Miller

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

5

Nebraska Public Power
District

Don Schmit

Abstain

N/A

5

NiSource - Northern
Indiana Public Service Co.

Sarah
Gasienica

Negative

Comments
Submitted

5

North Carolina Electric
Membership Corporation

Robert Beadle

Negative

Third-Party
Comments

5

Northern California Power
Agency

Marty Hostler

Negative

Comments
Submitted

5

OGE Energy - Oklahoma
Gas and Electric Co.

John Rhea

Affirmative

N/A

5

Oglethorpe Power
Corporation

Donna Johnson

None

N/A

5

Omaha Public Power
District

Mahmood Safi

Negative

Comments
Submitted

5

Orlando Utilities
Commission

Richard Kinas

None

N/A

5

Pacific Gas and Electric
Company

Alex Chua

None

N/A

5

Portland General Electric
Co.

Ryan Olson

Abstain

N/A

5

PPL - Louisville Gas and
Electric Co.

Dan Wilson

Affirmative

N/A

5

PSEG - PSEG Fossil LLC

Tim Kucey

Affirmative

N/A

5

Public Utility District No. 1
of Snohomish County

Sam Nietfeld

Abstain

N/A

5

Public Utility District No. 2
of Grant County,
Washington

Alex Ybarra

None

N/A

5

Puget Sound Energy, Inc.

Eleanor Ewry

None

N/A

5

Sacramento Municipal
Utility District

Susan Oto

Affirmative

N/A

5

Salt River Project

Kevin Nielsen

None

N/A

Negative

Comments
Submitted

5
Santee Cooper
Tommy Curtis
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Scott Brame

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

5

SCANA - South Carolina
Electric and Gas Co.

Alyssa Hubbard

Affirmative

N/A

5

Seattle City Light

Mike Haynes

Affirmative

N/A

5

Seminole Electric
Cooperative, Inc.

Brenda Atkins

None

N/A

5

Sempra - San Diego Gas
and Electric

Jerome Gobby

Affirmative

N/A

5

Southern Company Southern Company
Generation

William D.
Shultz

Negative

Comments
Submitted

5

SunPower

Bradley Collard

Affirmative

N/A

5

Tacoma Public Utilities
(Tacoma, WA)

Chris Mattson

Affirmative

N/A

5

TECO - Tampa Electric Co.

R James
Rocha

None

N/A

5

Tennessee Valley Authority

M Lee Thomas

Affirmative

N/A

5

Tri-State G and T
Association, Inc.

Mark Stein

None

N/A

5

WEC Energy Group, Inc.

Linda Horn

Affirmative

N/A

5

Westar Energy

Laura Cox

Affirmative

N/A

5

Xcel Energy, Inc.

Gerry Huitt

Affirmative

N/A

6

AEP - AEP Marketing

Dan Ewing

Negative

Comments
Submitted

6

Ameren - Ameren Services

Robert
Quinlivan

None

N/A

6

APS - Arizona Public
Service Co.

Bobbi Welch

Negative

Comments
Submitted

6

Austin Energy

Andrew Gallo

Affirmative

N/A

6

Basin Electric Power
Cooperative

Paul Huettl

Affirmative

N/A

Affirmative

N/A

6

Berkshire Hathaway Sandra Shaffer
PacifiCorp
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

6

Black Hills Corporation

Eric Scherr

None

N/A

6

Bonneville Power
Administration

Andrew Meyers

Affirmative

N/A

6

Cleco Corporation

Robert Hirchak

Affirmative

N/A

6

Colorado Springs Utilities

Shannon Fair

None

N/A

6

Con Ed - Consolidated
Edison Co. of New York

Robert Winston

Affirmative

N/A

6

Duke Energy

Greg Cecil

Affirmative

N/A

6

Edison International Southern California Edison
Company

Kenya Streeter

Affirmative

N/A

6

Entergy

Julie Hall

Affirmative

N/A

6

Exelon

Becky Webb

Negative

Comments
Submitted

6

FirstEnergy - FirstEnergy
Solutions

Ann Ivanc

Affirmative

N/A

6

Florida Municipal Power
Agency

Richard
Montgomery

Brandon
McCormick

Negative

Comments
Submitted

6

Florida Municipal Power
Pool

Tom Reedy

Brandon
McCormick

Negative

Comments
Submitted

6

Great Plains Energy Kansas City Power and
Light Co.

Chris Bridges

Douglas Webb

Affirmative

N/A

6

Great River Energy

Donna
Stephenson

Michael
Brytowski

None

N/A

6

Lakeland Electric

Paul Shipps

None

N/A

6

Lincoln Electric System

Eric Ruskamp

Affirmative

N/A

6

Los Angeles Department of
Water and Power

Anton Vu

None

N/A

6

Lower Colorado River
Authority

Michael Shaw

Abstain

N/A

Abstain

N/A

6
Luminant - Luminant
Brenda
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
Energy
Hampton

Louis Guidry

Segment

Organization

Voter

6

Manitoba Hydro

Blair Mukanik

6

Modesto Irrigation District

James McFall

6

Muscatine Power and
Water

6

Designated
Proxy

Ballot

NERC
Memo

Negative

Comments
Submitted

Affirmative

N/A

Ryan Streck

Affirmative

N/A

New York Power Authority

Shivaz Chopra

Affirmative

N/A

6

NextEra Energy - Florida
Power and Light Co.

Silvia Mitchell

None

N/A

6

NiSource - Northern
Indiana Public Service Co.

Joe O'Brien

Negative

Comments
Submitted

6

Northern California Power
Agency

Dennis Sismaet

Negative

Comments
Submitted

6

OGE Energy - Oklahoma
Gas and Electric Co.

Jerry Nottnagel

Affirmative

N/A

6

Platte River Power
Authority

Sabrina Martz

Affirmative

N/A

6

Portland General Electric
Co.

Daniel Mason

Abstain

N/A

6

PPL - Louisville Gas and
Electric Co.

Linn Oelker

Affirmative

N/A

6

PSEG - PSEG Energy
Resources and Trade LLC

Karla Barton

Affirmative

N/A

6

Public Utility District No. 2
of Grant County,
Washington

LeRoy
Patterson

None

N/A

6

Sacramento Municipal
Utility District

Jamie Cutlip

Affirmative

N/A

6

Salt River Project

Bobby Olsen

None

N/A

6

Santee Cooper

Michael Brown

Negative

Comments
Submitted

6

SCANA - South Carolina
Electric and Gas Co.

John Folsom

Affirmative

N/A

None

N/A

6
Seattle City Light
Charles
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
Freeman

Nick Braden

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

6

Seminole Electric
Cooperative, Inc.

Trudy Novak

Negative

Comments
Submitted

6

Snohomish County PUD
No. 1

Franklin Lu

Abstain

N/A

6

Southern Company Southern Company
Generation and Energy
Marketing

Jennifer Sykes

Negative

Comments
Submitted

6

Southern Indiana Gas and
Electric Co.

Brad Lisembee

Affirmative

N/A

6

Tennessee Valley Authority

Marjorie
Parsons

Affirmative

N/A

6

WEC Energy Group, Inc.

Scott Hoggatt

None

N/A

6

Westar Energy

Megan Wagner

Affirmative

N/A

7

Luminant Mining Company
LLC

Stewart Rake

None

N/A

8

David Kiguel

David Kiguel

Affirmative

N/A

8

Foundation for Resilient
Societies

William Harris

None

N/A

8

Massachusetts Attorney
General

Frederick Plett

Affirmative

N/A

9

Commonwealth of
Massachusetts Department
of Public Utilities

Donald Nelson

Affirmative

N/A

10

Florida Reliability
Coordinating Council

Peter Heidrich

None

N/A

10

Midwest Reliability
Organization

Russel
Mountjoy

Affirmative

N/A

10

New York State Reliability
Council

ALAN
ADAMSON

Affirmative

N/A

10

Northeast Power
Coordinating Council

Guy V. Zito

Affirmative

N/A

10

ReliabilityFirst

Anthony
Jablonski
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Affirmative

N/A

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

10

SERC Reliability
Corporation

David Greene

Affirmative

N/A

10

Texas Reliability Entity, Inc.

Rachel Coyne

Abstain

N/A

10

Western Electricity
Coordinating Council

Steven
Rueckert

Affirmative

N/A

Previous
Showing 1 to 303 of 303 entries

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

1

Next

NERC Balloting Tool (/)

Dashboard (/)

Users

Ballots

Comment Forms

Login (/Users/Login) / Register (/Users/Register)

BALLOT RESULTS
Comment: View Comment Results (/CommentResults/Index/95)
Ballot Name: 2013-03 Geomagnetic Disturbance Mitigation TPL-007-2 IN 1 NB
Voting Start Date: 8/2/2017 12:01:00 AM
Voting End Date: 8/11/2017 8:00:00 PM
Ballot Type: NB
Ballot Activity: IN
Ballot Series: 1
Total # Votes: 226
Total Ballot Pool: 293
Quorum: 77.13
Weighted Segment Value: 69.19
Ballot
Pool

Segment
Weight

Affirmative
Votes

Affirmative
Fraction

Negative
Votes

Negative
Fraction

Abstain

No
Vote

Segment:
1

71

1

32

0.696

14

0.304

15

10

Segment:
2

7

0.3

2

0.2

1

0.1

1

3

Segment:
3

69

1

28

0.683

13

0.317

13

15

Segment:
4

15

1

7

0.636

4

0.364

2

2

Segment:
5

68

1

24

0.686

11

0.314

13

20

Segment:
6

50

1

18

0.643

10

0.357

8

14

Segment:
7

1

0

0

0

0

0

0

1

Segment:
8

3

0.2

2

0.2

0

0

0

1

Segment:
9

1

0.1

1

0.1

0

0

0

0

Segment

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Ballot
Pool

Segment
Weight

Affirmative
Votes

Affirmative
Fraction

Negative
Votes

Negative
Fraction

Abstain

No
Vote

Segment:
10

8

0.5

5

0.5

0

0

2

1

Totals:

293

6.1

119

4.344

53

1.756

54

67

Segment

BALLOT POOL MEMBERS
Show

All

Segment

Search: Search

entries

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

1

AEP - AEP Service
Corporation

Dennis Sauriol

Negative

Comments
Submitted

1

Ameren - Ameren Services

Eric Scott

None

N/A

1

American Transmission
Company, LLC

Lauren Price

Abstain

N/A

1

APS - Arizona Public
Service Co.

Michelle
Amarantos

Negative

Comments
Submitted

1

Associated Electric
Cooperative, Inc.

Mark Riley

Affirmative

N/A

1

Balancing Authority of
Northern California

Kevin Smith

Affirmative

N/A

1

BC Hydro and Power
Authority

Patricia
Robertson

Abstain

N/A

1

Berkshire Hathaway
Energy - MidAmerican
Energy Co.

Terry Harbour

Negative

Comments
Submitted

1

Bonneville Power
Administration

Affirmative

N/A

Kammy
RogersHolliday
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

1

Brazos Electric Power
Cooperative, Inc.

Tony Kroskey

Negative

Comments
Submitted

1

CenterPoint Energy
Houston Electric, LLC

John Brockhan

Abstain

N/A

1

Central Hudson Gas &
Electric Corp.

Frank Pace

Affirmative

N/A

1

City Utilities of Springfield,
Missouri

Michael Buyce

None

N/A

1

Cleco Corporation

John Lindsey

Affirmative

N/A

1

Con Ed - Consolidated
Edison Co. of New York

Daniel
Grinkevich

Affirmative

N/A

1

CPS Energy

Gladys DeLaO

None

N/A

1

Duke Energy

Doug Hils

Affirmative

N/A

1

Entergy - Entergy Services,
Inc.

Oliver Burke

Affirmative

N/A

1

Eversource Energy

Quintin Lee

Affirmative

N/A

1

Exelon

Chris Scanlon

Abstain

N/A

1

FirstEnergy - FirstEnergy
Corporation

Karen Yoder

Affirmative

N/A

1

Georgia Transmission
Corporation

Jason
Snodgrass

Greg Davis

Affirmative

N/A

1

Great Plains Energy Kansas City Power and
Light Co.

James McBee

Douglas Webb

Affirmative

N/A

1

Great River Energy

Gordon Pietsch

Affirmative

N/A

1

Hydro One Networks, Inc.

Payam
Farahbakhsh

Negative

Comments
Submitted

1

Hydro-Qu?bec
TransEnergie

Nicolas
Turcotte

Negative

Comments
Submitted

1

IDACORP - Idaho Power
Company

Laura Nelson

Affirmative

N/A

None

N/A

1
Imperial Irrigation District
Jesus Sammy
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
Alcaraz

Louis Guidry

Segment

Organization

Voter

1

International Transmission
Company Holdings
Corporation

Michael
Moltane

1

KAMO Electric Cooperative

1

Designated
Proxy

None

N/A

Walter Kenyon

None

N/A

Lakeland Electric

Larry Watt

None

N/A

1

Lincoln Electric System

Danny Pudenz

Abstain

N/A

1

Long Island Power
Authority

Robert Ganley

Abstain

N/A

1

Los Angeles Department of
Water and Power

faranak sarbaz

Abstain

N/A

1

M and A Electric Power
Cooperative

William Price

Affirmative

N/A

1

Manitoba Hydro

Mike Smith

Negative

Comments
Submitted

1

MEAG Power

David Weekley

Abstain

N/A

1

Minnkota Power
Cooperative Inc.

Theresa Allard

Abstain

N/A

1

Muscatine Power and
Water

Andy Kurriger

Affirmative

N/A

1

N.W. Electric Power
Cooperative, Inc.

Mark Ramsey

Affirmative

N/A

1

National Grid USA

Michael Jones

Affirmative

N/A

1

Nebraska Public Power
District

Jamison
Cawley

Abstain

N/A

1

New York Power Authority

Salvatore
Spagnolo

Affirmative

N/A

1

NextEra Energy - Florida
Power and Light Co.

Mike ONeil

Affirmative

N/A

1

NiSource - Northern
Indiana Public Service Co.

Steve
Toosevich

Negative

Comments
Submitted

1

Northeast Missouri Electric
Power Cooperative

Kevin White

Affirmative

N/A

None

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
1
NorthWestern Energy
Belinda Tierney

Stephanie Burns

Ballot

NERC
Memo

Scott Miller

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

1

OGE Energy - Oklahoma
Gas and Electric Co.

Terri Pyle

Affirmative

N/A

1

Omaha Public Power
District

Doug
Peterchuck

Negative

Comments
Submitted

1

Peak Reliability

Scott Downey

Affirmative

N/A

1

PNM Resources - Public
Service Company of New
Mexico

Laurie Williams

Affirmative

N/A

1

Portland General Electric
Co.

Scott Smith

None

N/A

1

PPL Electric Utilities
Corporation

Brenda Truhe

Abstain

N/A

1

PSEG - Public Service
Electric and Gas Co.

Joseph Smith

Abstain

N/A

1

Public Utility District No. 1
of Snohomish County

Long Duong

Abstain

N/A

1

Sacramento Municipal
Utility District

Arthur
Starkovich

Affirmative

N/A

1

Salt River Project

Steven Cobb

Negative

Comments
Submitted

1

Santee Cooper

Shawn Abrams

Abstain

N/A

1

SCANA - South Carolina
Electric and Gas Co.

Tom Hanzlik

Affirmative

N/A

1

Seattle City Light

Pawel Krupa

None

N/A

1

Seminole Electric
Cooperative, Inc.

Mark Churilla

Negative

Comments
Submitted

1

Sempra - San Diego Gas
and Electric

Martine Blair

Affirmative

N/A

1

Sho-Me Power Electric
Cooperative

Peter Dawson

Affirmative

N/A

1

Southern Company Southern Company
Services, Inc.

Katherine
Prewitt

Negative

Comments
Submitted

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Joe Tarantino

Bret Galbraith

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

1

Sunflower Electric Power
Corporation

Paul Mehlhaff

Negative

Comments
Submitted

1

Tacoma Public Utilities
(Tacoma, WA)

John Merrell

Affirmative

N/A

1

Tallahassee Electric (City of
Tallahassee, FL)

Scott Langston

Abstain

N/A

1

Tennessee Valley Authority

Howell Scott

Affirmative

N/A

1

Tri-State G and T
Association, Inc.

Tracy Sliman

Negative

Comments
Submitted

1

Westar Energy

Kevin Giles

Affirmative

N/A

1

Western Area Power
Administration

sean erickson

Affirmative

N/A

2

California ISO

Richard Vine

None

N/A

2

Electric Reliability Council
of Texas, Inc.

Brandon
Gleason

None

N/A

2

ISO New England, Inc.

Michael Puscas

Negative

Comments
Submitted

2

Midcontinent ISO, Inc.

Ellen Oswald

None

N/A

2

New York Independent
System Operator

Gregory
Campoli

Abstain

N/A

2

PJM Interconnection, L.L.C.

Mark Holman

Affirmative

N/A

2

Southwest Power Pool, Inc.
(RTO)

Charles Yeung

Affirmative

N/A

3

AEP

Aaron Austin

Negative

Comments
Submitted

3

AES - Indianapolis Power
and Light Co.

Bette White

None

N/A

3

APS - Arizona Public
Service Co.

Vivian Vo

Negative

Comments
Submitted

3

Austin Energy

W. Dwayne
Preston

Abstain

N/A

None

N/A

3
Avista - Avista Corporation
Scott Kinney
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Joshua Eason

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

3

Basin Electric Power
Cooperative

Jeremy Voll

Affirmative

N/A

3

BC Hydro and Power
Authority

Hootan
Jarollahi

Abstain

N/A

3

Berkshire Hathaway
Energy - MidAmerican
Energy Co.

Annette
Johnston

Darnez Gresham

Negative

Comments
Submitted

3

Black Hills Corporation

Eric Egge

Maryanne
Darling-Reich

None

N/A

3

Bonneville Power
Administration

Rebecca
Berdahl

Affirmative

N/A

3

Central Electric Power
Cooperative (Missouri)

Adam Weber

Affirmative

N/A

3

City of Vero Beach

Ginny Beigel

Negative

Comments
Submitted

3

Clark Public Utilities

Jack Stamper

None

N/A

3

Cleco Corporation

Michelle Corley

Affirmative

N/A

3

CMS Energy - Consumers
Energy Company

Karl
Blaszkowski

Affirmative

N/A

3

Colorado Springs Utilities

Hillary Dobson

None

N/A

3

Con Ed - Consolidated
Edison Co. of New York

Peter Yost

Affirmative

N/A

3

Cowlitz County PUD

Russell Noble

Affirmative

N/A

3

Dominion - Dominion
Resources, Inc.

Connie Lowe

Abstain

N/A

3

DTE Energy - Detroit
Edison Company

Karie Barczak

Affirmative

N/A

3

Duke Energy

Lee Schuster

Affirmative

N/A

3

Edison International Southern California Edison
Company

Romel Aquino

Affirmative

N/A

3

Eversource Energy

Mark Kenny

None

N/A

Abstain

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
3
Exelon
John Bee

Brandon
McCormick

Louis Guidry

Segment

Organization

Voter

3

FirstEnergy - FirstEnergy
Corporation

Aaron
Ghodooshim

3

Florida Municipal Power
Agency

Joe McKinney

3

Gainesville Regional
Utilities

3

Designated
Proxy

Ballot

NERC
Memo

Affirmative

N/A

Negative

Comments
Submitted

Ken Simmons

Negative

Comments
Submitted

Georgia System Operations
Corporation

Scott McGough

Affirmative

N/A

3

Great Plains Energy Kansas City Power and
Light Co.

Jessica Tucker

Affirmative

N/A

3

Great River Energy

Brian Glover

Affirmative

N/A

3

Hydro One Networks, Inc.

Paul
Malozewski

None

N/A

3

Lakeland Electric

David Hadzima

None

N/A

3

Lincoln Electric System

Jason Fortik

Abstain

N/A

3

M and A Electric Power
Cooperative

Stephen Pogue

Affirmative

N/A

3

Manitoba Hydro

Karim AbdelHadi

Negative

Comments
Submitted

3

MEAG Power

Roger Brand

Scott Miller

Abstain

N/A

3

Modesto Irrigation District

Jack Savage

Nick Braden

Abstain

N/A

3

Muscatine Power and
Water

Seth
Shoemaker

Affirmative

N/A

3

National Grid USA

Brian
Shanahan

Affirmative

N/A

3

Nebraska Public Power
District

Tony Eddleman

Abstain

N/A

3

New York Power Authority

David Rivera

Affirmative

N/A

3

NiSource - Northern
Indiana Public Service Co.

Aimee Harris

Negative

Comments
Submitted

Affirmative

N/A

3
NW Electric Power
John Stickley
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
Cooperative, Inc.

Brandon
McCormick

Douglas Webb

Shelly Dineen

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

3

Ocala Utility Services

Randy Hahn

Negative

Comments
Submitted

3

OGE Energy - Oklahoma
Gas and Electric Co.

Donald
Hargrove

Affirmative

N/A

3

Omaha Public Power
District

Aaron Smith

Negative

Comments
Submitted

3

Owensboro Municipal
Utilities

Thomas Lyons

Affirmative

N/A

3

Platte River Power
Authority

Jeff Landis

Affirmative

N/A

3

PNM Resources - Public
Service Company of New
Mexico

Lynn Goldstein

None

N/A

3

Portland General Electric
Co.

Angela Gaines

Abstain

N/A

3

PPL - Louisville Gas and
Electric Co.

Charles
Freibert

None

N/A

3

PSEG - Public Service
Electric and Gas Co.

Jeffrey Mueller

Abstain

N/A

3

Puget Sound Energy, Inc.

Lynda Kupfer

None

N/A

3

Sacramento Municipal
Utility District

Nicole Looney

Affirmative

N/A

3

Salt River Project

Rudy Navarro

Negative

Comments
Submitted

3

Santee Cooper

James Poston

Abstain

N/A

3

SCANA - South Carolina
Electric and Gas Co.

Clay Young

None

N/A

3

Seattle City Light

Tuan Tran

None

N/A

3

Seminole Electric
Cooperative, Inc.

James Frauen

Negative

Comments
Submitted

3

Sempra - San Diego Gas
and Electric

Bridget Silvia

Affirmative

N/A

Abstain

N/A

3
Snohomish County PUD
Mark Oens
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
No. 1

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

3

Southern Company Alabama Power Company

R. Scott Moore

Negative

Comments
Submitted

3

Tacoma Public Utilities
(Tacoma, WA)

Marc
Donaldson

Affirmative

N/A

3

Tallahassee Electric (City of
Tallahassee, FL)

John Williams

None

N/A

3

TECO - Tampa Electric Co.

Ronald
Donahey

None

N/A

3

Tennessee Valley Authority

Ian Grant

Affirmative

N/A

3

WEC Energy Group, Inc.

Thomas
Breene

Affirmative

N/A

3

Westar Energy

Bo Jones

Affirmative

N/A

3

Xcel Energy, Inc.

Michael Ibold

Abstain

N/A

4

American Public Power
Association

Jack Cashin

None

N/A

4

Austin Energy

Esther Weekes

Affirmative

N/A

4

FirstEnergy - FirstEnergy
Corporation

Anthony Solic

Affirmative

N/A

4

Florida Municipal Power
Agency

Carol Chinn

Negative

Comments
Submitted

4

Georgia System Operations
Corporation

Guy Andrews

Affirmative

N/A

4

Keys Energy Services

Jeffrey
Partington

Brandon
McCormick

Negative

Comments
Submitted

4

North Carolina Electric
Membership Corporation

John Lemire

Scott Brame

Negative

Comments
Submitted

4

Public Utility District No. 1
of Snohomish County

John Martinsen

Abstain

N/A

4

Sacramento Municipal
Utility District

Beth Tincher

Affirmative

N/A

4

Seattle City Light

Hao Li

Affirmative

N/A

Negative

Comments
Submitted

4
Seminole Electric
Michael Ward
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
Cooperative, Inc.

Brandon
McCormick

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

4

South Mississippi Electric
Power Association

Steve
McElhaney

None

N/A

4

Tacoma Public Utilities
(Tacoma, WA)

Hien Ho

Affirmative

N/A

4

Utility Services, Inc.

Brian EvansMongeon

Abstain

N/A

4

WEC Energy Group, Inc.

Anthony
Jankowski

Affirmative

N/A

5

AEP

Thomas Foltz

Negative

Comments
Submitted

5

Ameren - Ameren Missouri

Sam Dwyer

None

N/A

5

APS - Arizona Public
Service Co.

Kasey
Bohannon

Negative

Comments
Submitted

5

Associated Electric
Cooperative, Inc.

Brad Haralson

Affirmative

N/A

5

Austin Energy

Jeanie Doty

Affirmative

N/A

5

Avista - Avista Corporation

Glen Farmer

Affirmative

N/A

5

Basin Electric Power
Cooperative

Mike Kraft

Affirmative

N/A

5

Berkshire Hathaway - NV
Energy

Eric
Schwarzrock

Affirmative

N/A

5

Boise-Kuna Irrigation
District - Lucky Peak Power
Plant Project

Mike Kukla

Affirmative

N/A

5

Bonneville Power
Administration

Francis Halpin

Affirmative

N/A

5

Brazos Electric Power
Cooperative, Inc.

Shari Heino

None

N/A

5

California Department of
Water Resources

ASM Mostafa

None

N/A

5

Choctaw Generation
Limited Partnership, LLLP

Rob Watson

Negative

Comments
Submitted

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Jeffrey Watkins

Segment

Organization

Voter

5

City of Independence,
Power and Light
Department

Jim Nail

5

Cleco Corporation

Stephanie
Huffman

5

CMS Energy - Consumers
Energy Company

5

Designated
Proxy

Ballot

NERC
Memo

None

N/A

Affirmative

N/A

David
Greyerbiehl

Abstain

N/A

Colorado Springs Utilities

Jeff Icke

None

N/A

5

Con Ed - Consolidated
Edison Co. of New York

Dermot Smyth

Affirmative

N/A

5

Duke Energy

Dale Goodwine

Affirmative

N/A

5

Edison International Southern California Edison
Company

Thomas
Rafferty

Affirmative

N/A

5

Eversource Energy

Timothy Reyher

Affirmative

N/A

5

Exelon

Ruth Miller

Abstain

N/A

5

FirstEnergy - FirstEnergy
Solutions

Robert Loy

Affirmative

N/A

5

Florida Municipal Power
Agency

David
Schumann

Brandon
McCormick

Negative

Comments
Submitted

5

Great Plains Energy Kansas City Power and
Light Co.

Harold Wyble

Douglas Webb

Affirmative

N/A

5

Great River Energy

Preston Walsh

Affirmative

N/A

5

Herb Schrayshuen

Herb
Schrayshuen

Affirmative

N/A

5

JEA

John Babik

None

N/A

5

Kissimmee Utility Authority

Mike Blough

Negative

Comments
Submitted

5

Lakeland Electric

Jim Howard

Affirmative

N/A

5

Lincoln Electric System

Kayleigh
Wilkerson

Abstain

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Louis Guidry

Colby Bellville

Brandon
McCormick

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

5

Lower Colorado River
Authority

Wesley Maurer

Negative

Comments
Submitted

5

Luminant - Luminant
Generation Company LLC

Alshare
Hughes

None

N/A

5

Manitoba Hydro

Yuguang Xiao

Negative

Comments
Submitted

5

Massachusetts Municipal
Wholesale Electric
Company

David Gordon

Abstain

N/A

5

MEAG Power

Steven Grego

Abstain

N/A

5

Muscatine Power and
Water

Neal Nelson

None

N/A

5

National Grid USA

Elizabeth
Spivak

None

N/A

5

NB Power Corporation

Laura McLeod

Abstain

N/A

5

Nebraska Public Power
District

Don Schmit

Abstain

N/A

5

NiSource - Northern
Indiana Public Service Co.

Sarah
Gasienica

Negative

Comments
Submitted

5

Northern California Power
Agency

Marty Hostler

Negative

Comments
Submitted

5

OGE Energy - Oklahoma
Gas and Electric Co.

John Rhea

Affirmative

N/A

5

Oglethorpe Power
Corporation

Donna Johnson

None

N/A

5

Omaha Public Power
District

Mahmood Safi

Negative

Comments
Submitted

5

Orlando Utilities
Commission

Richard Kinas

None

N/A

5

Pacific Gas and Electric
Company

Alex Chua

None

N/A

5

Portland General Electric
Co.

Ryan Olson

Abstain

N/A

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Scott Miller

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

5

PPL - Louisville Gas and
Electric Co.

Dan Wilson

Abstain

N/A

5

PSEG - PSEG Fossil LLC

Tim Kucey

Abstain

N/A

5

Public Utility District No. 1
of Snohomish County

Sam Nietfeld

Abstain

N/A

5

Public Utility District No. 2
of Grant County,
Washington

Alex Ybarra

None

N/A

5

Puget Sound Energy, Inc.

Eleanor Ewry

None

N/A

5

Sacramento Municipal
Utility District

Susan Oto

Affirmative

N/A

5

Salt River Project

Kevin Nielsen

None

N/A

5

Santee Cooper

Tommy Curtis

Abstain

N/A

5

SCANA - South Carolina
Electric and Gas Co.

Alyssa Hubbard

Affirmative

N/A

5

Seattle City Light

Mike Haynes

Affirmative

N/A

5

Seminole Electric
Cooperative, Inc.

Brenda Atkins

None

N/A

5

Sempra - San Diego Gas
and Electric

Jerome Gobby

Affirmative

N/A

5

Southern Company Southern Company
Generation

William D.
Shultz

Negative

Comments
Submitted

5

SunPower

Bradley Collard

Affirmative

N/A

5

Tacoma Public Utilities
(Tacoma, WA)

Chris Mattson

Affirmative

N/A

5

TECO - Tampa Electric Co.

R James
Rocha

None

N/A

5

Tennessee Valley Authority

M Lee Thomas

None

N/A

5

Tri-State G and T
Association, Inc.

Mark Stein

None

N/A

Abstain

N/A

5
WEC Energy Group, Inc.
Linda Horn
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

5

Westar Energy

Laura Cox

None

N/A

6

AEP - AEP Marketing

Dan Ewing

Negative

Comments
Submitted

6

Ameren - Ameren Services

Robert
Quinlivan

None

N/A

6

APS - Arizona Public
Service Co.

Bobbi Welch

Negative

Comments
Submitted

6

Austin Energy

Andrew Gallo

Affirmative

N/A

6

Basin Electric Power
Cooperative

Paul Huettl

Affirmative

N/A

6

Berkshire Hathaway PacifiCorp

Sandra Shaffer

Affirmative

N/A

6

Black Hills Corporation

Eric Scherr

None

N/A

6

Bonneville Power
Administration

Andrew Meyers

Affirmative

N/A

6

Cleco Corporation

Robert Hirchak

Affirmative

N/A

6

Colorado Springs Utilities

Shannon Fair

None

N/A

6

Con Ed - Consolidated
Edison Co. of New York

Robert Winston

Affirmative

N/A

6

Duke Energy

Greg Cecil

Affirmative

N/A

6

Edison International Southern California Edison
Company

Kenya Streeter

Affirmative

N/A

6

Entergy

Julie Hall

Affirmative

N/A

6

Exelon

Becky Webb

Abstain

N/A

6

FirstEnergy - FirstEnergy
Solutions

Ann Ivanc

Affirmative

N/A

6

Florida Municipal Power
Agency

Richard
Montgomery

Brandon
McCormick

Negative

Comments
Submitted

6

Florida Municipal Power
Pool

Tom Reedy

Brandon
McCormick

Negative

Comments
Submitted

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Louis Guidry

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

6

Great Plains Energy Kansas City Power and
Light Co.

Chris Bridges

Douglas Webb

Affirmative

N/A

6

Great River Energy

Donna
Stephenson

Michael
Brytowski

None

N/A

6

Lakeland Electric

Paul Shipps

None

N/A

6

Lincoln Electric System

Eric Ruskamp

Abstain

N/A

6

Los Angeles Department of
Water and Power

Anton Vu

None

N/A

6

Lower Colorado River
Authority

Michael Shaw

Negative

Comments
Submitted

6

Luminant - Luminant
Energy

Brenda
Hampton

Abstain

N/A

6

Manitoba Hydro

Blair Mukanik

Negative

Comments
Submitted

6

Modesto Irrigation District

James McFall

Abstain

N/A

6

Muscatine Power and
Water

Ryan Streck

Affirmative

N/A

6

New York Power Authority

Shivaz Chopra

Affirmative

N/A

6

NextEra Energy - Florida
Power and Light Co.

Silvia Mitchell

None

N/A

6

NiSource - Northern
Indiana Public Service Co.

Joe O'Brien

Negative

Comments
Submitted

6

Northern California Power
Agency

Dennis Sismaet

Negative

Comments
Submitted

6

OGE Energy - Oklahoma
Gas and Electric Co.

Jerry Nottnagel

Affirmative

N/A

6

Platte River Power
Authority

Sabrina Martz

None

N/A

6

Portland General Electric
Co.

Daniel Mason

Abstain

N/A

None

N/A

6

PPL - Louisville Gas and
Linn Oelker
Electric Co.
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

Nick Braden

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

6

PSEG - PSEG Energy
Resources and Trade LLC

Karla Barton

Abstain

N/A

6

Public Utility District No. 2
of Grant County,
Washington

LeRoy
Patterson

None

N/A

6

Sacramento Municipal
Utility District

Jamie Cutlip

Affirmative

N/A

6

Salt River Project

Bobby Olsen

None

N/A

6

Santee Cooper

Michael Brown

Abstain

N/A

6

SCANA - South Carolina
Electric and Gas Co.

John Folsom

Affirmative

N/A

6

Seattle City Light

Charles
Freeman

None

N/A

6

Seminole Electric
Cooperative, Inc.

Trudy Novak

Negative

Comments
Submitted

6

Snohomish County PUD
No. 1

Franklin Lu

Abstain

N/A

6

Southern Company Southern Company
Generation and Energy
Marketing

Jennifer Sykes

Negative

Comments
Submitted

6

Southern Indiana Gas and
Electric Co.

Brad Lisembee

None

N/A

6

Tennessee Valley Authority

Marjorie
Parsons

Affirmative

N/A

6

WEC Energy Group, Inc.

Scott Hoggatt

None

N/A

6

Westar Energy

Megan Wagner

Affirmative

N/A

7

Luminant Mining Company
LLC

Stewart Rake

None

N/A

8

David Kiguel

David Kiguel

Affirmative

N/A

8

Foundation for Resilient
Societies

William Harris

None

N/A

Affirmative

N/A

8
Massachusetts Attorney
Frederick Plett
© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01
General

Joe Tarantino

Segment

Organization

Voter

Designated
Proxy

Ballot

NERC
Memo

9

Commonwealth of
Massachusetts Department
of Public Utilities

Donald Nelson

Affirmative

N/A

10

Florida Reliability
Coordinating Council

Peter Heidrich

None

N/A

10

Midwest Reliability
Organization

Russel
Mountjoy

Affirmative

N/A

10

New York State Reliability
Council

ALAN
ADAMSON

Affirmative

N/A

10

Northeast Power
Coordinating Council

Guy V. Zito

Affirmative

N/A

10

ReliabilityFirst

Anthony
Jablonski

Affirmative

N/A

10

SERC Reliability
Corporation

David Greene

Affirmative

N/A

10

Texas Reliability Entity, Inc.

Rachel Coyne

Abstain

N/A

10

Western Electricity
Coordinating Council

Steven
Rueckert

Abstain

N/A

Previous
Showing 1 to 293 of 293 entries

© 2018 - NERC Ver 4.0.3.0 Machine Name: ERODVSBSWB01

1

Next

Standards Announcement

Project 2013-03 Geomagnetic Disturbance Mitigation
TPL-007-2
Formal Comment Period Open through August 11, 2017
Ballot Pools Forming through July 27, 2017
Now Available

A 45-day formal comment period for TPL-007-2 - Transmission System Planned Performance for
Geomagnetic Disturbance Events, is open through 8 p.m. Eastern, Friday, August 11, 2017.
Commenting

Use the electronic form to submit comments on the standard. If you experience any difficulties in using
the electronic form, contact Nasheema Santos. An unofficial Word version of the comment form is
posted on the project page.
Join the Ballot Pools

Ballot pools are being formed through 8 p.m. Eastern, Thursday, July 27, 2017. Registered Ballot
Body members may join the ballot pools here.
If you are having difficulty accessing the SBS due to a forgotten password, incorrect credential error
messages, or system lock-out, contact NERC IT support directly at https://support.nerc.net/ (Monday
– Friday, 8 a.m. - 5 p.m. Eastern).
•

Passwords expire every 6 months and must be reset.

•

The SBS is not supported for use on mobile devices.

•

Please be mindful of ballot and comment period closing dates. We ask to allow at least 48
hours for NERC support staff to assist with inquiries. Therefore, it is recommended that users
try logging into their SBS accounts prior to the last day of a comment/ballot period.

Next Steps

Initial ballots for the standard and non-binding poll of the associated Violation Risk Factors and
Violation Severity Levels will be conducted August 2-11, 2017.
For more information on the Standards Development Process, refer to the Standard Processes Manual.
For more information or assistance, contact Senior Standards Developer, Mark Olson (via email) or at (404)
446-9760.

North American Electric Reliability Corporation
3353 Peachtree Rd, NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

Standards Announcement
Project 2013-03 Geomagnetic Disturbance Mitigation | June 28, 2017

2

 

 
 

 
 

Consideration of Comments

 
  Project Name: 

 

Comment Period Start Date: 

6/28/2017 

Comment Period End Date: 

8/11/2017 

Associated Ballots:  

2013‐03 Geomagnetic Disturbance Mitigation TPL‐007‐2 IN 1 NB 
2013‐03 Geomagnetic Disturbance Mitigation TPL‐007‐2 IN 1 ST 
 
 
 

  

 

2013‐03 Geomagnetic Disturbance Mitigation | TPL‐007‐2 

 

 

  There were 58 sets of responses, including comments from approximately 147 different people from approximately 106 companies 
representing 10 of the Industry Segments as shown in the table on the following pages. 
 
All comments submitted can be reviewed in their original format on the project page.  
 
If you feel that your comment has been overlooked, please let us know immediately. Our goal is to give every comment serious consideration 
in this process. If you feel there has been an error or omission, you can contact the Senior Director of Standards and Education, Howard Gugel 
(via email) or at (404) 446‐9693.  
 
 
  
 
 
 
 
 
 
 
 

 

 
 

 

 
 
 Summary Consideration 
 
The standard drafting team (SDT) made non‐substantive revisions to Measures M5 and M9, Rationales for Requirements R7, R11, and R12, 
including a correction to a chapter reference. Additionally, the singular use of “study” in the Violation Severity Levels (VSL) for Requirement R2 
was deleted because there will be at least two studies (i.e., benchmark and supplemental), and the missing word “the” was added in the 
Moderate VSL for Requirement R4. For Requirement R8 in the VSLs, the text in the Lower VSL column was moved to be consistent with the 
order of the text in the other three columns. 
 
The heading for Attachment 1 was corrected to properly link as a part of the standard and not to identify it as supplemental material. Other 
non‐substantive revisions addressed punctuation, formatting, and conforming the document(s) to the NERC style guide, which included 
properly footnoting webpage links to reference documents. 
 
Other supporting documents, such as, the Supplemental GMD Event white paper, Thermal Screening Criterion White Paper, and Transformer 
Thermal Impact Assessment White Paper all received non‐substantive revisions addressed punctuation, formatting, and conforming the 
document(s) to the NERC style guide. A few clarifying revisions were made to address comments by stakeholders. 
 
In the Implementation Plan, the SDT clarified the phase‐in compliance dates for those Requirements that were tacitly incorporated into the 
effective date language by adding additional items under the phase‐in compliance date section. Also, the SDT corrected a technical error 
regarding Requirement R6. For example, if the standard happens to be approved quickly by governmental authorities, Requirement R6 could 
become effective prior to the TPL‐007‐1 effective date. To correct this condition, the SDT provided a six‐month phased‐in implementation for 
Requirement R6. 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

2 

 
 

Questions 
1. The SDT developed proposed Requirements R8 – R10 and the supplemental GMD event to address FERC concerns with the benchmark 
GMD event used in GMD Vulnerability Assessments. (Order No. 830 P.44, P.47‐49, P.65). The requirements will obligate responsible 
entities to perform a supplemental GMD Vulnerability Assessment based on the supplemental GMD event that accounts for potential 
impacts of localized peak geoelectric fields. Do you agree with the proposed requirements? If you do not agree, or if you agree but have 
comments or suggestions for the proposed requirements provide your recommendation and explanation. 
2. The SDT developed the Supplemental GMD Event Description white paper to provide technical justification for the supplemental 
GMD event. The purpose of the supplemental GMD event description is to provide a defined event for assessing system performance for 
a GMD event which includes a local enhancement of the geomagnetic field. Do you agree with the proposed supplemental GMD event 
and the description in the white paper? If you do not agree, or if you agree but have comments or suggestions for the supplemental 
GMD event and the description in the white paper provide your recommendation and explanation. 
3. The SDT established an 85 A per phase screening criterion for determining which power transformers are required to be assessed for 
thermal impacts from a supplemental GMD event in Requirement R10. Justification for this threshold is provided in the revised 
Screening Criterion for Transformer Thermal Impact Assessment white paper. Do you agree with the proposed 85 A per phase screening 
criterion and the technical justification for this criterion that has been added to the white paper? If you do not agree, or if you agree but 
have comments or suggestions for the screening criterion and revisions to the white paper provide your recommendation and 
explanation. 
4. The SDT revised the Transformer Thermal Impact Assessment white paper to include the supplemental GMD event. Do you agree 
with the revisions to the white paper? If you do not agree, or if you agree but have comments or suggestions on the revisions to the 
white paper provide your recommendation and explanation. 
5. The SDT developed proposed Requirement R7 to address FERC directives in Order No. 830 for establishing Corrective Action Plan 
(CAP) deadlines associated with GMD Vulnerability Assessments (P. 101, 102). Do you agree with the proposed requirement? If you do 
not agree, or if you agree but have comments or suggestions for the proposed requirement provide your recommendation and 
explanation. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

3 

 
 

6. The SDT developed Requirements R11 and R12 to address FERC directives in Order No. 830 for requiring responsible entities to collect 
GIC monitoring and magnetometer data (P. 88; P. 90‐92). Do you agree with the proposed requirements? If you do not agree, or if you 
agree but have comments or suggestions for the proposed requirements provide your recommendation and explanation. 
7. Do you agree with the proposed Implementation Plan for TPL‐007‐2? If you do not agree, or if you agree but have comments or 
suggestions for the Implementation Plan provide your recommendation and explanation. 
8. Do you agree with the Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs) for the requirements in proposed TPL‐007‐2? 
If you do not agree, or if you agree but have comments or suggestions for the VRFs and VSLs provide your recommendation and 
explanation. 
9. The SDT believes proposed TPL‐007‐2 provide entities with flexibility to meet the reliability objectives in the project Standards 
Authorization Request (SAR) in a cost effective manner. Do you agree? If you do not agree, or if you agree but have suggestions for 
improvement to enable additional cost effective approaches to meet the reliability objectives, please provide your recommendation 
and, if appropriate, technical justification. 
10. Provide any additional comments for the SDT to consider, if desired. 
 

 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

4 

 
 
 

Organization 
Name 
Brandon 
McCormick 

Name 

Segment(s) 

Brandon   
McCormick 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

Region 

FRCC 

Group Name

FMPA 

Group 
Member 
Name 
Tim Beyrle 

Group 
Group 
Group   
Member 
Member  Member 
Organization  Segment(s) Region 
City of New 
4 
Smyrna Beach 
Utilities 
Commission 

FRCC 

Jim Howard  Lakeland 
Electric 

5 

FRCC 

Lynne Mila 

City of 
Clewiston 

4 

FRCC 

Javier 
Cisneros 

Fort Pierce 
Utilities 
Authority 

3 

FRCC 

Randy Hahn  Ocala Utility 
Services 

3 

FRCC 

Don Cuevas  Beaches 
Energy 
Services 

1 

FRCC 

Jeffrey 
Partington 

Keys Energy 
Services 

4 

FRCC 

Tom Reedy  Florida 
Municipal 
Power Pool 

6 

FRCC 

Steven 
Lancaster 

3 

FRCC 

Beaches 
Energy 
Services 

5 

 
 

ACES Power  Brian Van  6 
Marketing 
Gheem 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

NA ‐ Not 
Applicable 

Mike Blough Kissimmee 
Utility 
Authority 

5 

FRCC 

Chris Adkins  City of 
Leesburg 

3 

FRCC 

Ginny Beigel City of Vero 
Beach 

3 

FRCC 

3 

SPP RE 

ACES 
Greg 
Standards 
Froehling 
Collaborators

Rayburn 
Country 
Electric 
Cooperative, 
Inc. 

Bob 
Solomon 

Hoosier Energy  1 
Rural Electric 
Cooperative, 
Inc. 

RF 

Ginger 
Mercier 

Prairie Power,  1 
Inc. 

SERC 

Shari Heino  Brazos Electric  1,5 
Power 
Cooperative, 
Inc. 

Texas RE

Mark 
Old Dominion  4 
Ringhausen  Electric 
Cooperative 

SERC 

6 

 
 
Tara Lightner Sunflower 
1 
Electric Power 
Corporation 

SPP RE 

Ryan Strom   Buckeye 
Power, Inc. 

RF 

4 

Scott Brame  North Carolina  3,4,5 
Electric 
Membership 
Corporation 
Colby 
Bellville 

MRO 

Colby 
Bellville 

 

Dana Klem  1,2,3,4,5,6 
 
 
 
 
 
 
 
 
 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

FRCC,RF,SERC  Duke Energy  Doug Hils  

MRO 

MRO NSRF 

Duke Energy   1 

SERC 

RF 

Lee Schuster  Duke Energy   3 

FRCC 

Dale 
Goodwine  

Duke Energy   5 

SERC 

Greg Cecil 

Duke Energy   6 

RF 

Joseph 
DePoorter 

Madison Gas  3,4,5,6 
& Electric 

MRO 

Larry 
Heckert 

Alliant Energy  4 

MRO 

Amy 
Casucelli 

Xcel Energy 

1,3,5,6 

MRO 

Michael 
Brytowski 

Great River 
Energy 

1,3,5,6 

MRO 

Jodi Jensen  Western Area  1,6 
Power 
Administration

MRO 

7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kayleigh 
Wilkerson 

Lincoln Electric  1,3,5,6 
System 

MRO 

Mahmood 
Safi 

Omaha Public  1,3,5,6 
Power District 

MRO 

Brad Parret  Minnesota 
Powert 
Terry 
Harbour 

Elizabeth 
Axson 

2 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

 

MRO 

MidAmerican  1,3 
Energy 
Company 

MRO 

Tom Breene  Wisconsin 
3,5,6 
Public Service 
Corporation 

MRO 

Jeremy Voll  Basin Electric  1 
Power 
Cooperative 

MRO 

Kevin Lyons  Central Iowa 
Power 
Cooperative 

1 

MRO 

Midcontinent  2 
ISO 

MRO 

ERCOT 

2 

Texas RE

IESO 

2 

NPCC 

PJM 

2 

RF 

Mike 
Morrow 
Electric 
Reliability 
Council of 
Texas, Inc. 

1,5 

IRC Standards  Elizabeth 
Review 
Axson 
Committee  Ben Li 
Mark 
Holman 

8 

 
 

Lower 
Colorado 
River 
Authority 

Michael 
Shaw 

Manitoba 
Hydro  

Mike Smith  1 

Southern 
Company ‐ 
Southern 

Pamela 
Hunter 

6 

1,3,5,6 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

 

 

SERC 

Greg 
Campoli 

NYISO 

2 

NPCC 

Terry BIlke 

Midcontinent  2 
ISO, Inc. 

MRO 

Ali Miremadi  California ISO  2 

WECC 

Matthew 
Goldberg 

ISO NE 

2 

NPCC 

Charles 
Yeung 

Southwest 
Power Pool, 
Inc. (RTO) 

2 

SPP RE 

LCRA 

1 

Texas RE

Dixie Wells 

LCRA 

5 

Texas RE

Michael 
Shaw 

LCRA 

6 

Texas RE

Yuguang 
Xiao 

Manitoba 
Hydro  

5 

MRO 

Karim Abdel‐ Manitoba 
Hadi 
Hydro  

3 

MRO 

Blair 
Mukanik 

Manitoba 
Hydro  

6 

MRO 

Mike Smith  Manitoba 
Hydro 

1 

MRO 

Katherine 
Prewitt 

1 

SERC 

LCRA 
Teresa 
Compliance  Cantwell 

Manitoba 
Hydro 

Southern 
Company 

Southern 
Company 
Services, Inc. 

9 

 
 
Company 
Services, Inc. 

Northeast 
Ruida Shu  1,2,3,4,5,6,7,8,9,10 NPCC 
Power 
Coordinating 
Council 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

R. Scott 
Moore 

Alabama 
Power 
Company 

3 

SERC 

William D. 
Shultz 

Southern 
Company 
Generation 

5 

SERC 

Jennifer G. 
Sykes 

Southern 
Company 
Generation 
and Energy 
Marketing 

6 

SERC 

RSC no Hydro  Guy Zito 
One, HQ and 
IESO 

Northeast 
NA ‐ Not 
NPCC 
Power 
Applicable 
Coordinating 
Council 

Randy 
New 
MacDonald  Brunswick 
Power 

2 

NPCC 

Wayne 
Sipperly 

New York 
Power 
Authority 

4 

NPCC 

Glen Smith 

Entergy 
Services 

4 

NPCC 

Brian 
Robinson 

Utility Services 5 

NPCC 

10 

 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

Bruce 
Metruck 

New York 
Power 
Authority 

6 

NPCC 

Alan 
Adamson 

New York 
State 
Reliability 
Council 

7 

NPCC 

Edward 
Bedder 

Orange & 
Rockland 
Utilities 

1 

NPCC 

David Burke  Orange & 
Rockland 
Utilities 

3 

NPCC 

Michele 
Tondalo 

UI 

1 

NPCC 

Laura 
Mcleod 

NB Power 

1 

NPCC 

Michael 
Forte 

Con Edison 

1 

NPCC 

Kelly Silver 

Con Edison 

3 

NPCC 

Peter Yost 

Con Edison 

4 

NPCC 

Brian 
O'Boyle 

Con Edison 

5 

NPCC 

Michael 
Schiavone 

National Grid  1 

NPCC 

11 

 
 
Michael 
Jones 

Southwest  Shannon 
Power Pool,  Mickens 
Inc. (RTO) 

2 

SPP RE 

SPP 
Standards 
Review 
Group 

National Grid  3 

NPCC 

David 
Ontario Power  5 
Ramkalawan Generation 
Inc. 

NPCC 

Quintin Lee  Eversource 
Energy 

1 

NPCC 

Kathleen 
Goodman 

ISO‐NE 

2 

NPCC 

Greg 
Campoli 

NYISO 

2 

NPCC 

Silvia 
Mitchell 

NextEra 
6 
Energy ‐ 
Florida Power 
and Light Co. 

NPCC 

Sean Bodkin  Dominion ‐ 
6 
Dominion 
Resources, Inc.

NPCC 

Shannon 
Mickens 

Southwest 
Power Pool 
Inc. 

2 

SPP RE 

Amy 
Casuscelli 

Xcel Energy 

1,3,5,6 

SPP RE 

1,3,5,6 

SPP RE 

Louis Guidry Cleco  

Don Schmit  Nebraska 
5 
Public Power 
District 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

SPP RE 

12 

 
 
Jamison 
Cawley 

Nebraska 
1 
Public Power 
District 

Scott Jordan Southwest 
Power Pool 

Santee 
Cooper 

 
 
 

Shawn 
Abrams 

1 

 

 
 
 

Santee 
Cooper  

2 

SPP RE 

Kevin Giles 

Westar Energy 1 

SPP RE 

Jonathan 
Hayes 

Southwest 
Power Pool 

2 

SPP RE 

Allan George Sunflower 
1 
Electric Power 
Corporation 

SPP RE 

Tom Abrams Santee Cooper  1 

SERC 

Rene' Free   Santee Cooper  1 

SERC 

Chris 
Wagner 

SERC 

Santee Cooper 1 

 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

 

SPP RE 

13 

 
 
Question 1 
1. The SDT developed proposed Requirements R8 – R10 and the supplemental GMD event to address FERC concerns with the benchmark 
GMD event used in GMD Vulnerability Assessments. (Order No. 830 P.44, P.47‐49, P.65). The requirements will obligate responsible 
entities to perform a supplemental GMD Vulnerability Assessment based on the supplemental GMD event that accounts for potential 
impacts of localized peak geoelectric fields. Do you agree with the proposed requirements? If you do not agree, or if you agree but have 
comments or suggestions for the proposed requirements provide your recommendation and explanation. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

No 

Document Name 

 

Comment 
AEP is concerned by the potential duplication of efforts for any assets that are brought into scope by both the Benchmark and Supplemental 
Vulnerability Assessments (R6 and R10). While it may not be the drafting team’s intent that multiple thermal impact assessments be 
conducted for the same assets, nor that two sets of suggested actions be developed to mitigate the impact of any GICs, the current draft does 
not make this explicitly clear. AEP requests that additional clarity be added so that duplicative efforts would not be necessary for any assets 
that are brought into scope under both the Benchmark and Supplemental Vulnerability Assessments. In general, the SDT should look for 
opportunities to minimize the potential duplication of work and evidence requirements throughout the drafted standard. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. It is conceivable that two separate thermal assessments may need to be done for transformers that exceed 
both GIC thresholds: One for the benchmark event and one for the supplemental event.  The distinction between the benchmark and 
supplemental thermal assessments is that the benchmark assessment may result in a Corrective Action Plan, but the supplemental 
assessment does not. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

14 

 
 
Question 1 
Comment 
It is not clear how complying with Requirements R8 to R10 will mitigate GMD risk to BES reliability.  This proposal does not address the FERC 
concerns of developing a GMD benchmark not solely based on a spatially averaged magnetometer data.  Manitoba Hydro (MH) believes that 
specifying a one methodology in the standard is not appropriate because of the diversity of the BES across the continent and different level of 
risk tolerances among the responsible entities. Instead of asking to follow a specific GMD Vulnerability Assessment methodology, MH would 
like to propose the SDT to consider providing an option in the standard where the responsible entities can develop their own GMD 
Assessment Methodology based on the technical knowledge obtained through the research work performed on GMD Vulnerability 
Assessments in their system. 
In Manitoba, for example, NRCAN has calculated the 1/100 year geoelectric field to be roughly 5 V/km at the northernmost magnetometer 
site in Manitoba (Churchill) using specific model of the earth resistivity in Manitoba. NRCAN has done similar calculations for Alberta and has 
also found the field to be much lower than 8 V/km as well. Rather than spatial averaging, NRCAN used extreme value mathematics to 
calculate the fields. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request (SAR). The existing standard already has a 
vulnerability assessment requirement that is approved and effective and subject to compliance by applicable registered entities. Any 
proposed revisions to this requirement should be addressed in a new SAR. 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
AZPS agrees with the requirements as written, but has concerns regarding the inconsistent treatment of deadline or time‐related 
requirements or sub‐requirements in the Table of Compliance Elements.  More specifically, both Requirement R8 and R9 contain 90 day 
deadlines for administrative activities.  However, these requirements/sub‐requirements are treated differently with respect to the violation 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

15 

 
 
Question 1 
severity levels (VSLs). In particular, Requirement R8 treats the failure to timely provide/respond within 90 days as one element and does not 
increase the VSL based on the duration of the delay beyond the 90 day time period.  Conversely, Requirement R9 ties the VSL directly to the 
duration of the delay beyond the 90 day time period.  AZPS notes that the activities associated with the 90 day time periods are 
administrative in nature, e.g., providing a report or a response, and, therefore, will have a minimal (if any) impact on the reliability of the Bulk 
Electric System (BES).  For this reason, AZPS recommends that the SDT conform Requirement R9 to the form provided in Requirement 
R8.  Such revision will provide consistency and more accurately reflect the actual or potential impact on the BES.   
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The timelines for the VSLs are consistent with the VSLs for Requirements R4 (benchmark) and R8 
(supplemental) as is Requirements R5 and R9. Requirements R4 and R8 cover the days tardy as an element of the requirement and its subpart 
and Requirements R5 and R9 do not. 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

No 

Document Name 

 

Comment 
Hydro‐Quebec considers that because of the specificity of its network, (on a wide area, with long transmission lines and northern location) 
the benchmark event is sufficiently severe and covers the possible impact of the localized enhancement on our grid. These requirements 
burden the responsible entities to perform additional assessments that are both costly and uneffective. 
Based on prior real measurements done on geomagnetic local disturbances in Abitibi (see reference below), we think that it would be 
preferable to wait for further analysis that takes into account real electric fields and current measures and not only magnetic measurements 
and calculated electric fields. Therefore adding a supplemental event on the already severe and pessimistic benchmark event should wait. 
Hydro Québec is currently in discussion with Natural Ressources Canada to complete an analysis using Canadian magnetometer data in the 
province of Québec. 
Hydro‐Quebec acknowledges that the requirements address the FERC concerns. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

16 

 
 
Question 1 
Reference: A study of geoelectromagnetic disturbances in Quebec. (IEEE Transactions on Power Delivery in 1998 and in 2000)1 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request (SAR) and FERC directives. The SDT 
appreciates Hydro Québec’s research in this area and how its findings might enhance the standard in the future. 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Hydro‐Quebec considers that because of the specificity of its network, (on a wide area, with long transmission lines and northern location) 
the benchmark event is sufficiently severe and covers the possible impact of the localized enhancement on our grid. These requirements 
burden the responsible entities to perform additional assessments that are both Costly and uneffective. 
Based on prior real measurements done on geomagnetic local disturbances in Abitibi (see reference below), we think that it would be 
preferable to wait for further analysis that takes into account real electric fields and current measures and not only magnetic measurements 
and calculated electric fields. Therefore adding a supplemental event on the already severe and pessimistic benchmark event should wait. 
Hydro Québec is currently in discussion with Natural Ressources Canada to complete an analysis using Canadian magnetometer data in the 
province of Québec. 
Hydro‐Quebec acknowledges that the requirements address the FERC concerns. 
Reference: A study of geoelectromagnetic disturbances in Quebec. (IEEE Transactions on Power Delivery in 1998 and in 2000)2 
Likes     0 

 

                                                       
 

11 http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=61 
2 http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=61 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

17 

 
 
Question 1 
Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request. The existing standard already has a 
vulnerability assessment requirement that is approved and effective and subject to compliance by applicable registered entities.  The 
commenter is suggesting an alternative methodology to the existing standard which is outside the scope of the SDT and should be addressed 
in a new SAR. 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
The intent of requirements R8 to R10 is not clear.  It is understood that the intent is to address the directive in FERC Order No 830; however, 
it is not clear how complying with requirements 8‐10 will mitigate GMD imposed risk to BES reliability.    
Requirement R4 requires responsible entities to perform Benchmark GMD Vulnerability Assessments (based on a benchmark GMD event) to 
identify risk to BES reliability.  Requirement R7 requires responsible entities to mitigate the identified risk by developing a corrective action 
plan.   
The new requirements R8 to R10 are asking for additional assessments and evaluations to identify risk to BES reliability.  The additional 
assessments required in R8 is arguably repeating what is required in R4 based on an amplified GMD event called supplemental GMD 
benchmark event.   
It is arguable that performing the GMD vulnerability assessments based on the supplemental GMD benchmark event will result in 
identification of a higher risk to BES reliability in comparison with risk identified by performing GMD assessments using the GMD benchmark 
event currently in TPL‐007‐1.       
Based on the current wording of the standard, the responsible entity is not required to consider the elevated risk (based on the supplemental 
GMD assessments) in their corrective action plans.  Requirement 8.3 states: 
“If the analysis concludes there is Cascading caused by the supplemental GMD event described in Attachment 1, an evaluation of possible 
actions designed to reduce the likelihood or mitigate the consequences and adverse impacts of the event(s) shall be conducted.” 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

18 

 
 
Question 1 
The word “evaluation” suggests further assessments but not necessarily any further mitigations of risk.  So the real question is why would 
responsible entities be required to perform a supplemental assessment? And how is this additional assessment designed to mitigate risk to 
BES reliability?   
The Standard Drafting Team has not revised the GMD benchmark event definition rather they introduced a new supplemental GMD event to 
account for potential impacts of localized peak geoelectric filed.  
In paragraph 44, FERC Order No. 830 directed NERC to revise the GMD benchmark event definition so that the reference peak geoelectric 
field amplitude component is not solely based on spatially‐averaged data.  This approach will burden the responsible entities to perform 
additional assessments without a clear outcome. 
We recommend that the Standard Drafting Team follow the results based standard development concept.  The requirements should be 
focused on required actions or results (the "what") and not necessarily the methods by which to accomplish those actions or results (the 
"how").  
Paragraph 65 in FERC Order No. 830 suggests that NERC could propose “some equally efficient and effective alternative”.   An alternative 
approach is to move away from specifying a methodology as the only option to perform GMD assessments in the standard.  Instead, create an 
option for the entities to develop their own GMD assessment methodology based on their own research of GMD risks to and impact on BES 
reliability.   
Responsible entities across the continent have diverse systems, equipment, resources, and risk tolerance.  Specifying a one approach fits‐all 
does not seem to be appropriate.   
The benchmark GMD event and the supplemental GMD event described in the whitepapers (and currently referenced within the standard 
requirements) can each be used to perform GMD assessments; however, the standard should not limit the entities to only use these 
prescribed GMD events.  Instead, the standard should allow entities to perform GMD assessments based on alternative GMD events as 
justified by the responsible entities based on their own research and methodology.      
Ultimately, whichever GMD assessment methodology the responsible entity chooses to use, the system‐wide impact and transformer thermal 
impact should be assessed. 
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

19 

 
 
Question 1 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request and FERC directives. The existing standard 
already has a vulnerability assessment requirement that is approved, and effective and subject to compliance by applicable registered 
entities. The supplemental assessment has been added to address local enhancements, but without the requirement of a Corrective Action 
Plan. Any proposed revisions to this requirement should be addressed in a new SAR. The Transformer Thermal Impact Assessment White 
Paper and Screening Criterion for Transformer Thermal Impact Assessment documents have provided the technical foundation and 
methodologies that can be used to conduct transformer temperature rise calculations for both the benchmark case and the supplemental 
case. 
Joel Robles ‐ Omaha Public Power District ‐ 1,3,5,6 
Answer 

No 

Document Name 

 

Comment 
.  OPPD will be supporting MRO NSRF comments.  Please note this on your ballot when you vote.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the MRO NSRF comments. 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

No 

Document Name 

 

Comment 
OPG agrees that proposed Requirements R8 – R10 and the supplemental GMD event attempts to address FERC concerns with the benchmark 
GMD event used in GMD Vulnerability Assessments, however they fell short of mitigating GMD risk to the reliability of BES. 
Requirement R10 – “10.3. Describe suggested actions and supporting analysis to mitigate the impact of GICs, if any; ..” is just a good intention 
and cannot account for a Corrective Action Plan. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

20 

 
 
Question 1 
Moreover we now have two type of GMD events the Benchmark and the Supplemental; OPG is of the opinion that they should be 
amalgamated in one GMD type of events (albeit this may require GMD benchmark event definition revision). OPG believes that Supplemental 
GMD event assessment will render the Benchmark GMD event assessment obsolete (based on the more stringent condition) and thus will be 
an unnecessary budgetary burden. 
Only Requirement R4 based on the benchmark GMD event VA is leading to a CAP via R7, and this does not happen for the Supplemental GMD 
event VA based on the new R8 – R10 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT is being responsive to the Standards Authorization Request. The existing standard already has a vulnerability assessment 
requirement that is approved, and effective and subject to compliance by applicable registered entities. The supplemental assessment has 
been added to address local enhancements, but without the requirement of a Corrective Action Plan. The comment is suggesting an 
alternative threshold or benchmark to the existing standard which is outside the scope of the SDT and should be addressed in a new SAR. The 
Transformer Thermal Impact Assessment White Paper and Screening Criterion for Transformer Thermal Impact Assessment documents have 
provided the technical foundation and methodologies that can be used to conduct transformer temperature rise calculations for both the 
benchmark case and the supplemental case. 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
NCPA disagrees with having to perform supplemental GMD assessments.  If it is to be required, then there should be a TRF MVA threshold of 
500 MVA or greater.  NCPA also disagrees with having to provide any assessment to any registered entity, other than our TP or RC. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

21 

 
 
Question 1 
The SDT is being responsive to the Standards Authorization Request and FERC directives. The existing standard already has a vulnerability 
assessment requirement that is approved, and effective and subject to compliance by applicable registered entities. The supplemental 
assessment has been added to address local enhancements, but without the requirement of a Corrective Action Plan. The comment is 
suggesting an alternative threshold or benchmark to the existing standard which is outside the scope of the SDT and should be addressed in a 
new SAR. The Transformer Thermal Impact Assessment White Paper and Screening Criterion for Transformer Thermal Impact Assessment 
documents have provided the technical foundation and methodologies that can be used to conduct transformer temperature rise calculations 
for both the benchmark case and the supplemental case. Providing the assessment to others has a reliability benefit.  
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
NCPA disagrees with having to perform supplemental GMD assessments.  If it is to be required, then there should be a TRF MVA threshold of 
500 MVA or greater.  NCPA also disagrees with having to provide any assessment to any registered entity, other than our TP or RC. 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT is being responsive to the Standards Authorization Request. The existing standard already has a vulnerability assessment 
requirement that is approved, and effective and subject to compliance by applicable registered entities. The supplemental assessment has 
been added to address local enhancements, but without the requirement of a Corrective Action Plan. The comment is suggesting an 
alternative threshold or benchmark to the existing standard which is outside the scope of the SDT and should be addressed in a new SAR. The 
Transformer Thermal Impact Assessment White Paper and Screening Criterion for Transformer Thermal Impact Assessment documents have 
provided the technical foundation and methodologies that can be used to conduct transformer temperature rise calculations for both the 
benchmark case and the supplemental case. 
 
Since GMD events are likely to be wide‐area, it is necessary to share the information with other entities. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

22 

 
 
Question 1 
William Harris ‐ Foundation for Resilient Societies ‐ 8 
Answer 

No 

Document Name 

Foundation for Resilient Societies on NERC Project 2013 081117_Submitted.docx 

Comment 
Resilient Societies has concerns that the relevant classes of GMD events are not fully addressed; that the 75 amps per phase threshhold is 
imprudent and not science based, and that a complementary effort is needed to test equipment under load and to test long replacement 
time equipment types to destruction. See attacheed Comments.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Please see the responses at the end of this document referencing the attached comments. 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
This will place considerably more of a burden on the entities performing the GMD Vulnerability Assessments with the need to perform 
another whole assessment, but also, presumably, with the need to collect the data needed for creation of a "localized peak geoelectric field". 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The supplemental assessment is additional work, but it is necessary to account for the impacts of local 
enhancements. No additional system data are required. 
Joe O'Brien ‐ NiSource ‐ Northern Indiana Public Service Co. ‐ 6 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

23 

 
 
Question 1 
Answer 

Yes 

Document Name 

 

Comment 
NIPSCO agrees that supplemental GMD vulnerability assessment accounts for potential impact of localized peak geo‐electric fields. However, 
instead of its own set of requirements, we feel it is appropriate to consider the supplemental GMD vulnerability assessment as a sensitivity 
case to the benchmark GMD vulnerability assessment. In addition, Requirement R8 requires conducting analysis for any potential cascading 
due to supplemental GMD event. However, R4 (Benchmark GMD vulnerability assessment) does not require such potential cascading 
evaluation. A uniformity in requirement would be desirable. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Requirement R8 focuses on Cascading because the supplemental event is a more extreme event than the 
benchmark event. 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
The supplemental GMD vulnerability assessment does not appear to be an overly onerous burden on the responsible entities as it is an 
enhancement based on the already required benchmark assessment.  The potential impacts of localized peaks are necessary to evaluate due 
to the short time constant of the windings and structures affected by stray fields resulting from part cycle saturation. 
  
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

24 

 
 
Question 1 
Thank you for your comment. The SDT agrees that the impacts of local enhancements need to be considered in network analysis and 
transformer assessment. 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
For R8.4 and R9 and their associated measures, BPA proposes rather than “shall be provided/shall provide” that the wording be changed to 
“shall make available.” For the western interconnection, a separate entity may be collecting interconnection‐wide data. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT does not agree with revising the language as it would affect the responsibilities as proposed in the 
standard. 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

Yes 

Document Name 

 

Comment 
The ability to perform a system‐wide study at the supplemental GMD level is helpful in cases where software cannot support a localized 
event.  It is not overly clear why 85 A is acceptable for the supplemental assessment vs. 75 A for the benchmark assessment.  The distinction 
between the two should be made clearer (e.g. “85 A is acceptable even as a higher value because the local (higher magnitude) field is 
assumed to be applied for a shorter duration”) 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

25 

 
 
Question 1 
Response 
Thank you for your comment. From a hot spot temperature rise point of view, 75 A/phase and 85 A/phase are equivalent. A more detailed 
explanation has been added to the Screening Criterion for Transformer Thermal Impact Assessment white paper above Table 2. 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
TPLTF3 Discussion: The group agrees with the SDT approach to addressing FERC Order No. 830 Paragraph 44.  In effect, the SDT has specified 
an extreme value for geoelectric field, called the supplemental GMD event, intended to represent a locally‐enhanced geoelectric field 
experienced by a limited geographic area.  In other words, the SDT has proposed a means by which Planning Coordinators and Transmission 
Planners can approximate a non‐geospatially‐averaged peak geoelectric field, thus meeting the intent of the FERC Order No. 830 
directive.  While determining peak geoelectric field amplitudes not based solely on spatially‐averaged data is a significant challenge to 
meeting the FERC directive, primarily because of the lack of North American data, as well as analytical tools available to Planning Coordinators 
and Transmission Planners, the group believes the SDT has found a workable approach. 
The group would like to note that it will be non‐trivial to apply the localized peak geoelectric field in the supplemental GMD event to a 
spatially‐limited area, described in the proposed TPL‐007‐2 Attachment 1, given available software tools and available personnel 
resources.  This will be especially pronounced for Planning Coordinators and Transmission Planners with large geographical footprints.  Many 
planning entities will be forced to apply the supplemental peak geoelectric field over their entire area, in effect simply studying a higher 
magnitude benchmark GMD event.  While the group believes this is prominently conservative, as stated above, we understand and support 
the SDT approach to this directive.  It is likewise noted that the definition of a spatially‐limited area is absent in the materials published by the 
SDT, but this vagary supports better analytical flexibility for Planning Coordinators and Transmission Planners and should not be defined in 
the draft standard. 
Likes     0 

 

                                                       
 

3 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

26 

 
 
Question 1 
Dislikes     0 

 

Response 
Thank you for your comment. The comment is an excellent summary of the intent of the SDT relative to accountinkg for the impacts of local 
enhancements. The SDT provides considerable flexibility to the planners as to how to reflect the supplemental event into their assessments.  
The SDT believes that this is especially appropriate for the planners who are dealing with very large systems. 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
SRP supports the response provided by WAPA on behalf of TPLTF4 for question 1 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The comment is an excellent summary of the intent of the SDT relative to accounting for the impacts of local 
enhancements. The SDT provides considerable flexibility to the planners as to how to reflect the supplemental event into their assessments. 
The SDT believes that this is especially appropriate for the planners who are dealing with very large systems. 
Larisa Loyferman ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

Yes 

Document Name 

 

Comment 
                                                       
 

4 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

27 

 
 
Question 1 
CenterPoint Energy Houston Electric, LLC (“CenterPoint Energy”) commends the efforts of the SDT and believes Requirements R8 – R10 
address FERC concerns with the benchmark GMD event used in GMD Vulnerability Assessments. Additionally, CenterPoint Energy agrees that 
the supplemental GMD Vulnerability Assessment accounts for potential impact of localized peak geo‐electric fields”. 
CenterPoint Energy shares AEP’s concern with the potential duplication of efforts for any assets that are brought into scope by both the 
Benchmark and Supplemental Vulnerability Assessments (R6 and R10). While it may not be the drafting team’s intent that multiple thermal 
impact assessments be conducted for the same assets, nor that two sets of suggested actions be developed to mitigate the impact of any 
GICs, the current draft does not make this explicitly clear. CenterPoint Energy supports AEP’s request that additional clarity be added so that 
duplicative efforts would not be necessary for any assets that are brought into scope under both the Benchmark and Supplemental 
Vulnerability Assessments. 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT is being responsive to the Standards Authorization Request. The existing standard already has a vulnerability assessment 
requirement that is approved, and effective and subject to compliance by applicable registered entities. The supplemental assessment has 
been added to address local enhancements, but without the requirement of a Corrective Action Plan. The comment is suggesting an 
alternative threshold or benchmark to the existing standard which is outside the scope of the SDT and should be addressed in a new SAR. The 
Transformer Thermal Impact Assessment White Paper and Screening Criterion for Transformer Thermal Impact Assessment documents have 
provided the technical foundation and methodologies that can be used to conduct transformer temperature rise calculations for both the 
benchmark case and the supplemental case. 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
While disagreeing with the original FERC determination requiring the modification to the benchmark GMD event so that the assessments are 
not based solely on spatially‐averaged data using the determined reference 8 V/km peak geoelectric field amplitude, we do agree on the 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

28 

 
 
Question 1 
SDT’s proposal of conducting a supplemental assessment using 12 V/km as the reference non‐spatially averaged peak geoelectric field 
amplitude (as opposed to using the alternative 20 V/km non‐spatially averaged peak value noted by FERC in the GMD Interim Report which 
would have overestimated the severity of a 1‐in‐100 year GMD event ).  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Comment 
The SPP Standards Review Group agrees with the SDT approach to addressing FERC Order No. 830 Paragraph 44.  In effect, the SDT has 
specified an extreme value for geoelectric field, called the supplemental GMD event, intended to represent a locally‐enhanced geoelectric 
field experienced by a limited geographic area.  In other words, the SDT has proposed a means by which Planning Coordinators and 
Transmission Planners can approximate a non‐geospatially‐averaged peak geoelectric field, thus meeting the intent of the FERC Order No. 830 
directive.  While determining peak geoelectric field amplitudes not based solely on spatially‐averaged data is a significant challenge to 
meeting the FERC directive, primarily because of the lack of North American data, as well as analytical tools available to Planning Coordinators 
and Transmission Planners, the group believes the SDT has found a workable approach. 
The group would like to note that it will be non‐trivial to apply the localized peak geoelectric field in the supplemental GMD event to a 
spatially‐limited area, described in the proposed TPL‐007‐2 
Attachment 1, given available software tools and available personnel resources.  This will be especially pronounced for Planning Coordinators 
and Transmission Planners with large geographical footprints.  Many planning entities will be forced to apply the supplemental peak 
geoelectric field over their entire area, in effect simply studying a higher magnitude benchmark GMD event.  While the group believes this is 
prominently conservative, as stated above, we understand and support the SDT approach to this directive.  It is likewise noted that the 
definition of a spatially‐limited area is absent in the materials published by the SDT, but this vagary supports better analytical flexibility for 
Planning Coordinators and Transmission Planners and should not be defined in the draft standard. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

29 

 
 
Question 1 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The comment is an excellent summary of the intent of the SDT relative to accounting for the impacts of local 
enhancements.  The SDT provides considerable flexibility to the planners as to how to reflect the supplemental event into their assessments.  
The SDT believes that this is especially appropriate for the planners who are dealing with very large systems. 
Chris Scanlon ‐ Exelon ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
See comment to Q 3. 
Likes     0 

 

Dislikes     0 

 

Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

30 

 
 
Question 1 
Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

31 

 
 
Question 1 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

32 

 
 
Question 1 
Dislikes     0 

 

Response 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

33 

 
 
Question 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

34 

 
 
Question 1 
Likes     0 

 

Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Colby Bellville ‐ Colby Bellville On Behalf of: Dale Goodwine, Duke Energy , 6, 5, 3, 1; ‐ Colby Bellville, Group Name Duke Energy  
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

35 

 
 
Question 1 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 
5, 1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

36 

 
 
Question 1 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Pamela Hunter ‐ Southern Company ‐ Southern Company Services, Inc. ‐ 1,3,5,6 ‐ SERC, Group Name Southern Company 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

37 

 
 
Question 1 
Dislikes     0 

 

Response 
 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

38 

 
 
Question 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

39 

 
 
Question 1 
Likes     0 

 

Dislikes     0 

 

Response 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

40 

 
 
Question 1 
Sarah Gasienica ‐ NiSource ‐ Northern Indiana Public Service Co. ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please see comments of Joesph N. O'Brien. 
Likes     0 

 

Dislikes     0 

 

Response 
 
Romel Aquino ‐ Edison International ‐ Southern California Edison Company ‐ 3 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison. 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Kenya Streeter ‐ Edison International ‐ Southern California Edison Company ‐ 6 
Answer 

 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

41 

 
 
Question 1 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison. 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Document Name 

 

Comment 
Texas RE does not have comments on this question. 
Likes     0 

 

Dislikes     0 

 

Response 
 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

42 

 
 
Question 1 
No comments were submitted. 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

43 

 
 
 
Question 2 
2. The SDT developed the Supplemental GMD Event Description white paper to provide technical justification for the supplemental GMD 
event. The purpose of the supplemental GMD event description is to provide a defined event for assessing system performance for a GMD 
event which includes a local enhancement of the geomagnetic field. Do you agree with the proposed supplemental GMD event and the 
description in the white paper? If you do not agree, or if you agree but have comments or suggestions for the supplemental GMD event 
and the description in the white paper provide your recommendation and explanation. 
William Harris ‐ Foundation for Resilient Societies ‐ 8 
Answer 

No 

Document Name 

 

Comment 
This is duplicative, but worse, both threshholds are likely to be above actual thresholds at which transformers catch fire, epxlode, or both.    
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Different screening thresholds were selected because benchmark and supplemental benchmark waveforms are 
different and their effects on healthy transformers are different for the same peak current.  The temperature thresholds are consistent, i.e., 
the thermal effects on a transformer are characterized by peak temperatures. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

44 

 
 
Question 2 
Dislikes     0 

 

Response 
Thank you for your comment. In the development of the TPL‐007‐2: Transmission System Planned Performance for Geomagnetic Disturbance 
Events standard with supplemental GMD event, the SDT is being responsive to the Standards Authorization Request. The consensus of the 
SDT is that the supplemental GMD Vulnerability Assessment provides a reliability benefit. 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The Transformer Thermal Impact Assessment White Paper and Screening Criterion for Transformer Thermal 
Impact Assessment documents have provided the technical foundation and methodologies that can be used to conduct transformer 
temperature rise calculations for both the benchmark case and the supplemental case. 
Pamela Hunter ‐ Southern Company ‐ Southern Company Services, Inc. ‐ 1,3,5,6 ‐ SERC, Group Name Southern Company 
Answer 

No 

Document Name 

 

Comment 
1. Paragraph 2, page 12 of the Supplemental GMD Event Description White Paper – the Drafting Team briefly discusses that the 

geographic area of the local enhancement is on the order of 100 km in N‐S (latitude) and on the order of 500 km E‐W (longitude). We 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

45 

 
 
Question 2 
recommend the SDT to provide additional information on the selection of ‘on the order of 500 km’ for longitudinal width. It is not 
clear why and how a width of 500 km(s) was selected. Why not consider a longitudinal width on the order of 100 km? 
2. Figure II‐1, page 17 – we recommend the Drafting Team to include a legend that clearly shows what each line means. This figure shows 
numerous lines (e.g., vertical, horizontal, etc.) that can lead to confusion.   
3. Equation II.3, page 18, is missing the equal ‘=’ sign (Epeak = ...) 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
1. The geographic dimensions of local enhancements are based on a very limited set of events; therefore, flexibility is provided in the 
requirements in how to apply the dimensions in the analysis. A minor change was made in the reference to Figure II‐1 in the 
Supplemental GMD Event Description document. 
2. Correction made to the Supplemental GMD Event Description document. 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

No 

Document Name 

 

Comment 
While ISO‐NE supports the supplemental event, it believes that the probability of the event occurring in the lower 48 state portion of the 
United States is far less than once in one hundred years. The magnitude of enhancement is based on measurements from the IMAGE 
magnetometer stations which are located in northern Europe, rather than observations in the United States. Also, the four examples in the 
Supplemental Geomagnetic Event Description in Figures I‐4,5,6 &7 all occur in far northern latitudes and it is not clear that these events will 
occur in more southern latitudes. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

46 

 
 
Question 2 
Thank you for your comment. The IMAGE dataset is the most complete and comprehensive data available and is therefore the best data 
source available to support the development of the standard. 
 
Although the four events mentioned in the Supplemental Geomagnetic Event Description document all occurred in northern latitudes, there 
is no evidence that the local enhancement effect only occurs in high latitudes. 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

No 

Document Name 

 

Comment 
see comments to Question 1. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. See response in Question 1. 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

No 

Document Name 

 

Comment 
See comments to Question 1. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. See response in Question 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

47 

 
 
Question 2 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 
We think that we are still at the infancy of understanding the nature and mechanism of these local enhancements. The Geophysics need more 
time to study this phenomenon and figure out how to simulate it in our GIC Simulator. 
Are the current state of the art assessment tools capable of modeling a “local” enhancement? Given the tools limitations, Transmission 
Planners will likely model the supplemental GMD event as a uniform field over the entire assessment area. It is not clear whether this is 
acceptable or whether this stress transformers in a similar way as a non‐uniform field analysis. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The TPL‐007‐2 does not restrict the technically justified methodology for the industry to perform the local 
enhancement GMD event assessment due to the evolving understanding of local enhancements.  
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

No 

Document Name 

 

Comment 
TPLTF5 Discussion:  The group recognizes that there are multiple methods to approach revisions to the benchmark GMD event definition so 
that the reference peak geoelectric field amplitude component is not based solely on spatially‐averaged data (FERC Order No. 830 Paragraph 
44).  However, given a wide diversity in available data, analytical tools, and personnel expertise, the group believes that the SDT has found a 
                                                       
 

5 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

48 

 
 
Question 2 
practical approach to meeting the objective of the FERC directive.  Moreover, the Supplemental GMD Event Description white paper presents 
a reasoned justification for the use of the geoelectric field amplitude of 12 V/km. 
The group recommends that the SDT consider a less ambiguous name for the Supplemental GMD Event; the group believes Extreme Value 
GMD Event would be more appropriate for the following reasons: 
{C}a.      {C}Implies a closer relationship to the extreme events of TPL‐001‐4 for which Planning Coordinators and Transmission Planners are 
familiar. 
{C}b.      {C}Is better aligned with the extreme value statistical analysis that was conducted to produce the subject reference peak geoelectric 
field amplitude. 
{C}c.       {C}Indicates a measure of how rare the extreme value for the 1‐in‐100 year peak geoelectric field amplitude may be, based upon the 
95% confidence interval of the extreme value. 
While the group agrees that the application of extreme value statistical methods presented in the Supplemental GMD Event Description white 
paper is sound, three clarifying statements should be made in the white paper.  Firstly, in short, the group agrees that by using the 23 years of 
daily maximum geoelectric field amplitudes from IMAGE magnetometers, a proxy of higher magnitude events can be characterized.  It is 
noted that the southernmost magnetometer in the IMAGE chain resides in Suwałki, Poland at 54.01°N, whose geographic latitude places it 
roughly 500 miles north of Quebec.  Given that geoelectric field is highly correlated with geomagnetic latitude rather than geographic 
latitude, the IMAGE data should still be referred to as a loose approximation for estimated North American geoelectric field magnitudes 
(Suwałki, Poland geomagnetic dipole latitude 52°N, Quebec geomagnetic dipole latitude 56°N).  In other words, the group believes it is 
appropriate to qualify that the extreme value analysis performed in the white paper is based upon maximum data points obtained from an 
array of northern geomagnetically‐biased latitudes, further inflated by using the high earth conductivity of Quebec.  Secondly, it is well known 
that coastal geological conditions can lead to locally‐enhanced geoelectric fields, not observed in regions more distant from the coast.  Given 
that nearly all of the IMAGE chain magnetometers reside within 100 miles of the northern Atlantic Ocean or Baltic Sea coasts, it is reasonable 
to conclude that the geoelectric field amplitudes derived from the corresponding IMAGE data may have suffered from geoelectric field 
enhancement along conductivity boundaries.  With respect to serving as a proxy for mainland North American peak geoelectric field 
amplitude, the SDT should consider further qualifying the appropriateness of the IMAGE data which served as the foundation of the extreme 
value analysis.  Finally, the group agrees that the use of more resolute point over threshold (POT) methods was indicated over generalized 
extreme value (GEV).  For clarity, however, it should be emphasized that the geoelectric field amplitude of 12 V/km represents the extreme 
value of the upper limit of the 95 percent confidence interval for a 100‐year return interval.  In other words, the statistical significance of the 
extreme value confidence interval is not equivalent to the statistic expressed by the confidence interval for the data set consisting of 23 years 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

49 

 
 
Question 2 
of all sampled geoelectric field amplitudes (not shown).  Each of these considerations, if addressed, can strengthen the conclusions of the 
white paper by emphasizing its conservative approach. 
Likes     0 

 

Dislikes     0 

 

Response 

 

Thank you for supporting the SPP TPLTF comments6 on the TPL‐007‐2 standard. The IMAGE dataset is the most complete and comprehensive 
data available and is therefore the best data source available to support the development of the standard.  
 
Although the four events mentioned in the Supplemental Geomagnetic Event Description document all occurred in northern latitudes, there 
is no evidence that the local enhancement effect only occurs in high latitudes. Based on the past experiences with the IMAGE data, it is not 
expected that the coastal effect has a significant effect on the geomagnetic fields that were used in the extreme value analysis. 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
While IRC supports the supplemental event description, it believes that the probability of this event occurring in the lower 48 state portion of 
the United States is far less than once in one hundred years. The magnitude of enhancement is based on measurements from the IMAGE 
magnetometer stations which are located in northern Europe, rather than observations in the United States. Also, the four examples in the 
Supplemental Geomagnetic Event Description in Figures I‐4, 5, 6 & 7 all occur in far northern latitudes and it is not clear that these events will 
occur in more southern latitudes. 
Likes     0 

 

Dislikes     0 

 

                                                       
 

6 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

50 

 
 
Question 2 
Response 
Thank you for your comment. The IMAGE dataset is the most complete and comprehensive data available and is therefore the best data 
source available to support the development of the standard. 
Although the four events mentioned in the Supplemental Geomagnetic Event Description document all occurred in northern latitudes, there 
is no evidence that the local enhancement effect only occurs in high latitudes. 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Comment 
The SPP Standards Review Group recognizes that there are multiple methods to approach revisions to the benchmark GMD event definition 
so that the reference peak geoelectric field amplitude component is not based solely on spatially‐averaged data (FERC Order No. 830 
Paragraph 44).  However, given a wide diversity in available data, analytical tools, and personnel expertise, the group believes that the SDT 
has found a practical approach to meeting the objective of the FERC directive.  Moreover, the Supplemental GMD Event Description white 
paper presents a reasoned justification for the use of the geoelectric field amplitude of 12 V/km.  
We recommend that the SDT consider a less ambiguous name for the Supplemental GMD Event; the group believes Extreme Value GMD 
Event would be more appropriate for the following reasons: 
1. Implies a closer relationship to the extreme events of TPL‐001‐4 for which Planning Coordinators and Transmission Planners are 
familiar. 
2. Is better aligned with the extreme value statistical analysis that was conducted to produce the subject reference peak geoelectric field 
amplitude. 
3. Indicates a measure of how rare the extreme value for the 1‐in‐100 year peak geoelectric field amplitude may be, based upon the 95% 
confidence interval of the extreme value. 
While we agree that the application of extreme value statistical methods presented in the Supplemental GMD Event Description white paper 
is sound, three clarifying statements should be made in the white paper.  Firstly, in short, the group agrees that by using the 23 years of daily 
maximum geoelectric field amplitudes from IMAGE magnetometers, a proxy of higher magnitude events can be characterized.  It is noted that 
the southernmost magnetometer in the IMAGE chain resides in Suwałki, Poland at 54.01°N, whose geographic latitude places it roughly 500 
miles north of Quebec.  Given that geoelectric field is highly correlated with geomagnetic latitude rather than geographic latitude, the IMAGE 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

51 

 
 
Question 2 
data should still be referred to as a loose approximation for estimated North American geoelectric field magnitudes (Suwałki, Poland 
geomagnetic dipole latitude 52°N, Quebec geomagnetic dipole latitude 56°N).  In other words, the group believes it is appropriate to qualify 
that the extreme value analysis performed in the white paper is based upon maximum data points obtained from an array of northern 
geomagnetically‐biased latitudes, further inflated by using the high earth conductivity of Quebec.  Secondly, it is well known that coastal 
geological conditions can lead to locally‐enhanced geoelectric fields, not observed in regions more distant from the coast.  Given that nearly 
all of the IMAGE chain magnetometers reside within 100 miles of the northern Atlantic Ocean or Baltic Sea coasts, it is reasonable to conclude 
that the geoelectric field amplitudes derived from the corresponding IMAGE data may have suffered from geoelectric field enhancement 
along conductivity boundaries.  With respect to serving as a proxy for mainland North American peak geoelectric field amplitude, the SDT 
should consider further qualifying the appropriateness of the IMAGE data which served as the foundation of the extreme value 
analysis.  Finally, the group agrees that the use of more resolute point over threshold (POT) methods was indicated over generalized extreme 
value (GEV).  For clarity, however, it should be emphasized that the geoelectric field amplitude of 12 V/km represents the extreme value of 
the upper limit of the 95 percent confidence interval for a 100‐year return interval.  In other words, the statistical significance of the extreme 
value confidence interval is not equivalent to the statistic expressed by the confidence interval for the data set consisting of 23 years of all 
sampled geoelectric field amplitudes (not shown).  Each of these considerations, if addressed, can strengthen the conclusions of the white 
paper by emphasizing its conservative approach. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the SPP TPLTF comments7 on the TPL‐007‐2 standard. The IMAGE dataset is the most complete and comprehensive 
data available and is therefore the best data source available to support the development of the standard.  
Although the four events mentioned in the Supplemental Geomagnetic Event Description document all occurred in northern latitudes, there 
is no evidence that the local enhancement effect only occurs in high latitudes. Based on the past experiences with the IMAGE data, it is not 
expected that the coastal effect has a significant effect on the geomagnetic fields that were used in the extreme value analysis. 

                                                       
 

7 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

52 

 
 
Question 2 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
The supplemental GMD event definition was determined through statistical analysis of available geomagnetic field data and corresponding 
calculations.  The same data set and similar techniques were used in defining the benchmark GMD event with the exception that the 
supplemental definition was based on observations at each individual station vs. spatially averaging.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment.  The IMAGE array data does represent high geomagnetic latitude observations and this is why (alpha) scaling of 
the determined geoelectric field amplitudes is necessary for carrying out analyses at lower latitude locations. Based on the past experiences 
with the IMAGE data, it is not expected that the coast effect has a significant effect on geomagnetic fields that were used in the extreme 
value analysis. 
Larisa Loyferman ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

Yes 

Document Name 

 

Comment 
CenterPoint Energy agrees with the proposed supplemental GMD event and the description in the white paper. CenterPoint Energy believes 
the conservative approach is appropriate and reasonable and is the result of successful collaboration between GMD research experts, the 
space agency experts, and modeling experts from the power industry. 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

53 

 
 
Question 2 
Response 
Thank you for your comment. 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

Yes 

Document Name 

 

Comment 
Applying a higher magnitude, localized event would seem to be prudent for assessing that type of phenomenon per FERC’s request. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
AEP agrees with the methodology behind the Supplemental GMD Event Description, but has concerns with how the standard has been revised 
to perform two separate assessments.  
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

54 

 
 
Question 2 
Thank you for your comment. The SDT purposely is requesting two separate thermal assessments be done for transformers that exceed the 
GIC thresholds: One for the benchmark event and one for the supplemental event. The supplemental assessment is intended to address local 
enhancements. The benchmark assessment may result in a Corrective Action Plan, but the supplemental assessment does not. 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Chris Scanlon ‐ Exelon ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

55 

 
 
Question 2 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

56 

 
 
Question 2 
Likes     0 

 

Dislikes     0 

 

Response 
 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

57 

 
 
Question 2 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 
5, 1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

58 

 
 
Question 2 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Colby Bellville ‐ Colby Bellville On Behalf of: Dale Goodwine, Duke Energy , 6, 5, 3, 1; ‐ Colby Bellville, Group Name Duke Energy  
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

59 

 
 
Question 2 
Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

60 

 
 
Question 2 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

61 

 
 
Question 2 
Likes     0 

 

Dislikes     0 

 

Response 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

62 

 
 
Question 2 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

63 

 
 
Question 2 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

64 

 
 
Question 2 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

65 

 
 
Question 2 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Joe O'Brien ‐ NiSource ‐ Northern Indiana Public Service Co. ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

66 

 
 
Question 2 
Response 
 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

67 

 
 
Question 2 
Document Name 

 

Comment 
While OPG agrees with the technical content of the Supplemental GMD Event Description white paper the SDT approach ends up with two 
type of GMD events the Benchmark and the Supplemental; OPG is of the opinion that they should be amalgamated in one GMD type of 
events (albeit this may require GMD benchmark event definition revision). As stated in question #1 OPG believes that Supplemental GMD 
event assessment will render the Benchmark GMD event assessment obsolete (based on the more stringent condition) and thus will be an 
unnecessary budgetary burden. 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT is being responsive to the Standards Authorization Request. The existing standard already has a vulnerability assessment 
requirement that is approved, and effective and subject to compliance by applicable registered entities. The supplemental assessment has 
been added to address local enhancements, but without the requirement of a Corrective Action Plan. The comment is suggesting an 
alternative threshold or benchmark to the existing standard which is outside the scope of the SDT and should be addressed in a new SAR. 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

 

Document Name 

 

Comment 
We do not agree or disagree with the white paper.  We believe that our industry’s experience with GMD is not mature enough to adopt one 
specific approach to GMD assessment.  The existing and recently developed assessment methodologies can be eventually verified by allowing 
the industry to collect GMD monitoring data and do further research.   
Again, we disagree with the standard specifying methodologies for the responsible entities.   We believe that this approach should be an 
option (in the guidelines or documented as an implementation guidance) but not the only option.  
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

68 

 
 
Question 2 
Dislikes     0 

 

Response 
The SDT is being responsive to the Standards Authorization Request. The existing standard already has a vulnerability assessment 
requirement that is approved, and effective and subject to compliance by applicable registered entities. The supplemental assessment has 
been added to address local enhancements, but without the requirement of a Corrective Action Plan. The comment is suggesting an 
alternative threshold or benchmark to the existing standard which is outside the scope of the SDT and should be addressed in a new SAR. The 
Transformer Thermal Impact Assessment White Paper and Screening Criterion for Transformer Thermal Impact Assessment documents have 
provided the technical foundation and methodologies that can be used to conduct transformer temperature rise calculations for both the 
benchmark case and the supplemental case. 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Document Name 

 

Comment 
Texas RE does not have comments on this question. 
Likes     0 

 

Dislikes     0 

 

Response 
 
 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

69 

 
 
 
Question 3 
3. The SDT established an 85 A per phase screening criterion for determining which power transformers are required to be assessed for 
thermal impacts from a supplemental GMD event in Requirement R10. Justification for this threshold is provided in the revised Screening 
Criterion for Transformer Thermal Impact Assessment white paper. Do you agree with the proposed 85 A per phase screening criterion 
and the technical justification for this criterion that has been added to the white paper? If you do not agree, or if you agree but have 
comments or suggestions for the screening criterion and revisions to the white paper provide your recommendation and explanation. 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

No 

Document Name 

 

Comment 
The technical basis is not clear.  The standard references 2‐5 minutes for the supplemental event, but this timeframe is not clearly 
referenced within the thermal impact assessment white paper. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The thermal impact assessment white paper describes possible ways to carry out a thermal impact 
assessment for any given GIC(t) waveform, whether it corresponds to the benchmark or supplemental benchmark waveforms.  The 
description of the GIC(t) waveforms can be found in the benchmark and supplemental benchmark GMD event white papers. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

70 

 
 
Question 3 
Both benchmarked and supplemental GMD calculations attempt to limit the hot spot to 172 degrees as a screening criterion. Given the 
lower probability of the local 12 V/km GMD enhancements, perhaps the full 200C could be utilized and a screening criteria closer to 150 A 
used before a full thermal assessment is undertaken. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The probability of occurrence of a local 12 V/peak is the same as the probability of occurrence of spatially 
averaged 8 V/km.  The impact to the system would be different (local as opposed to wide‐scale).  The screening criteria are intended to flag 
instances where additional consideration should be given to specific transformers. 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Requirement R6 requires a thermal impact assessment for applicable BES power transformers where the maximum effective GIC value 
required in Requirement 5, Part 5.1 is 75 A per phase or greater.  Requirement R10 requires a supplemental thermal impact assessment for 
applicable BES power transformers where the maximum effective GIC value provided in Requirement R9, Part 9.1 is 85 A per phase or 
greater.  AZPS is concerned that the use of two (2) different thresholds in different analyses (benchmark and supplemental) increases the 
potential for inconsistency in the results of the assessments.  Accordingly, AZPS suggests using a consistent value per phase in both the 
primary and the supplemental assessments.  While AZPS would recommend a single 85 A per phase or greater for consistency, its request is 
primarily for consistency, which could be achieved at either value. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

71 

 
 
Question 3 
Thank you for your comment. Different screening thresholds were selected because benchmark and supplemental benchmark waveforms 
are different and their effects on transformers are different.  The temperature thresholds are consistent, i.e., the thermal effects on a 
transformer are characterized by peak temperatures. 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

No 

Document Name 

 

Comment 
The screening threshold of 75 A per phase used in the benchmark GMD event should also be used in the thermal impact assessment for the 
supplemental GMD event because it was determined to be the appropriate value to ensure protection of the transformer. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Different screening thresholds were selected because benchmark and supplemental benchmark waveforms 
are different and their effects on transformers are different.  The temperature thresholds are consistent, i.e., the thermal effects on a 
transformer are characterized by peak temperatures. 
Chris Scanlon ‐ Exelon ‐ 1 
Answer 

No 

Document Name 

 

Comment 
The supplemental GMD waveform used as a justification to develop the 85A screening criteria is not provided, similar to that which is 
provided in Figure 2 for the benchmark event in the “Screening Criterion for Transformer Thermal Impact Assessment” white 
paper.  Therefore, the relationship between the supplemental waveform and hot‐spot results shown in Figure 3 cannot be fully 
understood.  Additionally, it is not stated which geo‐electric scaling factor (B) was used for the supplemental event.  
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

72 

 
 
Question 3 
Dislikes     0 

 

Response 
Thank you for your comment. The supplemental GMD waveform is described in the Supplemental GMD Event Description white paper. 
Figure 2 is produced as an illustrative example corresponding to a small portion of the benchmark GMD event. The curves shown in Figure 3 
of the screening criterion white paper were obtained by carrying out thousands of thermal simulations considering every possible 
combination of GICE and GICN as described in Equation (5) of the Thermal Impact Assessment white paper.  Beta factors are imbedded in 
GICE and GICN and the results in Figure 3 are not specific to any beta factor. 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
.  There should be a threshold of greater than 500 MVA, similar to CIP standards:   High, Medium, and Low impact rating criteria. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The applicability for the TPL‐007 standard is to BES transformers that have a high‐side wye‐grounded 
connection that is 200 kV and above.   
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
There should be a threshold of greater than 500 MVA, similar to CIP standards:   High, Medium, and Low impact rating criteria. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

73 

 
 
Question 3 
Dislikes     0 

 

Response 
Thank you for your comment. The applicability for the TPL‐007 standard is to BES transformers that have a high‐side wye‐grounded 
connection that is 200 kV and above.   
William Harris ‐ Foundation for Resilient Societies ‐ 8 
Answer 

No 

Document Name 

 

Comment 
Sudden reversal events can occur at far lower theshholds.  A high dB/dT can occur during a relatively weak GMD event.   Perhaps sensible to 
have two typoes of hazard, but if the thresholds are to high, the grid will not be protected. 20 amps per phase would be consistewnt with 
INL testing of 138 kV tranasformer in year 2013,.  Generator equipment is also susceptible to GMD damage well below 75 amps per phase. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has used consistent geomagnetic field measurements to estimate benchmark events the details of 
which are found in the white papers. The thresholds of 75 A/phase and 85 A/phase for transformer impact screening were selected on the 
basis of conservative thermal models. For additional explanation please see the response to Resilient Societies at the end of this document. 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
Agree with the proposed screening criteria of 85 A per phase for the Supplemental Event as the threshold for assessing power transformers 
since it is consistent with the screening criteria used to establish the 75 A per phase threshold for the Benchmark Event. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

74 

 
 
Question 3 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
AEP agrees with the 85A criterion, but is concerned about the potential duplication of work driven by the need to perform two separate 
assessments. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT purposely is requesting two separate thermal assessments be done for transformers that exceed the 
GIC thresholds: One for the benchmark event and one for the supplemental event. The supplemental assessment is intended to address 
local enhancements. The benchmark assessment may result in a Corrective Action Plan, but the supplemental assessment does not. 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
While the 85 Amps per phase screening criterion is acceptable, it should be noted that the GIC flow values are dependent on the accuracy of 
the modeling program from which they are derived.  For test cases that have been run using the latest version of GIC modeling and 
software, there were significant large currents in excess of 85 Amps in the boundary areas of observation.  This behavior is analogous with 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

75 

 
 
Question 3 
the slack or swing buses that are used in AC power flow analysis.  Specifically, the boundary buses take on whatever resulting flows will 
enable a solution for the GIC model flow, without taking into regard any structures that exist beyond these points.  As a result, the boundary 
current flow conditions are not an accurate representation of the anticipated neutral and phase flow conditions, and if taken at face value, 
would result in unnecessary corrective actions to be taken.  It is therefore critical that all modeling efforts anticipate these conditions to 
occur and ensure that the models are sufficiently adequate in size and scope to provide accurate results within the regions of interest, as 
well as to interpret any anomalies that might arise from artificial limitations of the GIC modeling programs.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT agrees that accuracy of models and tools is very important and that their improvement and 
validation are the main drivers for the research plan. 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

08_SPP TPLTF Discussion Summary on 1st Release TPL‐007‐2.docx8 

Comment 
please see attached form completed by the TPL‐Task Force9 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for providing the TPL‐Task Force information. 
                                                       
 

8 TPLTF document is found at the end of this document in Attachment 1. 
9 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

76 

 
 
Question 3 
Larisa Loyferman ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

Yes 

Document Name 

 

Comment 
CenterPoint Energy agrees with the approach used by the SDT to arrive at 85 A per phase as a screening criterion for determining which 
power transformers are required to be assessed for thermal impacts from a supplemental GMD event in R10.  CenterPoint Energy 
appreciates the diligent efforts of the SDT in ensuring consistency between the approach used to develop the screening criterion in R10 and 
the approach used to develop the screening criterion in R6. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

Yes 

Document Name 

 

Comment 
Based on comparing Tables 1 and 2 in the Screen Criterion for Transformer Thermal Impact Assessment, the 85 Ampere screening criteria is 
as conservative as the 75 Ampere screening criteria associated with the benchmark event. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

77 

 
 
Question 3 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
As the supplemental event is more severe than the benchmark event, we agree that the threshold for transformer thermal assessment 
should correspondingly be raised as well.  Through analysis, the SDT determined that 85 A per phase was a conservative threshold to apply 
for the supplemental event. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
Just a question, but have transformer manufacturers been asked if they agree that 85 A is an acceptable threshold for all of their 
transformer designs (core‐form, shell‐form), configurations (3‐phase autotransformers, 1‐phase autotransformers, 3‐phase delta‐wye 
transformers, etc.), and vintages (old, new)? 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

78 

 
 
Question 3 
Thank you for your comment. Transformer manufacturers have been involved with the Geomagnetic Disturbance Task Force (GMDTF) and 
their input has informed the development of TPL‐007.  The thresholds used in the standard assume single‐phase construction and a healthy 
transformer. 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
While the 85 Amps per phase screening criterion is acceptable, it should be noted that the GIC flow values are dependent on the accuracy of 
the modeling program from which they are derived.  For test cases that have been run using the latest version of GIC modeling and 
software, there were significant large currents in excess of 85 Amps in the boundary areas of observation.  This behavior is analogous with 
the slack or swing buses that are used in AC power flow analysis.  Specifically, the boundary buses take on whatever resulting flows will 
enable a solution for the GIC model flow, without taking into regard any structures that exist beyond these points.  As a result, the boundary 
current flow conditions are not an accurate representation of the anticipated neutral and phase flow conditions, and if taken at face value, 
would result in unnecessary corrective actions to be taken.  It is therefore critical that all modeling efforts anticipate these conditions to 
occur and ensure that the models are sufficiently adequate in size and scope to provide accurate results within the regions of interest, as 
well as to interpret any anomalies that might arise from artificial limitations of the GIC modeling programs. 
“Figure 2: Metallic hot spot temperatures calculated using the benchmark GMD event” from the screening criterion document provides a 
useful visual, can the drafting team additionally provide a similar chart and the data for the supplemental GMD event? 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The results of the NERC GMD research plan associated with FERC Order No. 830 may provide more 
granularity. The SDT agrees that accuracy of models and tools is very important and that their improvement and validation are the main 
drivers for the research plan. The upper bound of hot spot temperatures are provided in Figure 3 of the Screening Criterion for Transformer 
Thermal Impact Assessment white paper and in Tables 1 and 2 of Appendix 1 of the same document.  

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

79 

 
 
Question 3 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

2013‐03_IB_Comment_Form_June_2017_svm.docx 

Comment 
Given the use of the 12 V/km geoelectric field amplitude for the supplemental GMD event, the SPP Standards Review Group agrees with the 
proposed 85 Amp threshold justified in the Screening Criterion for Transformer Thermal Impact Assessment white paper.  We suggest that 
the proposed change on page 11 of the white paper stating “because the supplemental waveform has a sharper peak, the peak metallic hot 
spot temperatures associated with the supplemental waveform are slightly lower than those associated with the benchmark waveform” be 
clarified.  In other words, this statement is counterintuitive given that the increased supplemental time‐series waveform peak value implies 
higher GIC flows that, when experienced by a transformer will lead potentially higher metallic hot spot temperatures. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT agrees with the comment and has modified the explanation in the white paper as follows: Because 
the supplemental waveform has a sharper peak, the peak metallic hot spot temperatures associated with the supplemental waveform for 
the same peak current are slightly lower than those associated with the benchmark waveform. In other words, for the same peak current 
value, the duration is relatively shorter with the supplemental waveform, and shorter duration means lower temperature. However, higher 
peak currents will occur with the supplemental benchmark, therefore, higher peak hot spot temperatures will occur. 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
Based on comparing Tables 1 and 2 in the Screen Criterion for Transformer Thermal Impact Assessment, the 85 Ampere screening criterion 
is as conservative as the 75 Ampere screening criteria associated with the benchmark event. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

80 

 
 
Question 3 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Joe O'Brien ‐ NiSource ‐ Northern Indiana Public Service Co. ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

81 

 
 
Question 3 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

82 

 
 
Question 3 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

83 

 
 
Question 3 
 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

84 

 
 
Question 3 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

85 

 
 
Question 3 
Response 
 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

86 

 
 
Question 3 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Colby Bellville ‐ Colby Bellville On Behalf of: Dale Goodwine, Duke Energy , 6, 5, 3, 1; ‐ Colby Bellville, Group Name Duke Energy  
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

87 

 
 
Question 3 
Dislikes     0 

 

Response 
 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 
5, 1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

88 

 
 
Question 3 
 
Pamela Hunter ‐ Southern Company ‐ Southern Company Services, Inc. ‐ 1,3,5,6 ‐ SERC, Group Name Southern Company 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

89 

 
 
Question 3 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

90 

 
 
Question 3 
Response 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

91 

 
 
Question 3 
Document Name 

 

Comment 
Texas RE does not have comments on this question. 
Likes     0 

 

Dislikes     0 

 

Response 
 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

 

Document Name 

 

Comment 
Consistent with our comments above, it should be up to the responsible entity to decide what the appropriate threshold is based on the 
responsible entities justification, risk assessment, and risk tolerance level.  The whitepapers or any other research can be used to support 
the justification.   
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

Response 
Thank you for your comment. The standard provides the flexibility to use technically‐justified technologies and models to carry out 
transformer thermal assessments. The temperature thresholds in IEEE STD. 57.91, which inform the 75 A/phase and 85 A/phase screening 
thresholds, are prudent industry recommendations that apply to healthy transformers.  Applicable entities should ensure that asset 
condition and other factors are taken into account in the thermal assessment. 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

92 

 
 
Question 3 
Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

93 

 
 
 
Question 4 
4. The SDT revised the Transformer Thermal Impact Assessment white paper to include the supplemental GMD event. Do you agree with 
the revisions to the white paper? If you do not agree, or if you agree but have comments or suggestions on the revisions to the white paper 
provide your recommendation and explanation. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
There should be a threshold of greater than 500 MVA, similar to CIP standards:   High, Medium, and Low impact rating criteria. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The applicability for the TPL‐007 standard is to BES transformers that have a high‐side wye‐grounded connection 
that is 200 kV and above.   
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
There should be a threshold of greater than 500 MVA, similar to CIP standards:   High, Medium, and Low impact rating criteria. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

94 

 
 
Question 4 
Thank you for your comment. The applicability for the TPL‐007 standard is to BES transformers that have a high‐side wye‐grounded connection 
that is 200 kV and above.   
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

No 

Document Name 

 

Comment 
NERC’s Screening Criterion for Transformer Thermal Impact Assessment and Transformer Thermal Impact Assessment White Paper state that 
TPL‐007‐2 R6 and R10 analyses can in some cases be addressed simply by comparing Screening Criterion for Transformer Thermal Impact 
Assessment Table 1 and 2 values to IEEE emergency loading criteria.  The statement in footnote 5 of the Transformer Thermal Impact 
Assessment White Paper that the “peak GIC(t)” value is to used in this exercise may cause some confusion, however.  This appears to be the 
“maximum effective GIC” reported in R5.1 and R9.1 of TPL‐007‐2, given that the Screening Criterion for Transformer Thermal Impact 
Assessment uses the term “effective GIC” in discussing Tables 1 and 2, but it’s difficult to be certain without a clarification or (better) 
harmonization of terms between the standard and its supporting material. 
NERC should provide default tables by transformer type (single phase, 5‐legged core 3‐phase, etc) similar to Table 1and 2 for cases in which the 
first‐cut process discussed above does not demonstrate that transformers are acceptable as‐is, since the alternatives in the Thermal Impact 
Assessment and Transformer Thermal Impact Assessment White Paper will often prove impractical.  OEM GIC capability curves are seldom 
available, and the same is true for the input data needed for thermal response simulations.  Rather than making every GO and TO in North 
America seek out consultants with generic information in these respects (if there are any) it would be better to simply present the best 
available OK/not‐OK boundaries up‐front.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Current knowledge does not allow for generalized tables for different construction types.   The tables used in the 
standard assume single‐phase construction and a healthy unit.  The assessment(s) can use other technically‐justified assumptions. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

95 

 
 
Question 4 
Tables 1 and 2 of the screening criterion white paper represent the best available upper boundaries.  The results of the NERC GMD research 
plan associated with FERC Order No. 830 may provide more granularity. The SDT agrees that accuracy of models and tools is very important 
and that their improvement and validation are the main drivers for the research plan. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 
We believe that we need more experience with GMD before moving on to include more time consuming analysis. We also noticed that,  Figure 
1 and Figure 3 in the Screening Criterion for Transformer Thermal Impact Assessment are on different temperature scales (80‐300 vs 0‐300) so 
they are difficult to compare. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The Figure 3 y‐axis has been updated. The SDT purposely is requesting two separate thermal assessments be 
done for transformers that exceed the GIC thresholds: One for the benchmark event and one for the supplemental event. The distinction 
between the benchmark and supplemental thermal assessments is the amplitudes and waveforms of the geoelectric field are different. 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

No 

Document Name 

 

Comment 
The standard references 2‐5 minutes for the supplemental event, but this timeframe is not clearly referenced within the thermal impact 
assessment white paper. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

96 

 
 
Question 4 
Dislikes     0 

 

Response 
Thank you for your comment. The thermal impact assessment white paper describes possible ways to carry out a thermal impact assessment 
for any given GIC(t) waveform, whether it corresponds to the benchmark or supplemental benchmark waveforms.  The description of the 
GIC(t) waveforms can be found in the benchmark and supplemental benchmark GMD event white papers. 
Chris Scanlon ‐ Exelon ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
Figure 17 indicates that the load is at the 70% level, but the previous paragraph states that the load is at the 75% level.  It is unclear whether 
the chart or just the description needs to be revised. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has updated the Figure caption. 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Comment 
The SPP Standards Review Group agrees with the changes in the Transformer Thermal Impact Assessment white paper, with the exception of 
the explanation provided for Table 2 on page 5.  Similar to the comment made regarding the counterintuitive language in the Screening 
Criterion for Transformer Thermal Impact Assessment white paper, it is not clear why metallic hot spot temperatures are reduced for the 
supplemental GMD event for the same effective GIC and transformer bulk oil temperature.  Additional clarity on this point would improve the 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

97 

 
 
Question 4 
ability of applicable entities to rely upon the reference data provided.  The group recommends adding white paper language similar to that 
suggested in Question Q3. 
The group would like to highlight that the study of supplemental GMD event conditions may cause a significantly larger number of 
transformers to be added for assessed by Transmission Owners and Generator Owners.  Given that the analytical tools and modeling software 
available for this type of analysis are limited, as well as the fact that most manufacturers supplying power transformers to U.S. customers do 
not include data necessary to complete detailed thermal modeling with transformer test reports, the additional effort to satisfy the 
supplemental GMD event analysis will be arduous.  The group recommends that the SDT consider the reality that these tools are merely in 
their infancy across the industry, and additional time to develop, deploy, and train on them should be included in the TPL‐007‐2 
implementation plan to complete transformer thermal assessments for the supplemental GMD event. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT agrees with the comment regarding counter intuitive language in the first paragraph and has modified 
the explanation in the white paper as follows: Because the supplemental waveform has a sharper peak, the peak metallic hot spot 
temperatures associated with the supplemental waveform for the same peak current are slightly lower than those associated with the 
benchmark waveform.  
The SDT is aware of the current limitations in knowledge and tools.  
The supplemental assessment is additional work, but it is necessary to account for the impacts of local enhancements. 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
Table 1 and 2 are useful to show the differences between the benchmark event and the supplemental, but some of the figures are not clear 
which GMD event was used to generate the GIC(t) time series. Can some additional language be added to clarify the GMD event of the figures 
in this document? 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

98 

 
 
Question 4 
Also, there was some inconsistency in axis labels and units between the various figures, which makes it difficult to draw conclusions when 
comparing the charts. For example: A/phase versus Amps, minutes versus hours for the time scale. Can these charts be updated with uniform 
axis labels and units for comparative purposes? 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. This version of the white paper is intended to illustrate different ways to carry out thermal transformer 
assessments. The time series used in the white paper are based on portions of the benchmark time series and are intended for illustrative 
purposes only. The Figures in the white papers are sufficiently clear for their intended use. 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
Per FERC’s directive, the transformer thermal assessment was revised to not rely solely on spatially‐averaged data and the SDT modified the 
standard to utilize the supplemental GMD event definition for the additional analysis requested by FERC. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

99 

 
 
Question 4 
Comment 
We agree with the revisions to the white paper but disagree with the 85 A screening criterion as this may cause damage to the transformers 
because a thermal assessment will not be performed until 85 A. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Thermal impact on a transformer is quantified against temperature rise, which depends on the peak GIC(t) and 
its waveform. The 75 A/phase and 85 A/phase are equivalent in terms of hot spot temperature rise. 
Larisa Loyferman ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

Yes 

Document Name 

 

Comment 
CenterPoint Energy agrees with the revisions to include the supplemental GMD event in the Transformer Thermal Impact Assessment white 
paper. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

100 

 
 
Question 4 
TPLTF  Discussion:  The group agrees with the changes in the Transformer Thermal Impact Assessment white paper, with the exception of the 
explanation provided for Table 2 on page 5.  Similar to the comment made regarding the counterintuitive language in the Screening Criterion 
for Transformer Thermal Impact Assessment white paper, it is not clear why metallic hot spot temperatures are reduced for the supplemental 
GMD event for the same effective GIC and transformer bulk oil temperature.  Additional clarity on this point would improve the ability of 
applicable entities to rely upon the reference data provided.  The group recommends adding white paper language similar to that suggested in 
Question Q3. 
The group would like to highlight that the study of supplemental GMD event conditions may cause a significantly larger number of 
transformers to be added for assessed by Transmission Owners and Generator Owners.  Given that the analytical tools and modeling software 
available for this type of analysis are limited, as well as the fact that most manufacturers supplying power transformers to U.S. customers do 
not include data necessary to complete detailed thermal modeling with transformer test reports, the additional effort to satisfy the 
supplemental GMD event analysis will be arduous.  The group recommends that the SDT consider the reality that these tools are merely in 
their infancy across the industry, and additional time to develop, deploy, and train on them should be included in the TPL‐007‐2 
implementation plan to complete transformer thermal assessments for the supplemental GMD event. 
10

Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request. The existing standard already has a 
vulnerability assessment requirement that is approved, and effective and subject to compliance by applicable registered entities. The 
supplemental assessment has been added to address local enhancements, but without the requirement of a Corrective Action Plan. 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
                                                       
 

10 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

101 

 
 
Question 4 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

102 

 
 
Question 4 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

103 

 
 
Question 4 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

104 

 
 
Question 4 
Response 
 
Pamela Hunter ‐ Southern Company ‐ Southern Company Services, Inc. ‐ 1,3,5,6 ‐ SERC, Group Name Southern Company 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 
1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

105 

 
 
Question 4 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Colby Bellville ‐ Colby Bellville On Behalf of: Dale Goodwine, Duke Energy , 6, 5, 3, 1; ‐ Colby Bellville, Group Name Duke Energy  
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

106 

 
 
Question 4 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

107 

 
 
Question 4 
 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

108 

 
 
Question 4 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

109 

 
 
Question 4 
Response 
 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

110 

 
 
Question 4 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

111 

 
 
Question 4 
Dislikes     0 

 

Response 
 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Thomas Foltz ‐ AEP ‐ 5 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

112 

 
 
Question 4 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

113 

 
 
Question 4 
Likes     0 

 

Dislikes     0 

 

Response 
 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

114 

 
 
Question 4 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

 

Document Name 

 

Comment 
Consistent with our comments above, it should be up to the responsible entity to decide what the appropriate threshold is based on the 
responsible entities justification, risk assessment, and risk tolerance level.  The whitepapers or any other research can be used to support the 
justification.   
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

Response 
Thank you for your comment. See response in Q3. 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

115 

 
 
Question 4 
 

Document Name 
Comment 

Texas RE does not have comments on this question. 
Likes     0 

 

Dislikes     0 

 

Response 
 
 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

116 

 
 
 
Question 5 
5. The SDT developed proposed Requirement R7 to address FERC directives in Order No. 830 for establishing Corrective Action Plan (CAP) 
deadlines associated with GMD Vulnerability Assessments (P. 101, 102). Do you agree with the proposed requirement? If you do not agree, 
or if you agree but have comments or suggestions for the proposed requirement provide your recommendation and explanation. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

No 

Document Name 

 

Comment 
The language used in R7 needs to clarify the type of “year” used in the deadlines of the CAP. Is this “Calendar Year” or “Calendar Months”? 
Please clarify. Also, AEP seeks clarification on whether a CAP is required or expected in response to the Thermal Impact Assessments from R6. 
If it is, then there may be a conflict in the timelines for the execution of R4 and R6 and the timeline for the development of a CAP as per R7. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT notes that the use of the term “one year” is sufficiently clear. A CAP is not required for individual 
transformers that do not meet the requirements of Requirement R6.  
Shawn Abrams ‐ Santee Cooper ‐ 1, Group Name Santee Cooper  
Answer 

No 

Document Name 

 

Comment 
Santee Cooper has concerns that NERC/FERC is in essence directing entities to implement Corrective Action Plans which violates the Energy 
Policy Act of 2005.  This revision of TPL‐007 actually has a requirement to implement Corrective Action Plans within a specified period after 
their development. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

117 

 
 
Question 5 
Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to include deadlines for the CAP as a 
requirement in the standard. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 
Manitoba Hydro cannot adopt R7 as is as it violates The Manitoba Hydro Act.  Manitoba Hydro does not support hard coding the timelines for 
implementing a corrective action plan in the standard. The timelines are a function of a large number of factors that are out of the control of 
the Transmission Planner – including securing the necessary resources. Corporate annual capital spending is limited and is prioritized based on 
a number of factors. Securing funding to protect for a 1/100 year event could have lower associated risks to BES reliability than other projects, 
meaning timeline discretion for the Transmission Planner to address risks is important. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request, where in Order 830, FERC directed NERC 
“to include a deadline of one year from the completion of the GMD Vulnerability Assessments to complete the development of corrective 
action plans….[and] to modify Reliability Standard TPL‐007‐1 to include a two‐year deadline after the development of the corrective action 
plan to complete the implementation of non‐hardware mitigation and four‐year deadline to complete hardware mitigation.” (FERC Order 830, 
PP 101‐102.) The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP cannot be 
completed by the deadline due to conditions beyond the control of the responsible entities (See R7.4). 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

No 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

118 

 
 
Question 5 
Document Name 

 

Comment 
We have concerns that the first time the evaluation of the TPL‐007 will take place, the corrective action plans may take more time than the R7 
requirements. We agree with the deadlines for the second time the evaluation will be done. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to include deadlines for the CAP as a 
requirement in the standard. The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP 
cannot be completed by the deadline due to conditions beyond the control of the responsible entities (See R7.4). 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

No 

Document Name 

 

Comment 
We have concerns that the first time the evaluation of the TPL‐007 will take place, the corrective action plans may take more time than the R7 
requirements. We agree with the deadlines for the second time the evaluation will be done. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to include deadlines for the CAP as a 
requirement in the standard. The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP 
cannot be completed by the deadline due to conditions beyond the control of the responsible entities (See R7.4). 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

119 

 
 
Question 5 
Answer 

No 

Document Name 

 

Comment 
Will the TO and GO have any input in the selection of the mitigation actions? 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT expects that the development of the CAP would be a joint effort among the applicable entities. 
Requirement 7.5.1 provides a feedback loop for those functional entities who are referenced in the CAP. 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 
Answer 

No 

Document Name 

 

Comment 
There are specific timetable for implementing the CAP and additional administrative burden placed on the responsible entity if the timetable is 
not met; therefore, an additional requirement should be added to the standard to require any functional entity referenced in a CAP to 
implement the CAP identified by the responsible entity. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. An additional requirement is not necessary. The CAP requirements allow for revisions to the CAP if situations 
beyond the control of the responsible entity prevent the implementation of the CAP within the stated timetable. 
Larisa Loyferman ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

No 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

120 

 
 
Question 5 
Document Name 

 

Comment 
CenterPoint Energy disagrees with the prescriptive timeframes identified in R7.3.1 and R7.3.2. and recommends eliminating R7.3 in its 
entirety. Requiring a specific timeframe for mitigation implementation is overly prescriptive and unprecedented for a NERC standard. The 
specifics of an implementation timeline should be developed by the responsible entities with more intimate knowledge and understanding of 
their systems. The compliance burden of this requirement does not provide commensurate reliability benefits. 
If R7.3 is not eliminated as recommended above, CenterPoint Energy supports R7.4 but recommends that the first sentence of R7.4 be 
reworded as follows: 
R7.4 Be revised if responsible entity cannot implement the CAP within the timetable provided in R7.3. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to include deadlines for the CAP as a 
requirement in the standard. The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP 
cannot be completed by the deadline due to conditions beyond the control of the responsible entities (See R7.4). 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

No 

Document Name 

 

Comment 
ISO‐NE is supportive of the proposed R7 as long as any delays with implementing a CAP due to tariff requirements for engaging a stakeholder 
planning process when developing system upgrades associated with a CAP are considered to be “beyond the control of the responsible entity.” 
Further, ISO‐NE is encouraged that the implementation plan for TPL‐007‐2 includes a one year period between the completion of the 
vulnerability assessment in R4 and the completion of any needed CAPs according to R7. ISO‐NE believes that this is in acknowledgement that 
the analysis in R4 (and possible in R6) may need to be repeated during the development of CAPs due to the iterative nature of the CAP 
development process. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

121 

 
 
Question 5 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has added additional language to the end of the “Rationale for Requirement R7.”  
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

No 

Document Name 

 

Comment 
The hardware mitigation timeline mentioned in the requirement R7 does not address the complexities in building the project like regulatory 
approvals, construction clearances on existing equipment, Right of Way requirements, etc. 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT is responding to a FERC directive in Order 830 to include deadlines for the CAP as a requirement in the standard. The SDT understands 
the complexity of implementing the CAP and has addressed the situation where the CAP cannot be completed by the deadline due to 
conditions beyond the control of the responsible entities (See R7.4). 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

No 

Document Name 

 

Comment 
The four‐year hardware implementation deadline in R7.3.2 may be impractical, especially if need for a large number of entities to install GIC 
blocking devices leads to extended lead‐times for this equipment.  The same issue was thoroughly investigated by the PRC‐025 SDT (see the 
Implementation Plan for this standard), leading to an 84‐months deadline, and we recommend that the TPL‐007‐2 SDT follow this precedent. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

122 

 
 
Question 5 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to include deadlines for the CAP as a 
requirement in the standard. The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP 
cannot be completed by the deadline due to conditions beyond the control of the responsible entities (See R7.4). 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

No 

Document Name 

 

Comment 
We agree with the addition of the proposed Requirement R7 to TPL‐007‐2, however we are concerned with the possible required timeframe 
for implementation.  Determining appropriate mitigations involves iterative evaluations and solutions. The solutions may involve a number of 
TOs and various stakeholder (ISOs/RTOs, governmental bodies, market participants) input may be required as well. The timing requirements 
should recognize and allow for delays out of the control of the good‐faith effort of the responsible entity.  Given that GIC assessment and 
mitigation is a new topic, it is likely that significant time will be required to achieve regional consensus on the appropriate mitigation plan. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to include deadlines for the CAP as a 
requirement in the standard. The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP 
cannot be completed by the deadline due to conditions beyond the control of the responsible entities (See R7.4). 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

No 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

123 

 
 
Question 5 
Comment 
OPG does not agree with the implementation deadlines: 
R7.2 provides one year for the CAP; this has not been performed before and the timeline may not be realistic. 
As stated in the additional comments: 
‐ The four years deadline to implement all the hardware mitigation action may provide unfair market advantage to the unaffected/ less 
affected TOP, GOP due to the time/resources/financial effort involved. Continued operation should be allowed if there is a shortage of 
hardware, or the lead time to design/procure/implement complete hardware solution exceeds the four years duration. 
‐ The two years deadline to implement all the non‐hardware solution may provide unfair market advantage to the unaffected/less affected 
TOP, GOP, as the implementation for a large scale TOP, GOP will take more time, resources/financial effort and may require commissioning 
and studies. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. It is anticipated that the actual implementation (trigger to activate) of the CAP that includes operational 
procedure would only occur during a GMD/GIC event of sufficient size as determined by the assessment.  Since GMD events are very rare, 
there is less likelihood that market impacts would occur as compared to a ‘regular’ transmission outage or constraint not related to GMD 
mitigation. 
The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP cannot be completed by the 
deadline due to conditions beyond the control of the responsible entities (See R7.4). 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

No 

Document Name 

 

Comment 
The revision identifies the need to have implementation of non‐hardware and hardware mitigations within two and four years of CAP 
development, respectively.  However, there is no technical guidance within the standard that identifies the difference between these 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

124 

 
 
Question 5 
mitigations.  According to the FERC Order, GIC blocking or monitoring devices are identified as hardware mitigations.  Similar references are 
listed within the NERC Geomagnetic Disturbance Planning Guide.  We believe these references should be directly incorporated into the 
requirement, and replace hardware with GIC reduction or similar devices. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The standard is not prescriptive in listing the various hardware and non‐hardware options. Some hardware and 
non‐hardware options are listed in Requirement R7.1. 
Chris Scanlon ‐ Exelon ‐ 1 
Answer 

No 

Document Name 

 

Comment 
The deadlines specified in R7.3.1 and R7.3.2 are ambiguous.  Using the term “development” does not offer a specified date to measure the 2‐ 
or 4‐year installation requirements.  To provide clarity for those needing to implement the mitigation, please consider replacing “development 
of CAP” with “final approval of CAP by the Planning Coordinator or Transmission Planner.”  
R7 does not provide a method to address situations where the responsible entity knows that the selected mitigation cannot meet the 2‐ or 4‐
year deadline during the development of the CAP.  As the standard currently states, a CAP would need to be developed with the specified 
deadlines in R7.3 and then immediately revised to address the known situations instead of identifying the appropriate timeline during the 
development of the CAP.  Consider revising R7.4 such that it is not specific to revisions to a CAP only to address these situations.  
  
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

125 

 
 
Question 5 
Thank you for your comment. The standard is not prescriptive in providing additional detail to what is essentially an internal process.  Entities 
may each have different internal processes for the issuance of documents.   
 
The SDT understands the complexity of implementing the CAP and has addressed the situation where the CAP cannot be completed by the 
deadline due to conditions beyond the control of the responsible entities (See R7.4). 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits.  There should be a threshold of greater than 500 MVA, similar to CIP 
standards:   High, Medium, and Low impact rating criteria. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Whether a particular transformer is relevant to the reliability of the BES is independent of the size of the 
transformer and is be determined by the entity responsible for the reliability of the BES in that area.  The applicability for the TPL‐007 standard 
is to BES transformers that have a high‐side wye‐grounded connection that is 200 kV and above.   
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

No 

Document Name 

 

Comment 
Tri‐State has concern that as written, the TP/PC can create a CAP that the implementing entity (another TO/GO) may have issues with. It seems 
the TP/PC has ultimate control on what the CAP is without taking into account that the implementing entity may have other thoughts or 
differing opinions. In a situation where a TO/GO states that they are unable to implement a CAP given to them by another TP/PC, what 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

126 

 
 
Question 5 
recourse does the TP/PC have? If an agreement cannot be reached amongst the planning and implementing entities, then what are the next 
steps to be taken? 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT expects that the development of the CAP would be a joint effort among the applicable entities. 
Requirement 7.5.1 provides a feedback loop for those functional entities who are referenced in the CAP. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits.  There should be a threshold of greater than 500 MVA, similar to CIP 
standards:   High, Medium, and Low impact rating criteria. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Whether a particular transformer is relevant to the reliability of the BES is independent of the size of the 
transformer and is be determined by the entity responsible for the reliability of the BES in that area.  The applicability for the TPL‐007 standard 
is to BES transformers that have a high‐side wye‐grounded connection that is 200 kV and above.   
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

127 

 
 
Question 5 
The NSRF believes a definition/example of what “hardware” means in this context is needed. Order 830 in P 82. Says: 
NERC states that Reliability Standard TPL‐007‐1 contains “requirements to develop the models, studies, and assessments necessary to build a 
picture of overall GMD vulnerability and identify where mitigation measures may be necessary.” NERC explains that mitigating strategies “may 
include installation of hardware (e.g., GIC blocking or monitoring devices), equipment upgrades, training, or enhanced Operating Procedures.
Therefore, hardware may only mean GIC blocking or monitoring devices, but it can also include equipment upgrades. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The standard is not prescriptive in listing the various hardware and non‐hardware options. Some hardware and 
non‐hardware options are listed in Requirement R7.1. 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
TPLTF11 Discussion:  Given the specificity of the Paragraphs 101 and 102 directives of FERC Order No. 830 
Paragraph 44, the group believes that the SDT had little flexibility when developing the proposed language of Requirement R7.  The group 
agrees with the proposed Requirement R7, as presented.  The group would like to reiterate the suggestion that the Supplemental GMD Event 
nomenclature be changed to Extreme Value GMD Event, as explained in the group’s discussion of Question Q2. 
Likes     0 

 

Dislikes     0 

 

Response 
                                                       
 

11 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

128 

 
 
Question 5 
Thank you for supporting the SPP TPLTF comments  on the TPL‐007‐2 standard. The IMAGE dataset is the most complete and comprehensive 
data available and is therefore the best data source available to support the development of the standard. 
 
Although the four events mentioned in the Supplemental Geomagnetic Event Description document all occurred in northern latitudes, there is 
no evidence that the local enhancement effect only occurs in high latitudes. Based on the past experiences with the IMAGE data, it is not 
expected that the coastal effect has a significant effect on the geomagnetic fields that were used in the extreme value analysis. 
12

Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Comment 
The NSRF believes a definition/example of what “hardware” means in this context is needed. Order 830 in P 82. Says: 
NERC states that Reliability Standard TPL‐007‐1 contains “requirements to develop the models, studies, and assessments necessary to build a 
picture of overall GMD vulnerability and identify where mitigation measures may be necessary.” NERC explains that mitigating strategies “may 
include installation of hardware (e.g., GIC blocking or monitoring devices), equipment upgrades, training, or enhanced Operating Procedures.
Therefore, hardware may only mean GIC blocking or monitoring devices, but it can also include equipment upgrades.  
Likes     1 

Darnez Gresham, N/A, Gresham Darnez 

Dislikes     0 

 

Response 
Thank you for your comment. The standard is not prescriptive in listing the various hardware and non‐hardware options. Some hardware and 
non‐hardware options are listed in Requirement R7.1. 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

                                                       
 

12 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

129 

 
 
Question 5 
Document Name 

 

Comment 
SRP requests clarification of the phrase "one year" used in 7.2, such as "one calendar year" or "15 months". 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT notes that the use of the term “one year” is sufficiently clear.  
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
The deadlines appear to be reasonable (1 year to come up with a CAP when required; 2‐years from CAP determination to implement any non‐
hardware related solutions; 4‐years from CAP determination to implement any hardware related solutions; and exceptions for not meeting 
deadlines for factors beyond the control of the responsible entity) 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comments. 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

130 

 
 
Question 5 
Comment 
Given the specificity of the Paragraphs 101 and 102 directives of FERC Order No. 830 Paragraph 44, the SPP Standards Review Group believes 
that the SDT had little flexibility when developing the proposed language of Requirement R7.  We agree with the proposed Requirement R7, as 
presented.  
The group would like to reiterate the suggestion that the Supplemental GMD Event nomenclature be changed to Extreme Value GMD Event, as 
explained in the group’s discussion of Question Q2. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the SPP TPLTF comments13 on the TPL‐007‐2 standard. The IMAGE dataset is the most complete and comprehensive 
data available and is therefore the best data source available to support the development of the standard. 
 
Although the four events mentioned in the Supplemental Geomagnetic Event Description document all occurred in northern latitudes, there is 
no evidence that the local enhancement effect only occurs in high latitudes. Based on the past experiences with the IMAGE data, it is not 
expected that the coastal effect has a significant effect on the geomagnetic fields that were used in the extreme value analysis. 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
IRC agrees with the proposed deadlines as long as any delays with implementing a CAP due to tariff or regional requirements for conducting a 
stakeholder planning process when developing system upgrades associated with a CAP are considered to be “beyond the control of the 
responsible entity.”  Further, IRC is encouraged that the implementation plan for TPL‐007‐2 includes a one year period between the 
completion of the vulnerability assessment in R4 and the completion of any needed CAPs according to R7. IRC believes that this is in 
                                                       
 
13 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

131 

 
 
Question 5 
acknowledgement that the analysis in R4 (and possibly R6) may need to be repeated during the development of CAPs due to the iterative 
nature of the CAP development process.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has added additional language to the end of the “Rationale for Requirement R7.” 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

132 

 
 
Question 5 
Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

133 

 
 
Question 5 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

134 

 
 
Question 5 
Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

135 

 
 
Question 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

136 

 
 
Question 5 
Likes     0 

 

Dislikes     0 

 

Response 
 
Colby Bellville ‐ Colby Bellville On Behalf of: Dale Goodwine, Duke Energy , 6, 5, 3, 1; ‐ Colby Bellville, Group Name Duke Energy  
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

137 

 
 
Question 5 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 
1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Pamela Hunter ‐ Southern Company ‐ Southern Company Services, Inc. ‐ 1,3,5,6 ‐ SERC, Group Name Southern Company 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

138 

 
 
Question 5 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

139 

 
 
Question 5 
Dislikes     0 

 

Response 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Document Name 

 

Comment 
Texas RE acknowledges the SDT made the decision to not require entities have a Corrective Action Plan for the supplemental GMD 
Vulnerability Assessment if the System does not meet the performance requirements indicated in Attachment 1.   Requirement R8 Part 8.3 
requires that if the supplemental GMD Vulnerability Assessment concludes there is Cascading, an evaluation of possible actions designed to 
reduce the likelihood or mitigate the consequences and adverse impacts of the event(s) shall be conducted.  Texas RE recommends the 
responsible entity also conduct an evaluation of possible actions designed to reduce the likelihood or mitigation the consequences and adverse 
impacts of voltage collapse and uncontrolled islanding. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

140 

 
 
Question 5 
Dislikes     0 

 

Response 
Thank you for your comment. The SDT notes that Requirement R8.3 is sufficiently clear. 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

141 

 
 
 
Question 6 
6. The SDT developed Requirements R11 and R12 to address FERC directives in Order No. 830 for requiring responsible entities to collect 
GIC monitoring and magnetometer data (P. 88; P. 90‐92). Do you agree with the proposed requirements? If you do not agree, or if you 
agree but have comments or suggestions for the proposed requirements provide your recommendation and explanation. 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Comment #1: 
Modify R11 and R12 to replace “Planning Coordinator Area” with the term “respective area” or “responsible area”. This is consistent with TPL‐
007‐1 and TPL‐001‐4. See example below: 
R12. Each responsible entity, as determined in Requirement R1, shall implement a process to obtain geomagnetic field data for its respective 
Planning Coordinator’s planning area.  
Comment #2: 
NSFR believes that the reference to “GMD measurement data” in R1 should be changed to align with the language in requirements R11 and 
R12. The term GMD measurement data is general and could can be interpreted to include data that is outside the scope of the standard. The 
NSRF suggest the following changes to R1: 
R1. Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall identify the individual and joint responsibilities of the 
Planning Coordinator and Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining models, performing the study 
or studies needed to complete benchmark and supplemental GMD Vulnerability Assessments, and implementing process(es) to obtain GIC 
monitor data and geomagnetic field data GMD measurement data as specified in this standard. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment.  
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

142 

 
 
Question 6 
#1. The SDT considers the Planning Coordinators to be the most applicable entity, covering the appropriate area, for implementing processes 
related to Requirements R11 and R12 to obtain GIC monitor data from at least one GIC monitor and geomagnetic field data, respectively. 
 
#2. The benchmark and supplemental GMD vulnerability assessments in Requirement R1 refers to Requirements R4‐R7 and R8‐R10, 
respectively,  while the GMD measurement data refers to Requirements R11‐R12, i.e., GMD monitor data and geomagnetic field data. The 
SDT has added text in the Rationale for Requirements R11 and R12 that GMD measurement data refers to GMD monitor data and 
geomagnetic field data. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT believes that the requirements to implement processes to obtain GIC monitor data and geomagnetic 
field data are needed for model validation. The SDT is being responsive to the Standards Authorization Request. 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

143 

 
 
Question 6 
Dislikes     0 

 

Response 
Thank you for your comment. The SDT believes that the requirements to implement processes to obtain GIC monitor data and geomagnetic 
field data are needed for model validation. The SDT is being responsive to the Standards Authorization Request. 
Chris Scanlon ‐ Exelon ‐ 1 
Answer 

No 

Document Name 

 

Comment 
The Rationale section for R11 and R12 and the Application Guidelines section for R11 include a statement about using Hall Effect transducers 
on the transformer neutrals.  There are many technically correct approaches for monitoring geomagnetically induced currents and the 
standard should not inadvertently advocate for one method of monitoring over another.  The statement should be removed and if necessary, 
include a reference to IEEE C57.163 which discusses monitoring. 
The R11 and R12 rationale section makes reference to the terms “geomagnetic field data” and “geomagnetic field data product”.  What is the 
difference?  The term “product” should be clarified. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The rationale box is intended to provide guidance and not to necessarily advocate a particular method. The 
phrase “geomagnetic field data product” is an estimate of the geomagnetic field for a particular geographic location. 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

144 

 
 
Question 6 
1. We believe the requirements should clarify expected processes once GIC monitoring and magnetometer data is collected.  Are 

responsible entities expected to include this information in their models that are required for Requirement R2?  Are they expected to 
provide this information to their Reliability Coordinator for inclusion in its GMD Operating Plan in NERC Reliability Standard EOP‐010‐
1?  We believe the associated FERC directives could be incorporated into Requirement R1, which already requires an entity‐
coordinated process to identify the collection of GMD data measurements.  We see benefits in enhancing Requirement R1 to include 
subparts for maintaining models, performing studies for GMD Vulnerability Assessments, and GIC monitoring and magnetometer data 
collection, including within its associated Violation Severity Limits. 
2. The reference to the collection of data for the entire Planning Coordination Area is too broad and burdensome for the applicability of 
these requirements.  We believe the identified collection area should be reflective of the applicability, to that of the responsible 
entity’s planning area. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
1.
The SDT is being responsive to the Standards Authorization Request to collect geomagnetically induced current monitoring and 
magnetometer data as necessary to enable model validation and situational awareness. The commenter is suggesting changes to EOP‐
010‐1, which is an existing standard and outside the scope of the SAR.  
2.
The SDT considers the Planning Coordinators to be the most applicable entity, covering the appropriate area, for implementing 
processes related to requirements R11 and R12 to obtain GIC monitor data from at least one GIC monitor and geomagnetic field data. 
Pamela Hunter ‐ Southern Company ‐ Southern Company Services, Inc. ‐ 1,3,5,6 ‐ SERC, Group Name Southern Company 
Answer 

No 

Document Name 

 

Comment 
1. Paragraph 2, page 11 of 42 of proposed TPL‐007‐2, under GMD Measurement Data Process (blue box) – the Drafting Team states that 

“ Technical considerations for GIC monitoring are contained in Chapter 6 of the 2012 Special Reliability...” This information is 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

145 

 
 
Question 6 
contained in Chapter 9 and not in Chapter 6 of the Interim Report. Please update this section as well as the first sentence immediately 
under R11 in page 38 of 42. In addition, we recommend that the Drafting Team includes a link to the report as it is difficult to find. 
2. Requirement 12, page 12 or 42, requires that “Each responsible entity...shall implement a process to obtain geomagnetic field data for 
its Planning Coordinator’s planning area.” This requirement appears to be in direct contradiction to the last sentence contained inside 
the ‘blue box’ same page; which states: “The geomagnetic field data product does not need to be derived from a magnetometer or 
observatory within the Planning Coordinator’s planning area”. We request clarification. And, if the magnetometer data needs to be 
extrapolated, we recommend that the drafting team provides guidance. 
3. Draft 1 of TPL‐007‐2, page 38 of 42, under Monitor specifications – 
i. monitor data range (i.e., ‐500 A to +500 A CT), will this monitor specification be a recommendation or requirement? We 
recommend the Drafting Team to provide clarification. Note this section references the NERC 2012 GMD report and in the 
2012 report it is stated “The DC sensor should accommodate at least +/‐ 500 amps of DC current...”. Referencing the 2012 
GMD Report creates confusion. 
ii. ambient temperature ratings, we recommend the SDT to provide clarification; i.e., does the monitor need to include the ability 
to measure ambient temperature and should we log the station ambient temperatures. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
1. The SDT would like to express our thanks for pointing out the typo in the rationale box for requirements R11 and R12 with respect to 
chapter number in the 2012 Special Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐Power 
System (NERC 2012 GMD Report).  
2. The SDT considers the Planning Coordinators to be the most applicable entity, covering the appropriate area, for implementing 
processes related to requirements R11 and R12 to obtain GIC monitor data from at least one GIC monitor and geomagnetic field data.  
The phrase “geomagnetic field data product” is an estimate of the geomagnetic field for a particular geographic location. The standard 
allows flexibility to collect the geomagnetic field data or use the geomagnetic field data product to obtain the data as necessary. 
3. The text in the Guidelines and Technical Basis related to requirement R11, which refers to the technical considerations for GIC 
monitoring based on the NERC 2012 GMD Report [Chapter 9] as well as the Intermagnet Technical Reference Manual, provides 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

146 

 
 
Question 6 
guidelines and recommendations that are not part of the TPL‐007‐2 requirements. The “monitor” specifications only need to consider 
the ambient ratings of the monitoring equipment based on their location. 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

No 

Document Name 

 

Comment 
Depending on the size of the planning area, one GIC and magnetometer value may not provide sufficient data to accurately provide model 
validation.  Some additional guidance would also be helpful for determining where to place monitoring equipment so that the equipment is 
installed in a location that can provide meaningful data.  NV Energy would prefer the SDT consider adding additional details on determining 
the placement of equipment and consider adding detail to add more than one monitoring equipment when appropriate. 
R11 and R12 requires data to be collected, but does not require anything to be done with the data.  With no requirement to do anything with 
data collected, it seems like these two requirements place an unnecessary task on entities.  Additionally, R12 allows entities to collect 
geomagnetic from sources such as observatories operated by the US Geological Survey.  With no requirements to do anything with the data, 
R12 is asking entities to log onto a website and periodically collect data.  NV Energy would like to see these standards expanded upon to 
require this data to be collected and then used for GMD model validation.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to require responsible entities to collect 
geomagnetically induced current monitoring and magnetometer data as necessary to enable model validation and situational awareness.   
The NERC 2012 GMD Report and the Intermagnet Technical Reference Manual provide considerations for developing a process to obtain GIC 
monitor data and are summarized under Requirement R11 in the Guidelines and Technical Basis section of the TPL‐007‐2 standard. 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

No 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

147 

 
 
Question 6 
Comment 
One GIC monitor and magnetometer value in the Planning Coordinator's planning area does not provide enough data to enable model 
validation and situational awareness 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT considers the Planning Coordinators to be the most applicable entity, covering the appropriate area, 
for implementing processes related to requirements R11 and R12 to obtain GIC monitor data from at least one GIC monitor and geomagnetic 
field data. 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Magnetometers data are already available from Natural Resources Canada and from Universities research groups, therefore, there is no need 
to collect them. 
In the control room, Hydro‐Quebec monitors and collects the impact of GMDs by using voltage distortion level. GIC currents are also collected 
at different location on the network but they are not used in the control room.  The acquisition of these data should be added to the EOP‐
010‐1 reliability standard under the RC supervision and the RC shall transmit them as requested by the PC. 
Hydro‐Quebec supports initiatives that can be used to monitor and validate, with real measures, the GMD’s impact on the network. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. As described in the Rationale Box (blue box) on Rationale for Requirements R11 and R12, sources of 
geomagnetic field data include: Observatories such as those operated by U.S. Geological Survey, Natural Resources Canada, research 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

148 

 
 
Question 6 
organizations, or university research facilities; Installed magnetometers; and Commercial or third‐party sources of geomagnetic field data.  
The SDT is being responsive to the Standards Authorization Request. The comment is suggesting changes to EOP‐010‐1, which is an existing 
standard and outside the scope of the SAR.  
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

No 

Document Name 

 

Comment 
SRP supports AZPS’s response to question 6. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Since the GIC monitoring data collection requirement is to have at least one GIC monitor located in the Planning 
Coordinator's planning area, and not each transmission owner being required to collect GIC monitoring data, the SDT does not believe the 
exemption from the GIC monitoring data collection requirement discussed in Paragraph 91 of FERC Order No. 830 is applicable. The SDT 
considers the Planning Coordinators to be the most applicable entity, covering the appropriate area, for implementing processes related to 
requirements R11 and R12 to obtain GIC monitor data from at least one GIC monitor and geomagnetic field data, and hence the SDT sees no 
need for a threshold. The SDT supports use of different thresholds for the benchmark and the supplemental GMD Vulnerability Assessments.  
The collection of GIC monitor data and geomagnetic field data per Requirements R11 and R12 provide a basis for enabling model validation 
and situational awareness, as discussed in FERC order 830.  As such, GIC data collection is necessary regardless of any GIC threshold. 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

149 

 
 
Question 6 
Magnetometers data are already available from Natural Resources Canada and from Universities research groups, therefore, there is no need 
to collect them. 
In the control room, Hydro‐Quebec monitors and collects the impact of GMDs by using voltage distortion level. GIC currents are also collected 
at different location on the network but they are not used in the control room.  The acquisition of these data should be added to the EOP‐
010‐1 reliability standard under the RC supervision and the RC shall transmit them as requested by the PC. 
Hydro‐Quebec supports initiatives that can be used to monitor and validate, with real measures, the GMD’s impact on the network. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. As described in the Rationale Box (blue box) on Rationale for Requirements R11 and R12, sources of 
geomagnetic field data include: Observatories such as those operated by U.S. Geological Survey, Natural Resources Canada, research 
organizations, or university research facilities; Installed magnetometers; and Commercial or third‐party sources of geomagnetic field data.  
The SDT is being responsive to the Standards Authorization Request. The comment is suggesting changes to EOP‐010‐1, which is an existing 
standard and outside the scope of the SAR.  
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Per Paragraph 91 of FERC Order No. 830, a transmission owner should be able to apply for an exemption from the GIC monitoring data 
collection requirement if it demonstrates that no or little value would be added to Planning and Operations.  The capability to request such 
exemption is not, however, clearly indicated within Requirements R11 and R12.  AZPS respectfully recommends that such language be 
included. 
AZPS further recommends that the SDT utilize language similar to that included in Requirement R10, which includes language that limits the 
need to [conduct a supplemental thermal impact assessment for applicable BES power transformers where the maximum effective GIC value 
provided in R9, Part 9.1 is 85 A per phase or greater].  AZPS proposes that similar language be added in Requirements R11 and R12 so that 
these requirements only apply where  the maximum effective GIC value of applicable BES power transformers provided in R9, Part 9.1 is 85 A 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

150 

 
 
Question 6 
per phase or greater.  Such would ensure that the same operational threshold is applied throughout these related requirements, providing 
consistency and an established threshold for determining need from the operational/planning perspective. 
Additionally, as noted in AZPS’s comments to question 3 above, AZPS’s request here is primarily for consistency and, while it recommends a 
threshold of 85 A per phase or greater, its recommendation could be achieved through the consistent application of that value or the 75 A per 
phase or greater. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Since the GIC monitoring data collection requirement is to have at least one GIC monitor located in the Planning 
Coordinator's planning area, and not each transmission owner being required to collect GIC monitoring data, the SDT does not believe the 
exemption from the GIC monitoring data collection requirement discussed in Paragraph 91 of FERC Order No. 830 is applicable. The SDT 
considers the Planning Coordinators to be the most applicable entity, covering the appropriate area, for implementing processes related to 
requirements R11 and R12 to obtain GIC monitor data from at least one GIC monitor and geomagnetic field data, and hence the SDT sees no 
need for a threshold. The SDT supports use of different thresholds for the benchmark and the supplemental GMD Vulnerability Assessments.   
The collection of GIC monitor data and geomagnetic field data per Requirements R11 and R12 provide a basis for enabling model validation 
and situational awareness, as discussed in FERC order 830.  As such, GIC data collection is necessary regardless of any GIC threshold. 
Different screening thresholds were selected because benchmark and supplemental benchmark waveforms are different and their effects on 
transformers are different.  The temperature thresholds are consistent, i.e., the thermal effects on a transformer are characterized by peak 
temperatures. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 
It’s nice to collect data but there’s no requirement to do anything with the data, like perform model benchmarking. Collecting data from a 
single transformer and a single magnetometer may be insufficient to perform any reasonable benchmarking of GMD models. Perhaps this 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

151 

 
 
Question 6 
could be written in a style closer to MOD‐033, for GMD model validation. The Transmission Planner would document their model 
validation process.   
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to collect geomagnetically induced current 
monitoring and magnetometer data as necessary to enable model validation and situational awareness.   
The NERC 2012 GMD Report and the Intermagnet Technical Reference Manual provide considerations for developing a process to obtain GIC 
monitor data and are summarized under Requirement R11 in the Guidelines and Technical Basis section of the TPL‐007‐2 standard. 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

No 

Document Name 

 

Comment 
The SDT should consider additional details on placement of the monitoring equipment to help guide the installations, similar to PRC‐002 and 
DME.  Or, the responsibility for equipment placement guidelines could be delegated (assigned) to the PC to develop at a more local 
level.  Having wide‐open equipment monitoring requirements may lead to a lot of wasted investment or inefficient monitoring. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Technical considerations for GIC monitoring are contained in the NERC 2012 GMD Report as well as the 
Intermagnet Technical Reference Manual provide considerations to address during the development of a process for obtaining GIC monitor 
are provided under Requirement R11 in the Guidelines and Technical Basis section. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

No 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

152 

 
 
Question 6 
Document Name 

 

Comment 
American Electric Power does not believe R11 and R12 are explicitly clear in their intent, or state exactly who is required to meet the 
obligations.  The latter may perhaps be inferred by R1, however AEP requests clarity and specificity within R11 and R12 themselves. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to develop revisions to the standard to 
require responsible entities to collect geomagnetically induced current monitoring and magnetometer data as necessary to enable model 
validation and situational awareness.   
The NERC 2012 GMD Report and the Intermagnet Technical Reference Manual provide considerations for developing a process to obtain GIC 
monitor data and are summarized under Requirement R11 in the Guidelines and Technical Basis section of the TPL‐007‐2 standard. 
The individual or joint responsibilities of the applicable entities are defined per Requirement R1. 
 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Comment 
Despite the added cost to implement additional monitoring and data collection, the SPP Standards Review Group agrees that the SDT 
developed a reasonable approach to the FERC directives in Order No. 830 Paragraph 88.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

153 

 
 
Question 6 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
FERC required additional data for model validation and situational awareness purposes.  The SDT developed requirements allow for the 
collection of GIC data and magnetometer data (which could come from existing monitoring equipment where available and appropriate) as 
opposed to necessarily mandating installation of new equipment to obtain the specified data.  Responsible entities can thus partner with 
government agencies or research facilities that operate magnetometers to obtain some of the required data. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Larisa Loyferman ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

Yes 

Document Name 

 

Comment 
CenterPoint Energy agrees with the proposed requirement as written. Furthermore, CenterPoint Energy supports the Commission’s 
determination in P. 92 that requiring data rather than requiring installation of GIC monitors and magnetometers affords greater flexibility 
while still obtaining benefits. However CenterPoint Energy would not support any revisions that would require installation of devices or the 
release of entity’s protected information. 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

154 

 
 
Question 6 
Response 
Thank you for your comment. 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

Yes 

Document Name 

 

Comment 
Will this result in a directive for a GO or TO to install GIC monitoring, or will the responsible entity simply get data from existing monitors in its 
area? 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The individual or joint responsibilities of the applicable entities are defined in Requirement R1 and a process to 
obtain GIC monitor data in Requirement R11. 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Comment 
Comment #1: 
Modify R11 and R12 to replace “Planning Coordinator Area” with the term “respective area” or “responsible area”. This is consistent with TPL‐
007‐1 and TPL‐001‐4. See example below: 
R12. Each responsible entity, as determined in Requirement R1, shall implement a process to obtain geomagnetic field data for its respective 
Planning Coordinator’s planning area. 
Comment #2: 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

155 

 
 
Question 6 
NSFR believes that the reference to “GMD measurement data” in R1 should be changed to align with the language in requirements R11 and 
R12. The term GMD measurement data is general and could can be interpreted to include data that is outside the scope of the standard. The 
NSRF suggest the following changes to R1: 
R1. Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall identify the individual and joint responsibilities of the 
Planning Coordinator and Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining models, performing the study 
or studies needed to complete benchmark and supplemental GMD Vulnerability Assessments, and implementing process(es) to obtain GIC 
monitor data and geomagnetic field data GMD measurement data as specified in this standard. 
Likes     1 

Darnez Gresham, N/A, Gresham Darnez 

Dislikes     0 

 

Response 
Thank you for your comment.  
 
#1. The SDT considers the Planning Coordinator’s planning area to be the most appropriate area for implementing processes related to 
Requirements R11 and R12 to obtain GIC monitor data from at least one GIC monitor and geomagnetic field data, respectively. 
 
#2. Requirement R1 is sufficiently clear. The benchmark and supplemental GMD vulnerability assessments in Requirement R1 refers to 
Requirements R4‐R7 and R8‐R10, respectively, while the GMD measurement data refers to Requirements R11‐R12, i.e., GIC monitor data and 
geomagnetic field data. The SDT has added text in the Rationale for Requirements R11 and R12 that GMD measurement data refers to GIC 
monitor data and geomagnetic field data. 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
In R12, it is not clear how much geomagnetic field data, from a time & space perspective, the responsible entity would be required to obtain 
for its Planning Coordinator Planning Area. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

156 

 
 
Question 6 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Requirement R12 does not specify how geomagnetic field data is to be collected from a time and space 
perspective. The individual or joint responsibilities of the applicable entities are defined in Requirement R1, including responsibilities related 
to implementation of a process for obtaining geomagnetic field data in Requirement R12. 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
TPLTF14 Discussion:  Despite the added cost to implement additional monitoring and data collection, the group agrees that the SDT developed 
a reasonable approach to the FERC directives in Order No. 830 Paragraph 88.   
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
                                                       
 

14 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

157 

 
 
Question 6 
This will help refine future assessment requirements as to how applicable the Benchmark and Supplemental Event screening criteria are in 
comparison compared to actual recorded GMD events. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
William Harris ‐ Foundation for Resilient Societies ‐ 8 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

158 

 
 
Question 6 
Response 
 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

159 

 
 
Question 6 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

160 

 
 
Question 6 
Dislikes     0 

 

Response 
 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 
5, 1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

161 

 
 
Question 6 
 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

162 

 
 
Question 6 
Comment 
 
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

Response 
 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

163 

 
 
Question 6 
Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

164 

 
 
Question 6 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

165 

 
 
Question 6 
Dislikes     0 

 

Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Richard Vine ‐ California ISO ‐ 2 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

166 

 
 
Question 6 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Brandon McCormick ‐ Brandon McCormick On Behalf of: Carol Chinn, Florida Municipal Power Agency, 5, 6, 4, 3; David Schumann, Florida 
Municipal Power Agency, 5, 6, 4, 3; Ginny Beigel, City of Vero Beach, 3; Jeffrey Partington, Keys Energy Services, 4; Joe McKinney, Florida 
Municipal Power Agency, 5, 6, 4, 3; Mike Blough, Kissimmee Utility Authority, 5, 3; Richard Montgomery, Florida Municipal Power Agency, 
5, 6, 4, 3; Tom Reedy, Florida Municipal Power Pool, 6; ‐ Brandon McCormick, Group Name FMPA 
Answer 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

167 

 
 
Question 6 
Document Name 

 

Comment 
We appreciate the SDT effort to satisfy the requirement of FERC Order No. 830 for the collection of GIC and Magnetometer Data. Currently, 
R11 and R12 only say to collect the data. We would encourage the drafting team to add language to R11 and R12 that the process document 
developed by the responsible entity point to the amount of data required, who collects it, who to give it to, and how long to maintain it.     
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The individual or joint responsibilities of the applicable entities are defined in Requirement R1 and to 
implement a process for obtaining GIC monitoring data and geomagnetic field data in Requirements R11 and R12, respectively. 
 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Document Name 

 

Comment 
Since the Rationale for Requirements R11 and R12 use the term “as necessary”, Texas RE recommends adding the term “as necessary” as a 
periodicity to the language of Requirements R11 and R12. 
Requirement R11 requires a GIC monitor located in the Planning Coordinator’s planning area.  The map showing the USGS observatories 
(https://geomag.usgs.gov/monitoring/observatories/) indicates that there is not a USGS monitor in each PC’s planning area.  There may be 
monitoring data available for GIC in the PC’s planning area that is not located within the planning area.  Texas RE recommends revising the 
language to say “Each responsible entity…..from at least one GIC monitor that is monitoring equipment within the Planning Coordinator’s 
planning area for each earth model represented…..”. 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

168 

 
 
Question 6 
Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request to require responsible entities to collect 
geomagnetically induced current monitoring and magnetometer data as necessary to enable model validation and situational awareness. 
 
The standard requires data to be obtained from at least one GIC monitor located in the Planning Coordinator's planning area or other part of 
the system included in the Planning Coordinator's GIC System model (Requirement R11) and geomagnetic field data for its Planning 
Coordinator’s planning area (Requirement R12). 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

169 

 
 
 
Question 7 
7. Do you agree with the proposed Implementation Plan for TPL‐007‐2? If you do not agree, or if you agree but have comments or 
suggestions for the Implementation Plan provide your recommendation and explanation. 
Kristine Ward ‐ Seminole Electric Cooperative, Inc. ‐ 1,3,4,5,6 ‐ FRCC 
Answer 

No 

Document Name 

 

Comment 
Comments: The effective date of the revised Standard being only 3 months after FERC’s approval is too short.  There is no need to rush this 
new Standard as there are substantial revisions.  Seminole recommends a minimum of 12 months after approval 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 
There should be trial period for industry to gain understanding and knowledge of GMD before implementing a standard. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

170 

 
 
Question 7 
Thank you for your comment. The existing standard is already approved and the SDT is being responsive to the Standards Authorization 
Request. Requiring a trial period is outside the scope of this SDT. 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
AZPS requests more clarity regarding the due date of the supplemental assessment (TPL‐007‐2 Requirement R8).  If the effective date of TPL‐
007‐2 is before the January 1, 2021 and the studies are performed concurrently, what is the due date of the supplemental assessment (TPL‐
007‐2 Requirement R8)?  According to the implementation plan, both assessments would be due 42 months after the effective date of TPL‐
007‐2.  If such is an accurate statement of the appropriate study deadlines, AZPS requests that the SDT clarify this in its guidance, FAQs, or 
other document. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

No 

Document Name 

 

Comment 
See comments for Question 1. 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

171 

 
 
Question 7 
Response 
Thank you for your comment, see response in Q1. 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

No 

Document Name 

 

Comment 
It is not clear why there is a difference in compliance implementation dates for the various requirements between the two Implementation 
Plan options. It would seem logical that they both would have the same compliance implementation date with respect to the effective date of 
the Standard. 
There does not appear to be a compliance date for R6 if TPL‐007‐2 becomes effective on or after January 1, 2021. 
TPL‐007‐1 has a compliance date for R5 on January 1, 2019. It is not clear what this date would be if the new standard becomes effective 
before that date. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

No 

Document Name 

 

Comment 
See comments for Question 1. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

172 

 
 
Question 7 
Dislikes     0 

 

Response 
 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 
Answer 

No 

Document Name 

 

Comment 
The current implementation plan doesn’t contain an implementation date for R1 which implies an effective date of the first day of the first 
calendar quarter that is three month after FERC approval.  Planning Coordinators will need time to update their document identifying 
individual and joint responsibility to include the supplemental GMD Vulnerability Assessment and a process to obtain GMD measurement 
data.  Entities should be given a minimum of 6 months after the approval of the standard to update R1 documentation since it does require 
coordination with Transmission Planners. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
Larisa Loyferman ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

173 

 
 
Question 7 
CenterPoint Energy disagrees with the proposed Implementation Plan for TPL‐007‐2. CenterPoint Energy recommends delaying the 
implementation of Requirement 8 through 10 until after one complete cycle of Requirements R4 through R6. CenterPoint Energy’s 
recommendation is based on the following: 
 The efforts already required for compliance with TPL‐007‐1 that necessitate data sharing, model building, process creation, and first‐
of‐its‐kind analysis are already significant. The analysis tools needed for completion of the Vulnerability Assessment required by TPL‐
007‐1 are not available in the industry at this time. The NERC GMD Task Force identified Task 7 to develop tools for system‐wide 
harmonic assessment; however, this task is not scheduled to be complete until the fourth quarter of 2019.  
 The additional efforts necessary to comply with Requirements R8 – R10 within the same timeline will result in an unreasonable 
resource burden that does not provide commensurate reliability benefits. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has proposed the phasing‐in of version 2 into the timing of the implementation of version 1, depending 
on the timing of approval of the revised standard by FERC. 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

No 

Document Name 

 

Comment 
ISO‐NE does not agree with the January 2021 transition date in the implementation plan. The concern is that the base case used for TPL‐007‐
01 will be obsolete by January 2023 according to the requirement to use a case within the Near‐Term Transmission Planning Horizon. Note 
that the timing for meeting R2 and R4 in TPL‐007‐1 and the desire to model an as known system as possible (e.g. minimizing the need for case 
changes as new projects will have been approved and retirements have been announced) has driven ISO‐NE to select a study year of 2023. 
This will create issues when stakeholders review the results and may cause additional study and case building efforts during the first cycle for 
meeting the new TPL‐007‐1 reliability standard. ISO‐NE proposes that the transition deadline date should be changed from January 2021 to 
January 2019 or July 2019 so that the base case used for testing with the benchmark waveform according to the known timing for TPL‐007‐1 
can be used for testing the supplemental waveform. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

174 

 
 
Question 7 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Consistent with our comments above 
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

Response 
 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

No 

Document Name 

 

Comment 
The four‐year hardware implementation deadline in R7.3.2 may be impractical, especially if need for a large number of entities to install GIC 
blocking devices leads to extended lead‐times for this equipment.  The same issue was thoroughly investigated by the PRC‐025 SDT (see the 
Implementation Plan for this standard), leading to an 84‐months deadline, and we recommend that the TPL‐007‐2 SDT follow this precedent. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

175 

 
 
Question 7 
Dislikes     0 

 

Response 
Thank you for your comment. The SDT notes that the development of the CAP allows one year and four years for completing the hardware 
mitigation. The standard has included a process for reporting delays in implementation beyond the deadline due to factors outside of the 
entity’s control (R7.4). 
 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

No 

Document Name 

 

Comment 
The compliance date for Requirement R9 (if TPL‐007‐2 becomes effective before January 1, 2021) is too short.  We would propose a 
compliance date of 12 months after the effective date of Reliability Standard TPL‐007‐2 if it becomes effective before January 1, 2021. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
 
Chris Scanlon ‐ Exelon ‐ 1 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

176 

 
 
Question 7 
The implementation plan is not clear on whether the Standard Drafting Team intends on replacing the effective dates of TPL‐007‐1 for all 
requirements with the effective date and compliance dates for TPL‐007‐2 or carrying forward the TPL‐007‐1 effective dates.  Please provide 
additional language to outline the SDT’s intent with the timing between TPL‐007‐1 effective dates and TPL‐007‐2 effective dates.  
Similarly, as the implementation plan is written, under certain situations, the effective dates for performing the assessments for the 
supplemental event may not necessarily align with the periodicity for performing the assessments for the benchmark event currently required 
under TPL‐007‐1, which may create an unnecessary burden for performing assessments on separate cycles.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The intent of the TPL‐007‐2 implementation plan is to integrate the new requirements with the GMD 
assessment process that is being implemented through TPL‐007‐1. The implementation plan phases in the new requirements based on the 
effective dates of TPL‐007‐1 and the earliest possible date that the FERC approval dates of the new revised standard could occur. 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
Current implementation dates for requirements 2‐6 are January 1, 2021.   The implementation plan for TOP‐007‐2 is confusing.  In one bullet 
it says the effective date is on or before January 1, 2021, and the bullit below it says the effective date is after January 1, 2021. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. Current implementation dates for requirements R2, R3, and R4 is January 2022 and R5 is January 2019 and R6 is January 2021.  The 
intent of the TPL‐007‐2 implementation plan is to integrate the new requirements with the GMD assessment process that is being 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

177 

 
 
Question 7 
implemented through TPL‐007‐1. The implementation plan phases in the new requirements based on the probable FERC approval dates of 
the new revised standard. 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

No 

Document Name 

 

Comment 
As currently written, the implementation plan can actually shorten the current timeframes to become compliant with TPL‐007 requirements. 
It seems that if TPL‐007‐2 was approved and became effective 7/1/18, then R1, R2, and R5 would also be effective 7/1/18. However, TPL‐007‐
1 R5 isn't supposed to go into effect until 7/1/19. The TPL‐007‐2 implementation plan should be revised so that entities have at least until the 
TPL‐007‐1 effective dates to comply with requirements R1‐R7. Tri‐State recommends adding language similar to the commonly used "shall 
become effective on the later of XXXX or the first day of the XX calendar quarter". That would prevent entities from losing time they might 
have already planned on having to become complaint with R2‐R7. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The intent of the TPL‐007‐2 implementation plan is to integrate the new requirements with the GMD 
assessment process that is being implemented through TPL‐007‐1. The implementation plan phases in the new requirements based on the 
effective dates of TPL‐007‐1 and the earliest possible date that the FERC approval dates of the new revised standard could occur. If so, the 
effective dates to be compliant with Requirements R1 and R2 would be extended by six months and Requirement R5 would be the same as 
the effective date. Although possible, it is not likely. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

178 

 
 
Question 7 
Current implementation dates for requirements 2‐6 are January 1, 2021.   The implementation plan for TOP‐007‐2 is confusing.  In one bullet, 
it says the effective date is on or before January 1, 2021, and the bullet below it says the effective date is after January 1, 2021. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The intent of the TPL‐007‐2 implementation plan is to integrate the new requirements with the GMD 
assessment process that is being implemented through TPL‐007‐1. The implementation plan phases in the new requirements based on the 
effective dates of TPL‐007‐1 and the earliest possible date that the FERC approval dates of the new revised standard could occur. The current 
compliance dates for TPL‐007‐1 are not as stated. Please refer to the NERC website for the enforcement dates. 
William Harris ‐ Foundation for Resilient Societies ‐ 8 
Answer 

No 

Document Name 

 

Comment 
We favor a combined standard for GMD and HEMP events, so that the U.S. electric grid is actually protected against severe solar storms and 
so it can aid in deterrence, protecton and recovery from both natural and manmade electromagnetic oulse hazards. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Combining GMD with HEMP is outside the scope of this SDT. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

179 

 
 
Question 7 
AEP would like clarity on the type of duration (e.g. Calendar Year or Calendar Month) being proposed. This is not explicit in the current draft 
of the implementation plan. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The referenced months that do not use “calendar month” are simply a count of the months following approval. 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
TPLTF15 Discussion:  The group agrees with the proposed Implementation Plan for TPL‐007‐2 and does not see any conflicts with the order by 
which the phased requirements become effective.  However, given the lack of available tools, absence of thermal modeling‐related data from 
transformer manufacturers, and the significant training that will be necessary to properly execute transformer thermal assessments, the 
group believes that the implementation period for Requirement R10 should be at least 48 months after the standard is approved.  This 
suggested implementation period is consistent with the existing implementation period for Requirement R6 (transformer thermal assessment 
for benchmark GMD event) and should allow sufficient time for many more transformers that may be observed to exceed the supplemental 
GMD event screening criterion. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
                                                       
 

15 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

180 

 
 
Question 7 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
ISO‐NE does not join this response.  
Likes     0 

 

Dislikes     0 

 

Response 
 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

181 

 
 
Question 7 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

182 

 
 
Question 7 
 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

183 

 
 
Question 7 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

184 

 
 
Question 7 
Response 
 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

185 

 
 
Question 7 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

186 

 
 
Question 7 
Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 
5, 1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

187 

 
 
Question 7 
Response 
 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

188 

 
 
Question 7 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Comment 
The SPP Standards Review Group agrees with the proposed Implementation Plan for TPL‐007‐2 and does not see any conflicts with the order 
by which the phased requirements become effective.  However, given the lack of available tools, absence of thermal modeling‐related data 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

189 

 
 
Question 7 
from transformer manufacturers, and the significant training that will be necessary to properly execute transformer thermal assessments, the 
group believes that the implementation period for Requirement R10 should be at least 48 months after the standard is approved.  This 
suggested implementation period is consistent with the existing implementation period for Requirement R6 (transformer thermal assessment 
for benchmark GMD event) and should allow sufficient time for many more transformers that may be observed to exceed the supplemental 
GMD event screening criterion. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

190 

 
 
Question 7 
Likes     0 

 

Dislikes     0 

 

Response 
 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Document Name 

 

Comment 
Texas RE appreciates the SDT’s efforts to develop a workable Implementation Plan (IP) for TPL‐007‐2 that reflects the modifications required 
by FERC’s directives in Order No. 830 while attempting to maintain the original five‐year phased implementation timeframe established for 
TPL‐007‐1.  As presently drafted, however, the proposed TPL‐007‐1 IP attempts to coordinate the existing TPL‐007‐1 deadlines with the new 
TPL‐007‐2 requirements by shortening the compliance dates under the version 2 standard by 18 months in circumstances in which FERC 
approves the new version before January 1, 2021.  This appears roughly coordinated with the May 2018 filing deadline established in Order 
No. 830. 
While Texas RE does not object to this approach, Texas RE notes that the TPL‐007‐2 IP, as currently drafted, is complex and could produce 
several unintended consequences as entities interpret their layered compliance obligation timelines.  In particular, the proposed IP requires 
entities to now potentially track two IPs.  For instance, the TPL‐007‐2 IP is drafted such that the enforceable dates for TPL‐007‐1 R2, presently 
July 1, 2018, remain under the original IP.  While this is a reasonable approach, the SDT should consider explicitly incorporating the deadlines 
from the TPL‐007‐1 IP into the TPL‐007‐2 IP, at least by reference.  By taking this approach, the SDT can ensure that responsible entities 
clearly understand the relevant compliance dates for each Standard requirement and eliminate confusion regarding which compliance dates 
are subject to revision and which are not.  
Such additional clarity may be particularly important in connection with the enforceable dates for TPL‐007‐2 R5.  Under the TPL‐007‐1 IP, TPL‐
007‐1 R5 is enforceable on January 1, 2019.  The proposed TPL‐007‐2 IP does not address the enforceable date for TPL‐007‐2 R5.  As such, 
entities are presumably required to comply with TPL‐007‐2 R5 on the effective date of the Standard.  Texas RE presumes that the SDT 
anticipates that TPL‐007‐2 will not be effective and enforceable prior to January 1, 2019 given the May 2018 filing deadline, the period for 
FERC approval, the 60‐day period for the FERC order to become final, and the fact that the Standard does not become effective until the first 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

191 

 
 
Question 7 
day of the calendar quarter three months after the FERC order is final.  However, given the status of this project, it is possible that NERC may 
wish to submit a revised TPL‐007‐2 prior to May 2018.  For instance, suppose NERC submits a proposal in January 2018 and FERC issues its 
order in April 2018.  The FERC order would become final by July 1, 2018.  As such, TPL‐007‐2 would become enforceable on October 1, 
2018.  As a result, entities’ compliance deadlines would be inadvertently accelerated from January 1, 2019 to October 1, 2018.  The SDT 
should avoid this possibility by clearly delineating within the TPL‐007‐2 IP which TPL‐007‐1 enforceable dates remain applicable.  
Conversely, the proposed TPL‐007‐2 IP can be interpreted to extend the compliance deadline for the Benchmark GMD study required under 
TPL‐007 R4 by five years.  In particular, the TPL‐007‐2 IP does not specify an Initial Performance date for the 60‐month periodic requirement 
set forth in TPL‐007‐2 R4.  As such, a plausible reading of the IP is that TPL‐007‐2 R4 does not become enforceable for 42 months and then, 
when enforceable, entities have an additional 60 months to complete the Benchmark GMD study under TPL‐007‐2 R4’s periodic performance 
requirement.  This is consistent with NERC’s IP guidance in Compliance Application Notice (CAN) No. 12, which states:  “[I]n the event the 
Standard or interpretation is silent with regard to completing a periodic activity, CEAs are to verify that the registered entity has performed 
the periodic activity within the Standard’s timeframe after the enforceable date.”  (CAN 12 at 1‐2).  Here, TPL‐007‐2 R4’s enforceable date is 
set at 42 months from the effective date of the overall Standard.  No initial performance date is specified.  As such, a responsible entity may 
reasonably conclude that it has the full 60 month window specified in TPL‐007‐2 R4 to complete the Benchmark GMD Vulnerability 
Assessment.  This result appears to run counter to the SDT’s intent.  Texas RE therefore recommends the SDT clearly specify that the initial 
performance of the TPL‐007‐2 R4 Benchmark GMD Vulnerability Assessment is due on the enforceable date of that requirement or 42 months 
from the TPL‐007‐2 effective date.  The same logic can be applied to Requirement R8 as well. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
Brandon McCormick ‐ Brandon McCormick On Behalf of: Carol Chinn, Florida Municipal Power Agency, 5, 6, 4, 3; David Schumann, Florida 
Municipal Power Agency, 5, 6, 4, 3; Ginny Beigel, City of Vero Beach, 3; Jeffrey Partington, Keys Energy Services, 4; Joe McKinney, Florida 
Municipal Power Agency, 5, 6, 4, 3; Mike Blough, Kissimmee Utility Authority, 5, 3; Richard Montgomery, Florida Municipal Power Agency, 
5, 6, 4, 3; Tom Reedy, Florida Municipal Power Pool, 6; ‐ Brandon McCormick, Group Name FMPA 
Answer 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

192 

 
 
Question 7 
Document Name 

 

Comment 
We would ask that the implementation plan for TPL‐007‐2 be clearer than it is, especially since the implementation plan for TPL‐007‐1 is 
currently underway.  We appreciate the efforts of the drafting team in developing the implementation plan for TPL‐007‐2.  However, while it 
may make perfect sense to the drafting team, it is not clear enough to be used for a compliance standard.  Please consider providing some 
examples, a timeline chart, or providing an acknowledgement of the current dates that entities will be working towards.  For example, the 
selection of the January 2021 date as the “dividing line” between “concurrent implementation” and apparently “non‐current” 
implementation, of the Supplemental and Benchmark events seems to imply the SDT believes one year is sufficient time to add the 
supplemental event to the benchmark Vulnerability Assessments that are already underway and required to be complete for TPL‐007‐1 by 
January of 2022.  However, the “more specific” dates offered for Requirements R3, R4 and R8 are 42 months out, which is not January of 
2022…so what exactly is intended by “concurrent” and what benefit is gained? 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the Implementation Plan based on comments received. See the revised Implementation 
Plan. 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

193 

 
 
Question 7 
No comments were submitted. 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

194 

 
 
 
Question 8 
8. Do you agree with the Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs) for the requirements in proposed TPL‐007‐2? If 
you do not agree, or if you agree but have comments or suggestions for the VRFs and VSLs provide your recommendation and explanation. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
They should be low or medium violation severity levels and risk factors at the most. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. All VSLs16 and VRFs17 are consistent with NERC guidelines.  
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
They should be low or medium violaton severity levels and risk factors at the most. 
Likes     0 

 

Dislikes     0 

 

Response 
                                                       
 

16 http://www.nerc.com/pa/Stand/Resources/Documents/VSL_Guidelines.PDF 

17 http://www.nerc.com/pa/Stand/Resources/Documents/Violation_Risk_Factors.pdf 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

195 

 
 
Question 8 
Thank you for your comment. All VSLs  and VRFs  are consistent with NERC guidelines. 
18

19

Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

No 

Document Name 

 

Comment 
Since the standard clearly identifies separate GMD Vulnerability Assessments for benchmark and supplemental GMD events, we believe an 
entity could define separate acceptable System steady state voltage performance criteria for each study.  Hence, the Violation Severity Limit 
for Requirement R3 should be expanded with stair‐step severity limits that account for an entity having one criteria for one type of event and 
not the other. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The VSL is binary because to address criteria as a single item.  
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Consistent with our comments above 
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

                                                       
 

18 http://www.nerc.com/pa/Stand/Resources/Documents/VSL_Guidelines.PDF 

19 http://www.nerc.com/pa/Stand/Resources/Documents/Violation_Risk_Factors.pdf 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

196 

 
 
Question 8 
Response 
Thank you for your comment. The SDT did not find Hydro One comments above pertaining to VRF or VSL. 
Colby Bellville ‐ Colby Bellville On Behalf of: Dale Goodwine, Duke Energy , 6, 5, 3, 1; ‐ Colby Bellville, Group Name Duke Energy  
Answer 

No 

Document Name 

 

Comment 
Duke Energy recommends that the drafting team revisit the order used for the Lower VSL for R8. The first statement in the Lower VSL section 
regarding the responsible entity completing a supplemental GMD Vulnerability Assessment in more than 60 calendar months, should actually 
swap positions with the second clause regarding the entity failing to satisfy one of the elements in R8. Having these two clauses swap places, 
would align with the order of language used in the Moderate, High, and Severe VSL(s). 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment The SDT has swapped the clauses in the Lower VSL to make it consistent with the Moderate, High, and Serve VSL 
for Requirement R8. 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
As discussed above, AZPS has identified inconsistency in the treatment of a failure of registered entities to meet the deadline set forth for 
certain administrative requirements.  In some instances, the VSL is simply a binary element and does not increase based on duration of delay 
or other factors.  In other instances, the VSL increases as the duration of the delay increases.  Such inconsistency alone is problematic, but, 
when the administrative nature of and horizon within which these requirements occur are considered, it becomes clear that the VSLs are out 
of sync with the actual or potential impact that would result from an entity’s failure to comply.  As these are administrative requirements 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

197 

 
 
Question 8 
(provision of documents and/or responses) occurring in the planning horizon, AZPS respectfully asserts that all such VSLs should be 
considered “low” and should not increase beyond that level, which is similar to the treatment in Requirement R8.  AZPS recommends that the 
SDT review not only the new requirements, but the existing requirements to ensure that the VSLs accurately reflect their administrative 
nature and the fact that the horizon within which these activities are occurring is the Planning Horizon.  Specific requirements that should be 
reviewed for consistency regarding the applicable VSLs include all requirement/sub‐requirements with a 90 day timeframe for compliance, 
e.g., Requirements R4.3, R4.3.1, R5, R7.5, R7.5.1, R8.4, R8.4.1, and R9.2.  Again, AZPS respectfully recommends that the SDT treat all 90‐day 
time frame administrative requirements as binary requirements with a low VSL. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The gradation of the VSLs for Requirements with a timing component is consistent with the guideline for 
developing VSLs.20 Regardless of whether a Requirement is administrative or not, a binary Requirement (i.e., met or not met) can only have a 
single Severe category. Not performing the Requirement is the most serve violation of the Requirement. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 
There should be trial period for industry to gain understanding and knowledge of GMD before implementing a standard. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
                                                       
 

20 http://www.nerc.com/pa/Stand/Resources/Documents/VSL_Guidelines.PDF 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

198 

 
 
Question 8 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

No 

Document Name 

 

Comment 
The VSL for R2 is based on the maintenance of a System Model that is already required by other reliability standards (MOD‐032). It is unclear 
why this is a basis for the VSL for this requirement. The VSL for requirement R2 should pertain to the unique information required by the GIC 
vulnerability assessments contained in this standard. AEP recommends having only one Severe VSL for not maintaining GIC model data. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The maintenance of models in MOD‐032 is different from the models used for GMD assessments. The SDT 
proposed a High and Severe VSL to account for partial failure where only one model was maintained, but not both. 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

199 

 
 
Question 8 
Answer 

Yes 

Document Name 

 

Comment 
We suggest adding the following High VSL.  
"The Planning Coordinator, in conjunction with its Transmission Planner(s), failed to determine and identify individual or joint responsibilities 
of the Planning Coordinator and Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining models and, performing 
the study or studies needed to complete benchmark and supplemental GMD Vulnerability Assessment(s).), 
Or 
implementing process(es) to obtain GMD measurement data as specified in this standard." 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The above suggestion does not provide additional clarity. The performance of Requirement R1 is to “identify 
the individual and joint responsibilities” and the additional information outlines what individual and joint responsibilities are being identified 
by the applicable entities. 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

Yes 

Document Name 

 

Comment 
We suggest adding the following High VSL.  
"The Planning Coordinator, in conjunction with its Transmission Planner(s), failed to determine and identify individual or joint responsibilities 
of the Planning Coordinator and Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining models and, performing 
the study or studies needed to complete benchmark and supplemental GMD Vulnerability Assessment(s), 
Or 
implementing process(es) to obtain GMD measurement data as specified in this standard." 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

200 

 
 
Question 8 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The above suggestion does not provide additional clarity. The performance of Requirement R1 is to “identify 
the individual and joint responsibilities” and the additional information outlines what individual and joint responsibilities are being identified 
by the applicable entities. 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

Yes 

Document Name 

 

Comment 
The VRFs should be included in the VSL table within the standard.  It isn’t clear why they were struck. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The Time Horizons and VRF items were removed from the Results‐based Standard (RBS) template to increase 
the space for writing VSL language and to eliminate the potential for errors to be introduced when they do not match the Requirement(s). 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

201 

 
 
Question 8 
Dislikes     0 

 

Response 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Elizabeth Axson ‐ Electric Reliability Council of Texas, Inc. ‐ 2, Group Name IRC Standards Review Committee 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Chris Scanlon ‐ Exelon ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

202 

 
 
Question 8 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

203 

 
 
Question 8 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

204 

 
 
Question 8 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 
5, 1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

205 

 
 
Question 8 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

206 

 
 
Question 8 
Likes     0 

 

Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

207 

 
 
Question 8 
Joshua Eason ‐ Joshua Eason On Behalf of: Michael Puscas, ISO New England, Inc., 2; ‐ Joshua Eason 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

208 

 
 
Question 8 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

209 

 
 
Question 8 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

210 

 
 
Question 8 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

211 

 
 
Question 8 
Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Aaron Cavanaugh ‐ Bonneville Power Administration ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

212 

 
 
Question 8 
Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

213 

 
 
Question 8 
Dislikes     0 

 

Response 
 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

214 

 
 
 
Question 9 
9. The SDT believes proposed TPL‐007‐2 provide entities with flexibility to meet the reliability objectives in the project Standards 
Authorization Request (SAR) in a cost effective manner. Do you agree? If you do not agree, or if you agree but have suggestions for 
improvement to enable additional cost effective approaches to meet the reliability objectives, please provide your recommendation and, if 
appropriate, technical justification. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

No 

Document Name 

 

Comment 
While AEP agrees with the scope and direction of the revised standard, the incremental costs and resources required to comply with the 
proposed revisions may not be commensurate with the resulting impact to the improved reliability of the BES. Adding the Supplemental GMD 
Vulnerability obligations may substantially increase the resources involved, without a corresponding increase in the reliability of the BES. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The supplemental assessment is additional work, but it is necessary to account for the impacts of local 
enhancements. No additional system data is required. 
Michael Shaw ‐ Lower Colorado River Authority ‐ 6, Group Name LCRA Compliance 
Answer 

No 

Document Name 

 

Comment 
This revision calls for even more assessment of an already rare condition that has historically not been very impactful at lower latitudes.  I 
question the cost‐benefit of this standard relative to other grid reliability needs. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

215 

 
 
Question 9 
Dislikes     0 

 

Response 
Thank you for your comment. The SDT cannot comment on the priority of compliance with TPL‐007‐2 with respect to other needs that require 
attention on the system. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

No 

Document Name 

 

Comment 
There should be trial period for industry to gain understanding and knowledge of GMD before implementing a standard. Until initial 
assessments are completed, there’s no idea of what a corrective action plan might look like, for example. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT is being responsive to the Standards Authorization Request. The existing standard already has a 
vulnerability assessment requirement that is approved and effective and subject to compliance by applicable registered entities.  The 
comment is suggesting an alternative methodology to the existing standard which is outside the scope of the SDT and should be addressed in 
a new SAR. 
Chantal Mazza ‐ Hydro‐Québec TransEnergie ‐ 1,2 ‐ NPCC 
Answer 

No 

Document Name 

 

Comment 
For the Hydro‐Quebec power grid it would be already covered by the benchmark event. 
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

216 

 
 
Question 9 
Dislikes     0 

 

Response 
 Thank you for your comment. The SDT is being responsive to the Standards Authorization Request. 
Nicolas Turcotte ‐ Hydro‐Québec TransEnergie ‐ 1 
Answer 

No 

Document Name 

 

Comment 
For the Hydro‐Quebec power grid it would be already covered by the benchmark event. 
Likes     0 

 

Dislikes     0 

 

Response 
 Thank you for your comment. The SDT is being responsive to the Standards Authorization Request. 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

No 

Document Name 

 

Comment 
 Cost effectiveness can’t be fully evaluated until more details are provided concerning how mitigation measures and GIC monitoring will be 
handled. Any required hardware mitigation and GIC monitoring could potentially be costly. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

217 

 
 
Question 9 
Thank you for your comment. The SDT agrees that the cost cannot be evaluated until we have gone through a cycle of the implementation 
plan. 
Laurie Williams ‐ PNM Resources ‐ Public Service Company of New Mexico ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Requirement R12 placed responsible entities an additional cost responsibility to collect magnetometer data which would be used just for 
model validation purpose. Collection of magnetometer data from government agencies or other appropriate agencies directly by NERC would 
avoid responsible entities’ additional cost burden. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The standard allows for obtaining a data product from sources like the USGS or NRCan. 
Larisa Loyfer The technical basis is not clear man ‐ CenterPoint Energy Houston Electric, LLC ‐ 1 ‐ Texas RE 
Answer 

No 

Document Name 

 

Comment 
CenterPoint Energy disagrees that the proposed TPL‐007‐2 provides entities with flexibility to meet the reliability objectives in the project 
Standards Authorization Request (SAR) in a cost effective manner. CenterPoint Energy’s disagreement is based on the following: 
 The proposed Implementation Plan for TPL‐007‐2 lacks the flexibility to complete the first‐of‐its‐kind modeling and analysis before 
adding on additional enhanced analysis required to comply with Requirements R8 – R10. 
 The prescriptive implementation timelines required by revisions to Requirement R7 do not provide sufficient flexibility for entities to 
weigh competing system reliability goals in a cost effective manner. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

218 

 
 
Question 9 


Adding the Supplemental GMD Vulnerability obligations may substantially increase the resources involved, without a corresponding 
increase in the reliability of the BES. 

Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has proposed the phasing‐in of version 2 into the timing of the implementation of version 1, depending 
on the timing of approval of the revised standard by FERC. 
 
The supplemental assessment is additional work, but it is necessary to account for the impacts of local enhancements. 
Payam Farahbakhsh ‐ Hydro One Networks, Inc. ‐ 1 
Answer 

No 

Document Name 

 

Comment 
Consistent with our comments above 
Likes     1 

Hydro One Networks, Inc., 3, Malozewski Paul 

Dislikes     0 

 

Response 
 
Donald Lock ‐ Talen Generation, LLC ‐ 5 
Answer 

No 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

219 

 
 
Question 9 
TPL‐007‐2 continues the error of TPL‐007‐1 in allowing GOs to only suggest corrective actions (in R6.3), and giving the responsible entity in R7 
sole authority to make establish CAPs without having to consult with GOs on the options available or (for competitive markets) demonstrate 
that all competitors are treated equally.  This could be a significant issue, in that CAPs may include directives for, “Installation, modification, 
retirement or removal,” of multi‐million‐dollar equipment.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT expects that the development of the CAP would be a joint effort among the applicable entities. 
Requirement 7.5.1 provides a feedback loop for those functional entities who are referenced in the CAP. 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

No 

Document Name 

 

Comment 
OPG is of the opinion that the SDT can improve the cost effectiveness of the standard by combining the Benchmark and the Supplemental 
GMD events under one definition, thus eliminating duplicate/unnecessary work. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The Transformer Thermal Impact Assessment White Paper and Screening Criterion for Transformer Thermal 
Impact Assessment documents have provided the technical foundation and methodologies that can be used to conduct transformer 
temperature rise calculations for both the benchmark case and the supplemental case. 
Chris Scanlon ‐ Exelon ‐ 1 
Answer 

No 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

220 

 
 
Question 9 
Document Name 

 

Comment 
It is not clear whether the newly established supplemental event will have the effect of increasing the scope of transformers that meet the 
screening criteria, when compared to the benchmark event and if so, by how much.  It does seem possible that an entity which has had no 
transformers identified as meeting the benchmark event screening criteria could have multiple or all transformers included within the scope 
of the supplemental event if it is located within the area of a localized enhancement.  The technical justification for the supplemental event 
screening criteria does not substantiate what appears to be a disproportional increase in the intensity of the event compared to the increase 
in the screening threshold from 75A to 85A.  Note that the approach to the thermal assessments required under R6 and R10 are the same, 
and therefore the proposed supplemental event screening criteria has the ability to impact the financial obligation of the TO and GO.  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Different screening thresholds were selected because benchmark and supplemental benchmark waveforms are 
different and their effects on transformers are different.  The temperature thresholds are consistent, i.e., the thermal effects on a 
transformer are characterized by peak temperatures. 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

221 

 
 
Question 9 
Thank you for your comment. In the development of the TPL‐007‐2: Transmission System Planned Performance for Geomagnetic Disturbance 
Events standard with supplemental GMD event, the SDT is being responsive to the Standards Authorization Request. The consensus of the 
SDT is that the supplemental GMD Vulnerability Assessment provides a reliability benefit. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

No 

Document Name 

 

Comment 
Increased costs do not justify the low, if any, reliability benefits. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. In the development of the TPL‐007‐2: Transmission System Planned Performance for Geomagnetic Disturbance 
Events standard with supplemental GMD event, the SDT is being responsive to the Standards Authorization Request. The consensus of the 
SDT is that the supplemental GMD Vulnerability Assessment provides a reliability benefit. 
William Harris ‐ Foundation for Resilient Societies ‐ 8 
Answer 

No 

Document Name 

Foundation for Resilient Societies on NERC Project 2013 081117_Submitted.docx 

Comment 
The only cost‐effective approach for grid protecton is to design for severe GMD hazards and manmade EMP hazards concurrently. This is not a 
cost effective method, and results in a needlessly vulnerable electric grid. See general comments.  
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

222 

 
 
Question 9 
Thank you for your comment. Protection of the BES for EMP hazards is outside the scope of the SDT. 
sean erickson ‐ Western Area Power Administration ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
TPLTF21 Discussion:  The group agrees that the SDT has done a good job of considering cost in time, resources, and personnel commitment in 
meeting the objectives of the SAR, which were heavily prescribed by FERC Order No. 830.  The group may not agree with the perceived 
benefit to reliability that the additional effort to analyze the supplemental GMD event will yield, but the SDT has proposed a solid means of 
addressing the FERC directives without relying on tools or methods that do not exist widely in industry today.  The group also supports the 
SDT cost‐effective approach to the proposed Requirement R7 which does not mention GIC blocking devices as an integral part of a hardware 
mitigation.  The group remains concerned with the perception that GIC mitigation hardware is presently a viable solution.  Given its cost, 
effects on Protection System design, as well as potential compromises to existing BES reliability, GIC blocking devices may prove 
undesirable.   The flexibility that the SDT has proposed in the development of Corrective Action Plans is workable. 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT appreciates the supportive comment. 
Stephanie Burns ‐ Stephanie Burns On Behalf of: Michael Moltane, International Transmission Company Holdings Corporation, 1; ‐ 
Stephanie Burns 
Answer 

Yes 

Document Name 

 

Comment 
                                                       
 

21 TPLTF document is found at the end of this document in Attachment 1. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

223 

 
 
Question 9 
Considering the additional supplemental GMD event analysis doesn’t require a CAP to be developed and that data collection is allowed as 
opposed to having to install new monitoring equipment on the system to acquire the required data, the proposed revisions are flexible and 
potentially more cost effective for some entities. 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT appreciates the supportive comment. 
Shannon Mickens ‐ Southwest Power Pool, Inc. (RTO) ‐ 2 ‐ SPP RE, Group Name SPP Standards Review Group 
Answer 

Yes 

Document Name 

 

Comment 
The SPP Standards Review Group agrees that the SDT has done a good job of considering cost in time, resources, and personnel commitment 
in meeting the objectives of the SAR, which were heavily prescribed by FERC Order No. 830.  The group may not agree with the perceived 
benefit to reliability that the additional effort to analyze the supplemental GMD event will yield, but the SDT has proposed a solid means of 
addressing the FERC directives without relying on tools or methods that do not exist widely in industry today.  We also support the SDT cost‐
effective approach to the proposed Requirement R7 which does not mention GIC blocking devices as an integral part of a hardware 
mitigation.  The group remains concerned with the perception that GIC mitigation hardware is presently a viable solution.  Given its cost, 
effects on Protection System design, as well as potential compromises to existing BES reliability, GIC blocking devices may prove 
undesirable.   The flexibility that the SDT has proposed in the development of Corrective Action Plans is workable. 
Likes     0 

 

Dislikes     0 

 

Response 
The SDT appreciates the supportive comment. 
Randy Buswell ‐ VELCO ‐Vermont Electric Power Company, Inc. ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

224 

 
 
Question 9 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Lauren Price ‐ American Transmission Company, LLC ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
RoLynda Shumpert ‐ SCANA ‐ South Carolina Electric and Gas Co. ‐ 1,3,5,6 ‐ SERC 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

225 

 
 
Question 9 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ann Ivanc ‐ FirstEnergy ‐ FirstEnergy Solutions ‐ 6 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

226 

 
 
Question 9 
Robert Blackney ‐ Edison International ‐ Southern California Edison Company ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Gerry Huitt ‐ Xcel Energy, Inc. ‐ 5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Laura Nelson ‐ IDACORP ‐ Idaho Power Company ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

227 

 
 
Question 9 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Neil Swearingen ‐ Salt River Project ‐ 1,3,5,6 ‐ WECC 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

228 

 
 
Question 9 
 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Jeffrey Watkins ‐ Jeffrey Watkins On Behalf of: Eric Schwarzrock, Berkshire Hathaway ‐ NV Energy, 5; ‐ Jeffrey Watkins 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Glen Farmer ‐ Avista ‐ Avista Corporation ‐ 5 
Answer 

Yes 

Document Name 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

229 

 
 
Question 9 
Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Douglas Webb ‐ Douglas Webb On Behalf of: Chris Bridges, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; Harold Wyble, 
Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; James McBee, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 
5, 1; Jessica Tucker, Great Plains Energy ‐ Kansas City Power and Light Co., 3, 6, 5, 1; ‐ Douglas Webb 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Quintin Lee ‐ Eversource Energy ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

230 

 
 
Question 9 
Likes     0 

 

Dislikes     0 

 

Response 
 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

231 

 
 
Question 9 
James Anderson ‐ CMS Energy ‐ Consumers Energy Company ‐ 1,3,4,5 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Michael Buyce ‐ City Utilities of Springfield, Missouri ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

Yes 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

232 

 
 
Question 9 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

Yes 

Document Name 

 

Comment 
 
Likes     0 

 

Dislikes     0 

 

Response 
 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Document Name 

 

Comment 
Texas RE does not have comments on this questions. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

233 

 
 
Question 9 
 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

234 

 
 
 
Question 10 
10. Provide any additional comments for the SDT to consider, if desired. 
Terry Harbour ‐ Berkshire Hathaway Energy ‐ MidAmerican Energy Co. ‐ 1 
Answer 

 

Document Name 

 

Comment 
The approved TPL‐007‐1 and the current draft of TPL‐007‐2 includes a flowchart diagram in the Application Guides section that provides and 
overall view of the GMD Vulnerability Assessment process (and the requirements in TPL‐007). There has been confusion as to which 
requirements are represented in the diagram. The NSRF suggest the SDT update this diagram to include annotations that identify the 
requirements in TPL‐007‐2. Please see the NSRF example which includes requirements for the benchmark and supplemental assessment. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT did not add references to the flowchart in the Application Guidelines as the flowchart is not a one‐to‐
one relationship with the standard requirements. 
Dennis Sismaet ‐ Northern California Power Agency ‐ 6 
Answer 

 

Document Name 

 

Comment 
None.   Thank you. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

235 

 
 
Question 10 
 
Sergio Banuelos ‐ Tri‐State G and T Association, Inc. ‐ 1,3,5 ‐ MRO,WECC 
Answer 

 

Document Name 

 

Comment 
Tri‐State would like for some additional guidance or examples on what the SDT meant by "hardware" and "non‐hardware".  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The standard is not prescriptive in listing the various hardware and non‐hardware options. Some hardware and 
non‐hardware options are listed in Requirement R7.1. 
Marty Hostler ‐ Northern California Power Agency ‐ 5 
Answer 

 

Document Name 

 

Comment 
No additional comments. 
Likes     0 

 

Dislikes     0 

 

Response 
 
Richard Vine ‐ California ISO ‐ 2 
Answer 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

236 

 
 
Question 10 
Document Name 

 

Comment 
The California ISO supports the joint comments of the ISO/RTO Standards Review Committee 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for supporting the comments of the IRC Standards Review Committee (i.e., ISO/RTO Standards Review Committee). 
Brian Van Gheem ‐ ACES Power Marketing ‐ 6 ‐ NA ‐ Not Applicable, Group Name ACES Standards Collaborators 
Answer 

 

Document Name 

 

Comment 
1. Add a comma after the “Table 1” reference within Requirement R7, as the lengthy description within the requirement describes the 

responsible entity and not the development of a CAP. 
2. The evidence retention period demonstrating the implementation of a process to obtain GIC monitor and geomagnetic field data, as 
listed within R11 and R12, is identified as three calendar years.  We do not see how this should be different than the evidence 
retention period identified for the requirements of NERC Reliability Standard TPL‐001‐4, which is based on the last compliance audit. 
3. We thank you for this opportunity to provide these comments. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
1.
The SDT added a comma after “Table 1” in Requirement R7. 
2.
The evidence retention period meets the NERC Guidelines. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

237 

 
 
Question 10 
Scott Downey ‐ Peak Reliability ‐ 1 
Answer 

 

Document Name 

 

Comment 
While Peak supports the SDTs effort, we believe that consideration should be given to making TOPs applicable to the standard as well. 
Applicable TOPs are required to have operating plans for GMDs to comply with EOP‐010 but without direct evaluation of TPL‐007 vulnerability 
assessments, the plans would seem to be incomplete. Peak recognizes the requirement for proposed applicable functions to provide their 
vulnerability assessments to the RC but believes a more direct coordination role with the TOP should be required. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT does not agree with the suggestion to make TOPs applicable entities in the standard.  TPL‐007 is a 
planning standard and applies to registered planning entities and selected asset owners.  The comment is suggesting an alternative 
methodology to the existing standard which is outside the scope of the SDT and should be addressed in a new SAR. 
Ruida Shu ‐ Northeast Power Coordinating Council ‐ 1,2,3,4,5,6,7,8,9,10 ‐ NPCC, Group Name RSC no Hydro One, HQ and IESO 
Answer 

 

Document Name 

 

Comment 
On page 11 Table 1 – Note 3 should be also applicable to the row entitled “Supplemental GMD Event – GMD Event with Outages” as it relates 
to columns “Interruption of Firm Transmission Service Allowed” and “Load Loss Allowed”. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

238 

 
 
Question 10 
Thank you for your comment. The SDT asserts that because a CAP is not required, the additional footnote is not applicable. 
Thomas Rafferty ‐ Edison International ‐ Southern California Edison Company ‐ 5 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
David Ramkalawan ‐ Ontario Power Generation Inc. ‐ 5 
Answer 

 

Document Name 

 

Comment 
OPG does not agree with the implementation deadlines: 
1)         The four years deadline to implement all the hardware mitigation action may provide unfair market advantage to the unaffected/ less 
affected TOP, GOP due to the time/resources/financial effort involved. Continued operation should be allowed if there is a shortage of 
hardware, or the lead time to design/procure/implement complete hardware solution exceeds the four years duration. 
2)         TPL‐007‐2 should also be applicable as a Functional Entity to Generator Operator (GOP). The implementation of hardware mitigating 
actions may require the revision of the existing approved GIC mitigation operating procedure instructions (same if the non‐hardware 
mitigation requires operating procedures revisions). The commissioning of the mitigating actions will also require coordination’s between the 
TOP and GOP. GOP should be a stakeholder regarding the configuration impact and determination of affected transformers. Additionally 
alternative operating configuration may requires design studies involving/requiring GOP support before implementation. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

239 

 
 
Question 10 
3)         The two years deadline to implement all the non‐hardware solution may provide unfair market advantage to the unaffected/less 
affected TOP, GOP, as the implementation for a large scale TOP, GOP will take more time, resources/financial effort and may require 
commissioning and studies. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. 
1. It is anticipated that the actual implementation (trigger to activate) of the CAP that includes operational procedure would only occur 
during a GMD/GIC event of sufficient size as determined by the assessment. Since GMD events are very rare, there is less likelihood 
that market impacts would occur as compared to a ‘regular’ transmission outage or constraint not related to GMD mitigation. 
2. The GOPs may be involved with the execution of the CAP, as suggested in the comment, but that does not mean that the GOP should 
be an applicable entity in the standard. 
3. See response to 1 above. 
Pamela Hunter ‐ Southern Company ‐ Southern Company Services, Inc. ‐ 1,3,5,6 ‐ SERC, Group Name Southern Company 
Answer 

 

Document Name 

 

Comment 
Table 1 in the standard, under the “Steady State:” heading, part a, the sentence should be expanded as follows:  “Voltage collapse, Cascading, 
and uncontrolled islanding shall not occur for the Benchmark GMD event, but can occur for the Supplemental GMD event subject to 
additional analysis specified in R8.3. 
Also, verbiage in R8.3 should be expanded to include references to Voltage collapse and uncontrolled islanding 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

240 

 
 
Question 10 
Thank you for your comment. The SDT does not agree with the suggestion. Voltage collapse, Cascading, and uncontrolled is not allowed in 
either the benchmark or supplemental assessments.  The distinction in R8.3 is that a CAP is not required in the case of the supplemental 
assessment. 
Colby Bellville ‐ Colby Bellville On Behalf of: Dale Goodwine, Duke Energy , 6, 5, 3, 1; ‐ Colby Bellville, Group Name Duke Energy  
Answer 

 

Document Name 

 

Comment 
Duke Energy requests further clarification regarding the 90 calendar day timeframe outlined in R4. The current language states that the 
Responsible Entity must provide its benchmark GMD Vulnerability Assessment to the RC, adjacent PC, and adjacent TP within 90 calendar 
days of completion. Clarification is needed as to what date the term “completion” is referring to. Many entities may have 3rd parties conduct 
these studies, and in doing so, the Responsible Entity will review the study and make corrections where necessary. Is the completion date 
referred to in the requirement referring to the date the initial study (by the 3rd party) is completed, or is it referring to the date that the 
Responsible Entity has completed its internal review and obtained signoff by management? If the drafting team’s intent was for the 
completion date to refer to the date that the initial study was performed, we cannot agree with the 90 calendar day timeframe. Additional 
time would be needed for the Responsible Entity to perform its review of the 3rd party study, and obtain management signoff. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT believes that the completion date is the date when the Responsible Entity considers it complete; that 
is, it has completed all internal reviews and management approvals. 
Eric Shaw ‐ Eric Shaw On Behalf of: Lee Maurer, Oncor Electric Delivery, 1; ‐ Eric Shaw 
Answer 

 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

241 

 
 
Question 10 
None 
Likes     0 

 

Dislikes     0 

 

Response 
 
Rachel Coyne ‐ Texas Reliability Entity, Inc. ‐ 10 
Answer 

 

Document Name 

 

Comment 
Although not necessarily in the scope of this project, Texas RE noticed a few other things. 
  
 There could be some clarity in which earth models are supposed to be used. The “earth model” physiographic regional maps supplied 
and referenced are not detailed enough to indicate the physical locations of the regional conductivity map boundaries.  This lack of 
detail will be a source of confusion if a transformer is located near a conductivity boundary.  What earth model value does the 
responsible entity use?  If there are 3 regional conductivity areas in one responsible entity’s planning area, what earth model value 
does the responsible entity use?  
 Texas RE is concerned the lack of a timeframe to provide GIC flow information in Requirements R5 and R9 could lead to an entity not 
providing GIC flow information when that information is necessary for the thermal impact assessments. Texas RE requests the SDT add 
a timeframe for providing the data. 
 Although R1 states the PCs and TPs will identify the individual and joint responsibilities for maintaining models and performing the 
studies needed to complete the benchmark and supplemental GMD Vulnerability Assessments, there does not appear to be any 
coordination while actually performing these tasks.  Texas RE is concerned this could lead to TPs each doing their own studies and 
coming to different conclusions, which would not allow entities to recognize vulnerabilities effectively.  Texas RE recommends the PC 
do an overall assessment every 60 calendar months.  
Likes     0 

 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

242 

 
 
Question 10 
Dislikes     0 

 

Response 
Thank you for your comment. The NERC GMD Task Force whitepaper, GIC Application Guide, published December 2013, 
(http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐Task‐Force‐(GMDTF)‐2013.aspx) discusses the use of available earth 
conductivity models in performing the required calculations.   
The SDT is reluctant to set deadlines for the issuance of GIC calculations because the level of effort will vary widely in the various systems in 
North America.  As an alternative, significant time has been allowed in the implementation plan to do the assessments required by R6 and 
R10. 
The purpose of R1 is to ensure that the roles and responsibilities are clear to all, including how the PC will fit the pieces together if there are a 
number of entities contributing to an overall assessment. 
Kenya Streeter ‐ Edison International ‐ Southern California Edison Company ‐ 6 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison. 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Karie Barczak ‐ DTE Energy ‐ Detroit Edison Company ‐ 3 
Answer 

 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

243 

 
 
Question 10 
no 
Likes     0 

 

Dislikes     0 

 

Response 
 
Dana Klem ‐ MRO ‐ 1,2,3,4,5,6 ‐ MRO, Group Name MRO NSRF 
Answer 

 

Document Name 

 

Comment 
The approved TPL‐007‐1 and the current draft of TPL‐007‐2 includes a flowchart diagram in the Application Guides section that provides and 
overall view of the GMD Vulnerability Assessment process (and the requirements in TPL‐007). There has been confusion as to which 
requirements are represented in the diagram. The NSRF suggest the SDT update this diagram to include annotations that identify the 
requirements in TPL‐007‐2. Please see example below which includes requirements for the benchmark and supplemental assessment. 
Likes     1 

Darnez Gresham, N/A, Gresham Darnez 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT did not add references to the flowchart in the Application Guidelines as the flowchart is not a one‐to‐
one relationship with the standard requirements. 
Sandra Shaffer ‐ Berkshire Hathaway ‐ PacifiCorp ‐ 6 
Answer 

 

Document Name 

 

Comment 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

244 

 
 
Question 10 
“PacifiCorp requests the drafting team add to the white paper links to the resources where geomagnetic field data from the 
magnetometers inside NERC footprint is publicly available.” 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The government entity magnetometer station data is available at: US‐‐ https://geomag.usgs.gov/; Canada‐‐ 
http://geomag.nrcan.gc.ca/lab/default‐en.php. The SDT will add those links to the whitepaper as the comment suggests. 
Romel Aquino ‐ Edison International ‐ Southern California Edison Company ‐ 3 
Answer 

 

Document Name 

 

Comment 
Please refer to comments submitted by Robert Blackney on behalf of Southern California Edison. 
Likes     0 

 

Dislikes     0 

 

Response 
No comments were submitted. 
Michelle Amarantos ‐ APS ‐ Arizona Public Service Co. ‐ 1 
Answer 

 

Document Name 

 

Comment 
AZPS is concerned that the proposed revisions to Requirement R1 to add references to the need for processes related to obtaining GMD data 
is inconsistent with respect to how such data is defined in later requirements, e.g., Requirements R11 and R12, and creates confusion relative 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

245 

 
 
Question 10 
to the need and use of such data and to which data‐related actions and requirements Requirement R1 applies.  For these reasons, AZPS 
proposes the following revisions to ensure clarity: 
R1. Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall identify the individual and joint responsibilities of the 
Planning Coordinator and Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining models, including the data‐
related processes identified in Requirements R9, R11, and R12 in this standard, and, performing the study or studies needed to complete 
benchmark and supplemental GMD Vulnerability Assessments.  [Violation Risk Factor: Lower] [Time Horizon: Long‐term Planning]  
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT has revised the blue rationale box for Requirements R11 and R12 to raise awareness of the differences 
in the data. 
Mike Smith ‐ Manitoba Hydro ‐ 1, Group Name Manitoba Hydro 
Answer 

 

Document Name 

 

Comment 
The standard doesn’t talk about how to develop equivalents of neighbouring systems and what assumptions to make. Is there only a GMD 
event impacting your assessment area and none in neighbouring areas?   
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. Guidance on modeling is contained in the following guides published by the NERC GMD Task Force:  GIC 
Application Guide, September 2013 and GMD Planning Guide, December 2013 (see:  http://www.nerc.com/comm/PC/Pages/Geomagnetic‐
Disturbance‐Task‐Force‐(GMDTF)‐2013.aspx) 
Daniel Grinkevich ‐ Con Ed ‐ Consolidated Edison Co. of New York ‐ 1 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

246 

 
 
Question 10 
Answer 

 

Document Name 

 

Comment 
On page 11 Table 1 – Note 3 should be also applicable to the row entitled “Supplemental GMD Event – GMD Event with Outages” as it relates 
to columns “Interruption of Firm Transmission Service Allowed” and “Load Loss Allowed”. 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The SDT asserts that because a CAP is not required, the additional footnote is not applicable. 
Thomas Foltz ‐ AEP ‐ 5 
Answer 

 

Document Name 

 

Comment 
The language used for Measure M5 was adjusted incorrectly as it currently states “… that it has provided the maximum effective benchmark 
GIC value to the Transmission Owner and Generator….. “. This is an incorrect statement and should instead state “...that it has provided the 
maximum effective GIC value under the benchmark event to the Transmission Owner and Generator…..”  
While AEP supports the overall effort of the drafting team, AEP has chosen to vote "no" driven by the lack of clarity related to the potential 
duplication of efforts related to assets which are in‐scope for both the benchmark and supplemental assessments. Similarly, AEP is concerned 
by the overall burden associated with having a secondary suite of “parallel requirements” to accommodate the supplemental assessment. 
Likes     0 

 

Dislikes     0 

 

Response 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

247 

 
 
Question 10 
Thank you for your comment. The SDT removed “benchmark” in Measure M5 and a conforming change by removing “supplemental” in 
Measure M9. The SDT purposely is requesting two separate thermal assessments be done for transformers that exceed the GIC thresholds: 
One for the benchmark event and one for the supplemental event. The supplemental assessment is intended to address local enhancements. 
The benchmark assessment may result in a Corrective Action Plan, but the supplemental assessment does not. 
Kristine Ward ‐ Seminole Electric Cooperative, Inc. ‐ 1,3,4,5,6 ‐ FRCC 
Answer 

 

Document Name 

 

Comment 
Comments: 
1. Parallels between R4 and R8: 
It appears that the standard is now requiring applicable entities to perform two GMD Vulnerability assessments (benchmark and 
supplemental), either at the same time, or within 5 years or less of each other.  This seems to be duplicative and should be characterized as a 
sensitivity to the benchmark and done at the same time if required or be performed as part of “subsequent” assessments.  Also on that note, 
the supplemental assessment has an additional requirement (R8.3) to determine if Cascading occurs, where the benchmark assessment does 
not.  Cascading is often required to be determined via stability analysis which is outside the scope of TPL‐007‐2 because the standard as 
written only requires steady state/load flow analysis.  Can the SDT please elaborate on this shift in requiring entities to evaluate Cascading in 
the supplemental assessment and not in the benchmark assessment, as well as elaborate on the need to evaluate Cascading as a whole? 
Also, the requirement of having to provide the completed assessment to the applicable entities, rather than just making it available (as 
originally drafted), is not providing any reliability benefit other than paperwork for the entities, I thought Paragraph 81 was initiated to get 
away from such requirements and here we are putting them right back in. 
1. R7.3.1,7.3.2: 
What does the SDT envision as a “non‐hardware” mitigation vs. a hardware mitigation? 
1. R4, R8 
Why does the SDT feel it necessary to add the phrase “at least” in the requirements associated with subsequent GMD assessments?  The 
existing language, without the insert, does not preclude an entity from performing an assessment sooner than the 60 calendar months if the 
entity determines it necessary, the insert of “at least” provides no added benefit or clarity to the existing language.  
1. Applicable Facilities: 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

248 

 
 
Question 10 
Has the SDT given any consideration to clarifying the applicable Facilities within TPL‐007‐2?  The standard is only applicable to PCs, TOs, and 
GOs; however, there are transformers that are wye‐grounded on the high‐voltage terminals, operated at greater than 200 kV but are not 
owned by registered TOs or have been excluded from the BES, pursuant the BES Definition.  How does the SDT plan to address those?  For 
example, a GO can provide their respective PC with GSU information for the GMD model; however, their auxiliary transformer(s) which are 
connected on the high‐side at 200 kV or greater and are wye‐grounded are not considered BES Facilities and therefore are not required to be 
provided to the PC as part of their evaluation, even though the unit auxiliary transformers have the potential of tripping the entire plant.  
1. Cost Study 
 Seminole requests the SDT perform a CEAP (Cost Effective Analysis Process) for this Standard.  TPL‐007 is a great candidate as the costs of 
all of the studies is substantial and the frequency of an event causing catastrophic consequences is low.  
2. FRCC Specific TPL‐007‐2 
 Seminole requests that the SDT develop an initial low cost study that would allow for entities in the very far south to be excluded from 
performing further compliance measures.  In the alternative, Seminole requests the SDT to note that the SDT is open to the idea of 
reduced requirement FRCC‐specific TPL‐007‐2.  
1. 7.3.1 
 Change the time value to 24 months instead of 2 years to stay consistent.  Same with 7.3.2.  
1. R11 Note  
The Note for R11 states that the data collected via magnetometers and GIC monitoring is necessary for “situational awareness”.  Does the SDT 
believe that the data collected for situational awareness could classify this collection equipment as BES Cyber Assets if system operators make 
decisions based off of this equipment within 15 minutes? 
Likes     0 

 

Dislikes     0 

 

Response 
Thank you for your comment. The revised standard is requiring a second (supplemental) assessment to be performed coincident with the 
original (benchmark) assessment to explicitly account for the impacts associated with local enhancements.  Since the SDT is not requiring a 
CAP for the supplemental assessment, it can be thought of as a sensitivity to the benchmark assessment. Cascading is not allowed in either 
assessment and to the degree that there is inconsistency in the wording, the SDT will make corrections. The assessments are steady state and 
not intended to imply dynamics analysis. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

249 

 
 
Question 10 
The reliability benefit comes from performing a GMD vulnerability assessment using an enhanced GMD event. 
Examples of hardware mitigation include equipment replacement or modification, GIC blocking devices, protection systems, etc.  Examples of 
non‐hardware mitigation include operating procedures, etc. 
The SDT did not remove the phrase “at least” as suggested. 
The intent of the standard is to protect the BES and therefore, the SDT does not intend to address non‐BES facilities in the standard. Planning 
entities can choose to address other facilities in their assessments if they conclude that those facilities can have a meaningful impact to the 
results. 
The SDT believes that it has addressed the concerns of the low latitude entities through the use of geomagnetic latitude scaling, which does 
not exempt entities from the requirements of performing the analyses. The state of the scientific knowledge on GMD is such that a blanket 
exemption from performing the analyses below certain latitudes is not prudent. 
The SDT does not agree with the change from “two years” to “24 months” in 7.3.1 and 7.3.2 as suggested. 
The statement in the information box associated with R11 comes from the FERC Order No. 830. It is included for information and not 
intended to imply any requirements in this standard. Situational awareness is a term used in operations and not applicable here. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

250 

 

Resilient Societies 
 
Comments of the Foundation for Resilient Societies on NERC Project 2013‐03 Geomagnetic Disturbance Mitigation, Transmission 
System Planned Performance for Geomagnetic Disturbance Events, Draft of TPL‐007‐2. 
We provide brief comments on the Draft Standard, Draft Implementation Plan, and Research Work Plan of NERC. 
Draft Reliability Standard TPL‐007‐2 is based on modeling that is substantially divorced from the empirical evidence of bulk power 
system equipment susceptibility to damage or total losses during moderate geomagnetic disturbances during just the past three 
decades. 
NERC’s GMD Vulnerability Assessment process lacks scientific rigor. A rigorous standard would include: 
Collection of all known or likely bulk power system equipment damage or loss during all three known classes of geomagnetic 
disturbance:  (1) coronal mass ejections (CMEs) , upon which NERC has concentrated; (2) more extended duration but less 
intense coronal hole proton streams (CHs), associated with a substantially larger set of EHV transformer fires and explosions 
during the past three decades; and (3) sudden commencement or sudden reversal GMDs¸ such as occurred at Seabrook 
Station between November 8 and 10, 1998, with resulting meltdown of lower voltage windings in the Phase A 345 kV 
transformer. 
Transformer thermal impact assessments, if performed only if the maximum effective geomagnetically induced current (GIC) in the 
transformer is equal or greater than 75 amps per phase for the benchmark GMD event, and 85 amps per phase for the supplemental 
GMD event, are imprudent and needlessly risky, for a class of equipment with replacement times measured in months or years.  
Idaho National Laboratory suspended injection of quasi‐DC currents into a 138 kV transformer during tests with and without 
attachment of a neutral ground blocker in year 2013.  Why was it necessary for INL test managers to suspend the DC current 
injections at a level of 22 amps per phase, to avert transmission system damage, if the standard’s threshold is “prudently” set at 75 
amps per phase? 
What is needed is a more comprehensive set of GMD classes of hazard, a sharing of data on equipment losses since at least year 
1989, not year 2013, improved modeling, and widespread testing of vulnerable BES equipment both under load and to destruction. 
Geomagnetically Induced Current (GIC) data should be retained indefinitely, not for the 3 years specified in the draft standard, 
because the return period for severe solar storms can be in excess of 100 years. 
NERC claims that “the respective screening criteria are conservative…” (NERC Thermal Screening Criterion White Paper, 2017). We 
dispute this claim and see no scientific foundation for it.  As a result of these deficiencies, the bulk electric system remains highly 

 

 
 

vulnerable to natural occurring geomagnetic disturbances, and more powerful high altitude electromagnetic pulse (EMP) hazards 
that are manmade. 
Respectfully submitted by: 
William R. Harris 
 
SDT Response: 
TPL‐007 requires two distinct types of assessment. The first one is a system assessment which is determined by the largest 
geoelectric field estimated to occur once in 100 years. This assessment evaluates effects such as reactive power loss, voltage 
depression and harmonics due to the interaction of a dc (peak) geoelectric field with the power system. The second 
assessment looks at the thermal effects of time‐varying GIC(t) on transformers. The GIC(t) waveform depends on the static 
GIC distribution obtained from the system assessment. The 75 A/phase and 85 A/phase screening thresholds are calculated 
using the benchmark and supplemental benchmark waveforms, respectively. Comparing the screening current thresholds 
with the constant dc injected in in the INL tests is inappropriate and incorrect. 
 
The INL tests did not monitor transformer hot spots, therefore the SDT cannot comment on conjectures regarding testing 
parameters used. 
 
The NERC 1600 Data Request will address the data retention of the GIC monitor data and geomagnetic field data collected by 
NERC. The 3‐year retention period relates to the time frame that an applicable entity must retain evidence of their processes 
for compliance with Requirements R11 and R12. 
 
The SDT has used 20 years of consistent geomagnetic field measurements to estimate 1 in 100 year benchmark events 
regardless of the physical processes captured by the measurements. 
 
The SDT agrees with the need to improve modelling and testing, which will be addressed with NERC`s research plan.

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

252 

 
 

 
Comments from Avangrid 
1. The SDT developed proposed Requirements R8 – R10 and the supplemental GMD event to address FERC concerns with the 
benchmark GMD event used in GMD Vulnerability Assessments. (Order No. 830 P.44, P.47‐49, P.65). The requirements will obligate 
responsible entities to perform a supplemental GMD Vulnerability Assessment based on the supplemental GMD event that accounts 
for potential impacts of localized peak geoelectric fields. Do you agree with the proposed requirements? If you do not agree, or if 
you agree but have comments or suggestions for the proposed requirements provide your recommendation and explanation. 
 
 Yes  
 No  
Comments:  
 
2. The SDT developed the Supplemental GMD Event Description white paper to provide technical justification for the supplemental 
GMD event. The purpose of the supplemental GMD event description is to provide a defined event for assessing system 
performance for a GMD event which includes a local enhancement of the geomagnetic field. Do you agree with the proposed 
supplemental GMD event and the description in the white paper? If you do not agree, or if you agree but have comments or 
suggestions for the supplemental GMD event and the description in the white paper provide your recommendation and explanation. 
 
 Yes  
 No  
Comments:            
 
3. The SDT established an 85 A per phase screening criterion for determining which power transformers are required to be assessed 
for thermal impacts from a supplemental GMD event in Requirement R10. Justification for this threshold is provided in the revised 
Screening Criterion for Transformer Thermal Impact Assessment white paper. Do you agree with the proposed 85 A per phase 
screening criterion and the technical justification for this criterion that has been added to the white paper? If you do not agree, or if 
you agree but have comments or suggestions for the screening criterion and revisions to the white paper provide your 
recommendation and explanation. 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

253 

 
 

 Yes  
 No  
Comments: “Figure 2: Metallic hot spot temperatures calculated using the benchmark GMD event” from the screening criterion 
document provides a useful visual, can the drafting team additionally provide a similar chart and the data for the supplemental GMD 
event?  
 
SDT Response: 
Thank you for your comment. Figure 2 in the Screening Criteria document is only an illustrative example of a GIC(t) waveform 
and thermal response time series would look like for the particular level of GIC and event. 
 
The SDT agrees that accuracy of models and tools is very important and that their improvement and validation are the main drivers 
for the research plan. The upper bound of hot spot temperatures are provided in Figure 3 of the Screening Criterion for Transformer 
Thermal Impact Assessment white paper and in Tables 1 and 2 of Appendix 1 of the same document. 
 
4. The SDT revised the Transformer Thermal Impact Assessment white paper to include the supplemental GMD event. Do you agree 
with the revisions to the white paper? If you do not agree, or if you agree but have comments or suggestions on the revisions to the 
white paper provide your recommendation and explanation. 
 
 Yes  
 No  
Comments: Table 1 and 2 are useful to show the differences between the benchmark event and the supplemental, but some of the 
figures are not clear which GMD event was used to generate the gic(t) time series. Can some additional language be added to clarify 
the GMD event of the figures in this document?  
Also, there was some inconsistency in axis labels and units between the various figures, which makes it difficult to draw conclusions 
when comparing the charts. For example A/phase versus Amps, minutes versus hours for the time scale. Can these charts be 
updated with uniform axis labels and units for comparative purposes?  
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

254 

 
 

SDT Response: 
Thank you for your comment. This version of the white paper is intended to illustrate different ways to carry out thermal 
transformer assessments. The time series used in the white paper are based on portions of the benchmark time series and 
are intended for illustrative purposes only. The Figures in the white papers are sufficiently clear for their intended use. 
 
5. The SDT developed proposed Requirement R7 to address FERC directives in Order No. 830 for establishing Corrective Action Plan 
(CAP) deadlines associated with GMD Vulnerability Assessments (P. 101, 102). Do you agree with the proposed requirement? If you 
do not agree, or if you agree but have comments or suggestions for the proposed requirement provide your recommendation and 
explanation. 
 
 Yes  
 No  
Comments:            
 
6. The SDT developed Requirements R11 and R12 to address FERC directives in Order No. 830 for requiring responsible entities to 
collect GIC monitoring and magnetometer data (P. 88; P. 90‐92). Do you agree with the proposed requirements? If you do not agree, 
or if you agree but have comments or suggestions for the proposed requirements provide your recommendation and explanation. 
 
 Yes  
 No  
Comments: Neutral current measurements are not sufficient to benchmark autotransformer performance in a GMD event; TOs 
would need at least two out of three leg measurements to do this. Additionally, the proxy magnetometer data leaves flexibility for 
the TO, but may not prove to be effective for benchmarking without other additional considerations. While the intent of the R11 
requirement is to benchmark the model, without accurate magnetometer installations in each TOs footprint, it may be difficult to do 
so; particularly where no nearby proxy data can be leveraged. Can the drafting team consider increasing R11 further and require TOs 
to either install measuring devices in their area, and/or to prove the accuracy of the proxy data? Also, can the drafting team consider 
a requirement for additional measurements on autotransformers? 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

255 

 
 

SDT Response: 
Thank you for your comment. Requirement R11 addresses the process for data collection. The standard does not address the 
appropriateness of magnetometer site installation and validity of data. 
 
7. Do you agree with the proposed Implementation Plan for TPL‐007‐2? If you do not agree, or if you agree but have comments or 
suggestions for the Implementation Plan provide your recommendation and explanation. 
 
 Yes  
 No  
Comments:            
 
8. Do you agree with the Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs) for the requirements in proposed TPL‐
007‐2? If you do not agree, or if you agree but have comments or suggestions for the VRFs and VSLs provide your recommendation 
and explanation. 
 
 Yes  
 No  
Comments:            
 
9. The SDT believes proposed TPL‐007‐2 provide entities with flexibility to meet the reliability objectives in the project Standards 
Authorization Request (SAR) in a cost effective manner. Do you agree? If you do not agree, or if you agree but have suggestions for 
improvement to enable additional cost effective approaches to meet the reliability objectives, please provide your recommendation 
and, if appropriate, technical justification. 
 
 Yes  
 No  
Comments:            
 
10. Provide any additional comments for the SDT to consider, if desired.  

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

256 

 
 

Comments:            
 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

257 

 

Attachment 1 
 
 
SPP TPLTF Review of TPL‐007‐2 Comment Questions published by Project 2013‐03 (Geomagnetic Disturbance Mitigation) 
 
In July 2017, the Project 2013‐03 Standard Drafting Team (SDT) released an unofficial comment form to allow the industry to provide 
feedback on the proposed TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events standard.  It 
is noted that the industry comment period is brief and all comments must be submitted by Friday, August 11, 2017.  Given that the 
SPP TPLTF has been actively developing guidance and processes for SPP and its members to address the approved TPL‐007‐1 
standard, this open comment period offered an opportunity for the TPLTF to collectively review the proposed standard.  Further, the 
TPLTF assessed the TPL‐007‐2 official comment questionnaire and discussed potential industry responses.  The following represents 
a summary of the informal discussion conducted by the TPLTF and is provided to add value to those SPP members who choose to 
submit comments during the open period.  The information given here should be considered non‐binding and is intended to 
supplement independent reviews of the proposed TPL‐007‐2, thereby adding the value of a TPLTF perspective.   
 
If you have any questions, please contact the SPP TPLTF secretary Scott Jordan (SPP staff, sjordan@spp.org) or the SPP TPLTF 
chairperson Chris Colson (WAPA‐UGPR, colson@wapa.gov). 
 
General comment:  Upon the TPLTF review of FERC Order No. 830, released in September 2016, it is clear that the FERC directives 
are very prescriptive.  The group felt that there was little leeway offered the Project 2013‐03 in drafting the proposed TPL‐007‐2 
changes.  Knowing this, the TPLTF review focused on the SDT approach to meeting the directives of FERC Order No. 830 and its 
impact upon the SPP Planning Coordinator, as well as SPP member Transmission Planners, Transmission Owners, and Generator 
Owners.  The TPLTF took particular care to focus upon the draft requirements of TPL‐007‐2 and attempted to omit any discussion of 
the FERC directives themselves, given that they are established in Order No. 830. 
 
Questions from the TPL‐007‐2 Comment Form 
 
1. The SDT developed proposed Requirements R8 – R10 and the supplemental GMD event to address FERC concerns with the 
benchmark GMD event used in GMD Vulnerability Assessments. (Order No. 830 P.44, P.47‐49, P.65). The requirements will obligate 

 

 
 

responsible entities to perform a supplemental GMD Vulnerability Assessment based on the supplemental GMD event that accounts 
for potential impacts of localized peak geoelectric fields. Do you agree with the proposed requirements? If you do not agree, or if 
you agree but have comments or suggestions for the proposed requirements provide your recommendation and explanation. 
 
TPLTF Discussion: The group agrees with the SDT approach to addressing FERC Order No. 830  
Paragraph 44.  In effect, the SDT has specified an extreme value for geoelectric field, called the supplemental GMD event, intended 
to represent a locally‐enhanced geoelectric field experienced by a limited geographic area.  In other words, the SDT has proposed a 
means by which Planning Coordinators and Transmission Planners can approximate a non‐geospatially‐averaged peak geoelectric 
field, thus meeting the intent of the FERC Order No. 830 directive.  While determining peak geoelectric field amplitudes not based 
solely on spatially‐averaged data is a significant challenge to meeting the FERC directive, primarily because of the lack of North 
American data, as well as analytical tools available to Planning Coordinators and Transmission Planners, the group believes the SDT 
has found a workable approach. 
 
The group would like to note that it will be non‐trivial to apply the localized peak geoelectric field in the supplemental GMD event to 
a spatially‐limited area, described in the proposed TPL‐007‐2  
Attachment 1, given available software tools and available personnel resources.  This will be especially pronounced for Planning 
Coordinators and Transmission Planners with large geographical footprints.  Many planning entities will be forced to apply the 
supplemental peak geoelectric field over their entire area, in effect simply studying a higher magnitude benchmark GMD event.  
While the group believes this is prominently conservative, as stated above, we understand and support the SDT approach to this 
directive.  It is likewise noted that the definition of a spatially‐limited area is absent in the materials published by the SDT, but this 
vagary supports better analytical flexibility for Planning Coordinators and Transmission Planners and should not be defined in the 
draft standard. 
 
2. The SDT developed the Supplemental GMD Event Description white paper to provide technical justification for the supplemental 
GMD event. The purpose of the supplemental GMD event description is to provide a defined event for assessing system 
performance for a GMD event which includes a local enhancement of the geomagnetic field. Do you agree with the proposed 
supplemental GMD event and the description in the white paper? If you do not agree, or if you agree but have comments or 
suggestions for the supplemental GMD event and the description in the white paper provide your recommendation and explanation. 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

259 

 
 

TPLTF Discussion:  The group recognizes that there are multiple methods to approach revisions to the benchmark GMD event 
definition so that the reference peak geoelectric field amplitude component is not based solely on spatially‐averaged data (FERC 
Order No. 830 Paragraph 44).  However, given a wide diversity in available data, analytical tools, and personnel expertise, the group 
believes that the SDT has found a practical approach to meeting the objective of the FERC directive.  Moreover, the Supplemental 
GMD Event Description white paper presents a reasoned justification for the use of the geoelectric field amplitude of 12 V/km.   
 
The group recommends that the SDT consider a less ambiguous name for the Supplemental GMD Event; the group believes Extreme 
Value GMD Event would be more appropriate for the following reasons: 
 
a. Implies a closer relationship to the extreme events of TPL‐001‐4 for which Planning Coordinators and Transmission Planners 
are familiar. 
 
b. Is better aligned with the extreme value statistical analysis that was conducted to produce the subject reference peak 
geoelectric field amplitude. 
 
c. Indicates a measure of how rare the extreme value for the 1‐in‐100 year peak geoelectric field amplitude may be, based 
upon the 95% confidence interval of the extreme value. 
 
While the group agrees that the application of extreme value statistical methods presented in the Supplemental GMD Event 
Description white paper is sound, three clarifying statements should be made in the white paper.  Firstly, in short, the group agrees 
that by using the 23 years of daily maximum geoelectric field amplitudes from IMAGE magnetometers, a proxy of higher magnitude 
events can be characterized.  It is noted that the southernmost magnetometer in the IMAGE chain resides in Suwałki, Poland at 
54.01°N, whose geographic latitude places it roughly 500 miles north of Quebec.  Given that geoelectric field is highly correlated 
with geomagnetic latitude rather than geographic latitude, the IMAGE data should still be referred to as a loose approximation for 
estimated North American geoelectric field magnitudes (Suwałki, Poland geomagnetic dipole latitude 52°N, Quebec geomagnetic 
dipole latitude 56°N).  In other words, the group believes it is appropriate to qualify that the extreme value analysis performed in the 
white paper is based upon maximum data points obtained from an array of northern geomagnetically‐biased latitudes, further 
inflated by using the high earth conductivity of Quebec.  Secondly, it is well known that coastal geological conditions can lead to 
locally‐enhanced geoelectric fields, not observed in regions more distant from the coast.  Given that nearly all of the IMAGE chain 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

260 

 
 

magnetometers reside within 100 miles of the northern Atlantic Ocean or Baltic Sea coasts, it is reasonable to conclude that the 
geoelectric field amplitudes derived from the corresponding IMAGE data may have suffered from geoelectric field enhancement 
along conductivity boundaries.  With respect to serving as a proxy for mainland North American peak geoelectric field amplitude, the 
SDT should consider further qualifying the appropriateness of the IMAGE data which served as the foundation of the extreme value 
analysis.  Finally, the group agrees that the use of more resolute point over threshold (POT) methods was indicated over generalized 
extreme value (GEV).  For clarity, however, it should be emphasized that the geoelectric field amplitude of 12 V/km represents the 
extreme value of the upper limit of the 95 percent confidence interval for a 100‐year return interval.  In other words, the statistical 
significance of the extreme value confidence interval is not equivalent to the statistic expressed by the confidence interval for the 
data set consisting of 23 years of all sampled geoelectric field amplitudes (not shown).  Each of these considerations, if addressed, 
can strengthen the conclusions of the white paper by emphasizing its conservative approach. 
 
 
3. The SDT established an 85 A per phase screening criterion for determining which power transformers are required to be assessed 
for thermal impacts from a supplemental GMD event in Requirement R10. Justification for this threshold is provided in the revised 
Screening Criterion for Transformer Thermal Impact Assessment white paper. Do you agree with the proposed 85 A per phase 
screening criterion and the technical justification for this criterion that has been added to the white paper? If you do not agree, or if 
you agree but have comments or suggestions for the screening criterion and revisions to the white paper provide your 
recommendation and explanation. 
 
TPLTF Discussion:  Given the use of the 12 V/km geoelectric field amplitude for the supplemental GMD event, the group agrees with 
the proposed 85 Amp threshold justified in the Screening Criterion for Transformer Thermal Impact Assessment white paper.  The 
group suggests that the proposed change on page 11 of the white paper stating “because the supplemental waveform has a sharper 
peak, the peak metallic hot spot temperatures associated with the supplemental waveform are slightly lower than those associated 
with the benchmark waveform” be clarified.  In other words, this statement is counterintuitive given that the increased 
supplemental time‐series waveform peak value implies higher GIC flows that, when experienced by a transformer will lead 
potentially higher metallic hot spot temperatures.  A suggested approach to better communicate this point is as follows: 
 
Given that GICs are proportional to the time‐varying electric field, according to:  
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

261 

 
 

	|

|∙

sin

cos

  

 

 

(1) 

 
The joule heating effect in transformers is proportional to the time‐varying GIC, as: 
  
∝
, 		
	
,	
 
 
 
 
 
(2) 
 
It follows that the transformer metallic hot spot temperature is proportional to the time‐varying GIC, as: 
 
∝
  ,	
	 															
	
   
 
 
 
(3) 
 
Therefore, the corresponding proportion that relates the transformer metallic hot spot temperature to time‐varying geoelectric field 
amplitude is expressed by:  
 
∝
  	  
 
 
 
 
 
 
 
(4) 
	
	
 
The figure below shows the benchmark GMD and supplemental GMD event waveforms normalized to their respective geoelectric 
field peak amplitudes.  By portraying the two events in this manner, it is evident that the relationship given in (4) leads to a proxy 
heating quantity for the benchmark GMD event approximately 32% more than the supplemental GMD event.  Even though the peak 
GIC induced by the supplemental GMD is higher than the benchmark, the total heating is less (integral).   
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

262 

 
 

 
In other words, if the peak transformer GIC screening threshold were 75 A/phase for both events, the transformer suffering a 
supplemental GMD event would experience less overall heating; the aggregated effects of the Supplemental geoelectric field 
“intensity” is not sustained.  Thus, the screening threshold for supplemental GMD event transformer GIC is established at a slightly 
higher, but conservative, 85A/phase. 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

 

263 

 
 

 
4. The SDT revised the Transformer Thermal Impact Assessment white paper to include the supplemental GMD event. Do you agree 
with the revisions to the white paper? If you do not agree, or if you agree but have comments or suggestions on the revisions to the 
white paper provide your recommendation and explanation. 
 
TPLTF Discussion:  The group agrees with the changes in the Transformer Thermal Impact Assessment white paper, with the 
exception of the explanation provided for Table 2 on page 5.  Similar to the comment made regarding the counterintuitive language 
in the Screening Criterion for Transformer Thermal Impact Assessment white paper, it is not clear why metallic hot spot 
temperatures are reduced for the supplemental GMD event for the same effective GIC and transformer bulk oil temperature.  
Additional clarity on this point would improve the ability of applicable entities to rely upon the reference data provided.  The group 
recommends adding white paper language similar to that suggested in Question Q3. 
 
The group would like to highlight that the study of supplemental GMD event conditions may cause a significantly larger number of 
transformers to be added for assessed by Transmission Owners and Generator Owners.  Given that the analytical tools and modeling 
software available for this type of analysis are limited, as well as the fact that most manufacturers supplying power transformers to 
U.S. customers do not include data necessary to complete detailed thermal modeling with transformer test reports, the additional 
effort to satisfy the supplemental GMD event analysis will be arduous.  The group recommends that the SDT consider the reality that 
these tools are merely in their infancy across the industry, and additional time to develop, deploy, and train on them should be 
included in the TPL‐007‐2 implementation plan to complete transformer thermal assessments for the supplemental GMD event. 
 
 
5. The SDT developed proposed Requirement R7 to address FERC directives in Order No. 830 for establishing Corrective Action Plan 
(CAP) deadlines associated with GMD Vulnerability Assessments (P. 101, 102). Do you agree with the proposed requirement? If you 
do not agree, or if you agree but have comments or suggestions for the proposed requirement provide your recommendation and 
explanation. 
 
TPLTF Discussion:  Given the specificity of the Paragraphs 101 and 102 directives of FERC Order No. 830  
Paragraph 44, the group believes that the SDT had little flexibility when developing the proposed language of Requirement R7.  The 
group agrees with the proposed Requirement R7, as presented.  The group would like to reiterate the suggestion that the 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

264 

 
 

Supplemental GMD Event nomenclature be changed to Extreme Value GMD Event, as explained in the group’s discussion of 
Question Q2. 
 
 
6. The SDT developed Requirements R11 and R12 to address FERC directives in Order No. 830 for requiring responsible entities to 
collect GIC monitoring and magnetometer data (P. 88; P. 90‐92). Do you agree with the proposed requirements? If you do not agree, 
or if you agree but have comments or suggestions for the proposed requirements provide your recommendation and explanation. 
 
TPLTF Discussion:  Despite the added cost to implement additional monitoring and data collection, the group agrees that the SDT 
developed a reasonable approach to the FERC directives in Order No. 830 Paragraph 88.   
 
 
7. Do you agree with the proposed Implementation Plan for TPL‐007‐2? If you do not agree, or if you agree but have comments or 
suggestions for the Implementation Plan provide your recommendation and explanation. 
 
TPLTF Discussion:  The group agrees with the proposed Implementation Plan for TPL‐007‐2 and does not see any conflicts with the 
order by which the phased requirements become effective.  However, given the lack of available tools, absence of thermal 
modeling‐related data from transformer manufacturers, and the significant training that will be necessary to properly execute 
transformer thermal assessments, the group believes that the implementation period for Requirement R10 should be at least 48 
months after the standard is approved.  This suggested implementation period is consistent with the existing implementation period 
for Requirement R6 (transformer thermal assessment for benchmark GMD event) and should allow sufficient time for many more 
transformers that may be observed to exceed the supplemental GMD event screening criterion. 
 
 
8. Do you agree with the Violation Risk Factors (VRFs) and Violation Severity Levels (VSLs) for the requirements in proposed TPL‐007‐
2? If you do not agree, or if you agree but have comments or suggestions for the VRFs and VSLs provide your recommendation and 
explanation. 
 
TPLTF Discussion:  The group agrees with the apportionment of the VRFs and VSLs. 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

265 

 
 

 
 
9. The SDT believes proposed TPL‐007‐2 provide entities with flexibility to meet the reliability objectives in the project Standards 
Authorization Request (SAR) in a cost effective manner. Do you agree? If you do not agree, or if you agree but have suggestions for 
improvement to enable additional cost effective approaches to meet the reliability objectives, please provide your recommendation 
and, if appropriate, technical justification. 
 
TPLTF Discussion:  The group agrees that the SDT has done a good job of considering cost in time, resources, and personnel 
commitment in meeting the objectives of the SAR, which were heavily prescribed by FERC Order No. 830.  The group may not agree 
with the perceived benefit to reliability that the additional effort to analyze the supplemental GMD event will yield, but the SDT has 
proposed a solid means of addressing the FERC directives without relying on tools or methods that do not exist widely in industry 
today.  The group also supports the SDT cost‐effective approach to the proposed Requirement R7 which does not mention GIC 
blocking devices as an integral part of a hardware mitigation.  The group remains concerned with the perception that GIC mitigation 
hardware is presently a viable solution.  Given its cost, effects on Protection System design, as well as potential compromises to 
existing BES reliability, GIC blocking devices may prove undesirable.   The flexibility that the SDT has proposed in the development of 
Corrective Action Plans is workable. 
 
 
10. Provide any additional comments for the SDT to consider, if desired.  
 
TPLTF Discussion:  None additional. 
 
 

Consideration of Comments 
2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

 

266 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Standard Development Timeline
This section is maintained by the drafting team during the development of the standard and will 
be removed when the standard is adopted by the NERC Board of Trustees (Board). 

Description of Current Draft
Completed Actions

Date

Standards Committee approved Standard Authorization Request 
(SAR) for posting 

December 14, 2016 

SAR posted for comment 

December 16, 2016 – 
January 20, 2017 

45‐day formal comment period with initial ballot 

June 28 – August 11, 
2017 

 
Anticipated Actions

Date

10‐day final ballot 

October 2017 

Board adoption 

November 2017 

 

Draft 2 of TPL‐007‐2 
October 2017 

Page 1 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

New or Modified Term(s) Used in NERC Reliability Standards
This section includes all new or modified terms used in the proposed standard that will be 
included in the Glossary of Terms Used in NERC Reliability Standards upon applicable regulatory 
approval. Terms used in the proposed standard that are already defined and are not being 
modified can be found in the Glossary of Terms Used in NERC Reliability Standards. The new or 
revised terms listed below will be presented for approval with the proposed standard. Upon 
Board adoption, this section will be removed. 
 
Term(s):

None 

Draft 2 of TPL‐007‐2 
October 2017 

Page 2 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Upon Board adoption, the rationale boxes will be moved to the Supplemental Material Section. 

A. Introduction
1.

Title:  
Events 

Transmission System Planned Performance for Geomagnetic Disturbance 

2.

Number: 

TPL‐007‐2 

3.

Purpose:  Establish requirements for Transmission system planned performance 
during geomagnetic disturbance (GMD) events. 

4.

Applicability: 
4.1. Functional Entities: 
4.1.1. Planning Coordinator with a planning area that includes a Facility or 
Facilities specified in 4.2; 
4.1.2. Transmission Planner with a planning area that includes a Facility or 
Facilities specified in 4.2; 
4.1.3. Transmission Owner who owns a Facility or Facilities specified in 4.2; and 
4.1.4. Generator Owner who owns a Facility or Facilities specified in 4.2. 
4.2. Facilities: 
4.2.1. Facilities that include power transformer(s) with a high side, wye‐
grounded winding with terminal voltage greater than 200 kV. 

5.

Effective Date: See Implementation Plan for TPL‐007‐2. 

6.

Background: During a GMD event, geomagnetically‐induced currents (GIC) may cause 
transformer hot‐spot heating or damage, loss of Reactive Power sources, increased 
Reactive Power demand, and Misoperation(s), the combination of which may result in 
voltage collapse and blackout 

B. Requirements and Measures
R1. Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall 
identify the individual and joint responsibilities of the Planning Coordinator and 
Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining 
models, performing the study or studies needed to complete benchmark and 
supplemental GMD Vulnerability Assessments, and implementing process(es) to 
obtain GMD measurement data as specified in this standard. [Violation Risk Factor: 
Lower] [Time Horizon: Long‐term Planning] 

Draft 2 of TPL‐007‐2 
October 2017 

Page 3 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

M1. Each Planning Coordinator, in conjunction with its Transmission Planners, shall provide 
documentation on roles and responsibilities, such as meeting minutes, agreements, 
copies of procedures or protocols in effect between entities or between departments 
of a vertically integrated system, or email correspondence that identifies an 
agreement has been reached on individual and joint responsibilities for maintaining 
models, performing the study or studies needed to complete benchmark and 
supplemental GMD Vulnerability Assessments, and implementing process(es) to 
obtain GMD measurement data in accordance with Requirement R1. 
R2. Each responsible entity, as determined in Requirement R1, shall maintain System 
models and GIC System models of the responsible entity’s planning area for 
performing the study or studies needed to complete benchmark and supplemental 
GMD Vulnerability Assessments. [Violation Risk Factor: High] [Time Horizon: Long‐
term Planning] 
M2. Each responsible entity, as determined in Requirement R1, shall have evidence in 
either electronic or hard copy format that it is maintaining System models and GIC 
System models of the responsible entity’s planning area for performing the study or 
studies needed to complete benchmark and supplemental GMD Vulnerability 
Assessments. 
R3. Each responsible entity, as determined in Requirement R1, shall have criteria for 
acceptable System steady state voltage performance for its System during the GMD 
events described in Attachment 1. [Violation Risk Factor: Medium] [Time Horizon: 
Long‐term Planning] 
M3. Each responsible entity, as determined in Requirement R1, shall have evidence, such 
as electronic or hard copies of the criteria for acceptable System steady state voltage 
performance for its System in accordance with Requirement R3. 
Benchmark GMD Vulnerability Assessment(s)

R4. Each responsible entity, as determined in Requirement R1, shall complete a 
benchmark GMD Vulnerability Assessment of the Near‐Term Transmission Planning 
Horizon at least once every 60 calendar months. This benchmark GMD Vulnerability 
Assessment shall use a study or studies based on models identified in Requirement R2, 
document assumptions, and document summarized results of the steady state 
analysis. [Violation Risk Factor: High] [Time Horizon: Long‐term Planning] 
4.1. The study or studies shall include the following conditions: 
4.1.1. System On‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon; and 
4.1.2. System Off‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 4 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

4.2. The study or studies shall be conducted based on the benchmark GMD event 
described in Attachment 1 to determine whether the System meets the 
performance requirements for the steady state planning benchmark GMD event 
contained in Table 1. 
4.3. The benchmark GMD Vulnerability Assessment shall be provided: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and 
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to 
any functional entity that submits a written request and has a reliability‐related 
need within 90 calendar days of receipt of such request or within 90 calendar 
days of completion of the benchmark GMD Vulnerability Assessment, whichever 
is later. 
4.3.1. If a recipient of the benchmark GMD Vulnerability Assessment provides 
documented comments on the results, the responsible entity shall 
provide a documented response to that recipient within 90 calendar days 
of receipt of those comments. 
M4. Each responsible entity, as determined in Requirement R1, shall have dated evidence 
such as electronic or hard copies of its benchmark GMD Vulnerability Assessment 
meeting all of the requirements in Requirement R4. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email records, 
web postings with an electronic notice of posting, or postal receipts showing recipient 
and date, that it has distributed its benchmark GMD Vulnerability Assessment: (i) to 
the responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and 
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to any 
functional entity that submits a written request and has a reliability‐related need 
within 90 calendar days of receipt of such request or within 90 calendar days of 
completion of the benchmark GMD Vulnerability Assessment, whichever is later, as 
specified in Requirement R4. Each responsible entity, as determined in Requirement 
R1, shall also provide evidence, such as email notices or postal receipts showing 
recipient and date, that it has provided a documented response to comments received 
on its benchmark GMD Vulnerability Assessment within 90 calendar days of receipt of 
those comments in accordance with Requirement R4. 
R5. Each responsible entity, as determined in Requirement R1, shall provide GIC flow 
information to be used for the benchmark thermal impact assessment of transformers 
specified in Requirement R6 to each Transmission Owner and Generator Owner that 
owns an applicable Bulk Electric System (BES) power transformer in the planning area. 
The GIC flow information shall include: [Violation Risk Factor: Medium] [Time Horizon: 
Long‐term Planning] 
5.1. The maximum effective GIC value for the worst case geoelectric field orientation 
for the benchmark GMD event described in Attachment 1. This value shall be 
provided to the Transmission Owner or Generator Owner that owns each 
applicable BES power transformer in the planning area. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 5 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

5.2. The effective GIC time series, GIC(t), calculated using the benchmark GMD event 
described in Attachment 1 in response to a written request from the 
Transmission Owner or Generator Owner that owns an applicable BES power 
transformer in the planning area. GIC(t) shall be provided within 90 calendar 
days of receipt of the written request and after determination of the maximum 
effective GIC value in Part 5.1. 
M5. Each responsible entity, as determined in Requirement R1, shall provide evidence, 
such as email records, web postings with an electronic notice of posting, or postal 
receipts showing recipient and date, that it has provided the maximum effective GIC 
values to the Transmission Owner and Generator Owner that owns each applicable 
BES power transformer in the planning area as specified in Requirement R5, Part 5.1. 
Each responsible entity, as determined in Requirement R1, shall also provide evidence, 
such as email records, web postings with an electronic notice of posting, or postal 
receipts showing recipient and date, that it has provided GIC(t) in response to a 
written request from the Transmission Owner or Generator Owner that owns an 
applicable BES power transformer in the planning area. 
R6. Each Transmission Owner and Generator Owner shall conduct a benchmark thermal 
impact assessment for its solely and jointly owned applicable BES power transformers 
where the maximum effective GIC value provided in Requirement R5, Part 5.1, is 75 A 
per phase or greater. The benchmark thermal impact assessment shall: [Violation Risk 
Factor: Medium] [Time Horizon: Long‐term Planning] 
6.1. Be based on the effective GIC flow information provided in Requirement R5; 
6.2. Document assumptions used in the analysis; 
6.3. Describe suggested actions and supporting analysis to mitigate the impact of 
GICs, if any; and  
6.4. Be performed and provided to the responsible entities, as determined in 
Requirement R1, within 24 calendar months of receiving GIC flow information 
specified in Requirement R5, Part 5.1. 
M6. Each Transmission Owner and Generator Owner shall have evidence such as electronic 
or hard copies of its benchmark thermal impact assessment for all of its solely and 
jointly owned applicable BES power transformers where the maximum effective GIC 
value provided in Requirement R5, Part 5.1, is 75 A per phase or greater, and shall 
have evidence such as email records, web postings with an electronic notice of 
posting, or postal receipts showing recipient and date, that it has provided its thermal 
impact assessment to the responsible entities as specified in Requirement R6. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 6 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Rationale for Requirement R7: The proposed requirement addresses directives in Order 
No. 830 for establishing Corrective Action Plan (CAP) deadlines associated with GMD 
Vulnerability Assessments. In Order No. 830, FERC directed revisions to TPL‐007 such that 
CAPs are developed within one year from the completion of GMD Vulnerability 
Assessments (P 101). Furthermore, FERC directed establishment of implementation 
deadlines after the completion of the CAP as follows (P 102): 


Two years for non‐hardware mitigation; and 



Four years for hardware mitigation. 

The objective of Part 7.4 is to provide awareness to potentially impacted entities when 
implementation of planned mitigation is not achievable within the deadlines established 
in Part 7.3. Examples of situations beyond the control of the of the responsible entity (see 
Section 7.4) include, but are not limited to: 


Delays resulting from regulatory/legal processes, such as permitting; 



Delays resulting from stakeholder processes required by tariff; 



Delays resulting from equipment lead times; or 



Delays resulting from the inability to acquire necessary Right‐of‐Way. 

R7. Each responsible entity, as determined in Requirement R1, that concludes through the 
benchmark GMD Vulnerability Assessment conducted in Requirement R4 that their 
System does not meet the performance requirements for the steady state planning 
benchmark GMD event contained in Table 1, shall develop a Corrective Action Plan 
(CAP) addressing how the performance requirements will be met. The CAP shall: 
[Violation Risk Factor: High] [Time Horizon: Long‐term Planning] 
7.1. List System deficiencies and the associated actions needed to achieve required 
System performance. Examples of such actions include: 


Installation, modification, retirement, or removal of Transmission and 
generation Facilities and any associated equipment. 



Installation, modification, or removal of Protection Systems or Remedial 
Action Schemes. 



Use of Operating Procedures, specifying how long they will be needed as 
part of the CAP. 



Use of Demand‐Side Management, new technologies, or other initiatives. 

7.2. Be developed within one year of completion of the benchmark GMD 
Vulnerability Assessment.
7.3. Include a timetable, subject to revision by the responsible entity in Part 7.4, for 
implementing the selected actions from Part 7.1. The timetable shall: 

Draft 2 of TPL‐007‐2 
October 2017 

Page 7 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

7.3.1. Specify implementation of non‐hardware mitigation, if any, within two 
years of development of the CAP; and 
7.3.2. Specify implementation of hardware mitigation, if any, within four years 
of development of the CAP.
7.4. Be revised if situations beyond the control of the responsible entity determined 
in Requirement R1 prevent implementation of the CAP within the timetable for 
implementation provided in Part 7.3. The revised CAP shall document the 
following, and be updated at least once every 12 calendar months until 
implemented:  
7.4.1. Circumstances causing the delay for fully or partially implementing the 
selected actions in Part 7.1;  
7.4.2. Description of the original CAP, and any previous changes to the CAP, 
with the associated timetable(s) for implementing the selected actions in 
Part 7.1; and 
7.4.3. Revisions to the selected actions in Part 7.1, if any, including utilization of 
Operating Procedures if applicable, and the updated timetable for 
implementing the selected actions. 
7.5. Be provided: (i) to the responsible entity’s Reliability Coordinator, adjacent 
Planning Coordinator(s), adjacent Transmission Planner(s), and functional 
entities referenced in the CAP within 90 calendar days of development or 
revision, and (ii) to any functional entity that submits a written request and has a 
reliability‐related need within 90 calendar days of receipt of such request or 
within 90 calendar days of development or revision, whichever is later. 
7.5.1. If a recipient of the CAP provides documented comments on the results, 
the responsible entity shall provide a documented response to that 
recipient within 90 calendar days of receipt of those comments.
M7. Each responsible entity, as determined in Requirement R1, that concludes, through 
the benchmark GMD Vulnerability Assessment conducted in Requirement R4, that the 
responsible entity’s System does not meet the performance requirements for the 
steady state planning benchmark GMD event contained in Table 1 shall have evidence 
such as dated electronic or hard copies of its CAP including timetable for 
implementing selected actions, as specified in Requirement R7. Each responsible 
entity, as determined in Requirement R1, shall also provide evidence, such as email 
records or postal receipts showing recipient and date, that it has revised its CAP if 
situations beyond the responsible entity's control prevent implementation of the CAP 
within the timetable specified. Each responsible entity, as determined in Requirement 
R1, shall also provide evidence, such as email records, web postings with an electronic 
notice of posting, or postal receipts showing recipient and date, that it has distributed 
its CAP or relevant information, if any, (i) to the responsible entity’s Reliability 
Coordinator, adjacent Planning Coordinator(s), adjacent Transmission Planner(s), and 

Draft 2 of TPL‐007‐2 
October 2017 

Page 8 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

functional entities referenced in the CAP within 90 calendar days of development or 
revision, and (ii) to any functional entity that submits a written request and has a 
reliability‐related need within 90 calendar days of receipt of such request or within 90 
calendar days of development or revision, whichever is later as specified in 
Requirement R7. Each responsible entity, as determined in Requirement R1, shall also 
provide evidence, such as email notices or postal receipts showing recipient and date, 
that it has provided a documented response to comments received on its CAP within 
90 calendar days of receipt of those comments, in accordance with Requirement R7. 
Supplemental GMD Vulnerability Assessment(s)

Rationale for Requirements R8 – R10: The proposed requirements address directives in 
Order No. 830 for revising the benchmark GMD event used in GMD Vulnerability 
Assessments (P 44, P 47‐49). The requirements add a supplemental GMD Vulnerability 
Assessment based on the supplemental GMD event that accounts for localized peak 
geoelectric fields. 
R8.

Each responsible entity, as determined in Requirement R1, shall complete a 
supplemental GMD Vulnerability Assessment of the Near‐Term Transmission Planning 
Horizon at least once every 60 calendar months. This supplemental GMD Vulnerability 
Assessment shall use a study or studies based on models identified in Requirement 
R2, document assumptions, and document summarized results of the steady state 
analysis. [Violation Risk Factor: High] [Time Horizon: Long‐term Planning]
8.1. The study or studies shall include the following conditions: 
8.1.1. System On‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon; and  
8.1.2. System Off‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon.
8.2. The study or studies shall be conducted based on the supplemental GMD event 
described in Attachment 1 to determine whether the System meets the 
performance requirements for the steady state planning supplemental GMD 
event contained in Table 1.
8.3. If the analysis concludes there is Cascading caused by the supplemental GMD 
event described in Attachment 1, an evaluation of possible actions designed to 
reduce the likelihood or mitigate the consequences and adverse impacts of the 
event(s) shall be conducted.

Draft 2 of TPL‐007‐2 
October 2017 

Page 9 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

8.4. The supplemental GMD Vulnerability Assessment shall be provided: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, 
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to 
any functional entity that submits a written request and has a reliability‐related 
need within 90 calendar days of receipt of such request or within 90 calendar 
days of completion of the supplemental GMD Vulnerability Assessment, 
whichever is later. 
8.4.1. If a recipient of the supplemental GMD Vulnerability Assessment 
provides documented comments on the results, the responsible entity 
shall provide a documented response to that recipient within 90 calendar 
days of receipt of those comments.
M8. Each responsible entity, as determined in Requirement R1, shall have dated evidence 
such as electronic or hard copies of its supplemental GMD Vulnerability Assessment 
meeting all of the requirements in Requirement R8. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email records, 
web postings with an electronic notice of posting, or postal receipts showing recipient 
and date, that it has distributed its supplemental GMD Vulnerability: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, adjacent 
Transmission Planners within 90 calendar days of completion, and (ii) to any 
functional entity that submits a written request and has a reliability‐related need 
within 90 calendar days of receipt of such request or within 90 calendar days of 
completion of the supplemental GMD Vulnerability Assessment, whichever is later, as 
specified in Requirement R8. Each responsible entity, as determined in Requirement 
R1, shall also provide evidence, such as email notices or postal receipts showing 
recipient and date, that it has provided a documented response to comments 
received on its supplemental GMD Vulnerability Assessment within 90 calendar days 
of receipt of those comments in accordance with Requirement R8.
R9.

Each responsible entity, as determined in Requirement R1, shall provide GIC flow 
information to be used for the supplemental thermal impact assessment of 
transformers specified in Requirement R10 to each Transmission Owner and 
Generator Owner that owns an applicable Bulk Electric System (BES) power 
transformer in the planning area. The GIC flow information shall include: [Violation 
Risk Factor: Medium] [Time Horizon: Long‐term Planning]
9.1. The maximum effective GIC value for the worst case geoelectric field orientation 
for the supplemental GMD event described in Attachment 1. This value shall be 
provided to the Transmission Owner or Generator Owner that owns each 
applicable BES power transformer in the planning area.  

Draft 2 of TPL‐007‐2 
October 2017 

Page 10 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

9.2. The effective GIC time series, GIC(t), calculated using the supplemental GMD 
event described in Attachment 1 in response to a written request from the 
Transmission Owner or Generator Owner that owns an applicable BES power 
transformer in the planning area. GIC(t) shall be provided within 90 calendar 
days of receipt of the written request and after determination of the maximum 
effective GIC value in Part 9.1.
M9. Each responsible entity, as determined in Requirement R1, shall provide evidence, 
such as email records, web postings with an electronic notice of posting, or postal 
receipts showing recipient and date, that it has provided the maximum effective GIC 
values to the Transmission Owner and Generator Owner that owns each applicable 
BES power transformer in the planning area as specified in Requirement R9, Part 9.1. 
Each responsible entity, as determined in Requirement R1, shall also provide 
evidence, such as email records, web postings with an electronic notice of posting, or 
postal receipts showing recipient and date, that it has provided GIC(t) in response to a 
written request from the Transmission Owner or Generator Owner that owns an 
applicable BES power transformer in the planning area.
R10. Each Transmission Owner and Generator Owner shall conduct a supplemental 
thermal impact assessment for its solely and jointly owned applicable BES power 
transformers where the maximum effective GIC value provided in Requirement R9, 
Part 9.1, is 85 A per phase or greater. The supplemental thermal impact assessment 
shall: [Violation Risk Factor: Medium] [Time Horizon: Long‐term Planning]
10.1.  Be based on the effective GIC flow information provided in Requirement R9; 
10.2.  Document assumptions used in the analysis; 
10.3.  Describe suggested actions and supporting analysis to mitigate the impact of 
GICs, if any; and  
10.4.  Be performed and provided to the responsible entities, as determined in 
Requirement R1, within 24 calendar months of receiving GIC flow information 
specified in Requirement R9, Part 9.1.
M10. Each Transmission Owner and Generator Owner shall have evidence such as 
electronic or hard copies of its supplemental thermal impact assessment for all of its 
solely and jointly owned applicable BES power transformers where the maximum 
effective GIC value provided in Requirement R9, Part 9.1, is 85 A per phase or greater, 
and shall have evidence such as email records, web postings with an electronic notice 
of posting, or postal receipts showing recipient and date, that it has provided its 
supplemental thermal impact assessment to the responsible entities as specified in 
Requirement R10.

Draft 2 of TPL‐007‐2 
October 2017 

Page 11 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
GMD Measurement Data Processes

Rationale for Requirements R11 and R12: The proposed requirements address directives 
in Order No. 830 for requiring responsible entities to collect GIC monitoring and 
magnetometer data as necessary to enable model validation and situational awareness (P 
88; P. 90‐92). GMD measurement data refers to GIC monitor data and geomagnetic field 
data in Requirements R11 and R12, respectively. See the Guidelines and Technical Basis 
section of this standard for technical information. 
The objective of Requirement R11 is for entities to obtain GIC data for the Planning 
Coordinator's planning area or other part of the system included in the Planning 
Coordinator's GIC System model to inform GMD Vulnerability Assessments. Technical 
considerations for GIC monitoring are contained in Chapter 9 of the 2012 Special 
Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐
Power System (NERC 2012 GMD Report). GIC monitoring is generally performed by Hall 
effect transducers that are attached to the neutral of the transformer and measure dc 
current flowing through the neutral. 
The objective of Requirement R12 is for entities to obtain geomagnetic field data for the 
Planning Coordinator's planning area to inform GMD Vulnerability Assessments. 
Magnetometers provide geomagnetic field data by measuring changes in the earth's 
magnetic field. Sources of geomagnetic field data include: 


Observatories such as those operated by U.S. Geological Survey, Natural 
Resources Canada, research organizations, or university research facilities; 



Installed magnetometers; and 



Commercial or third‐party sources of geomagnetic field data. 

Geomagnetic field data for a Planning Coordinator’s planning area is obtained from one 
or more of the above data sources located in the Planning Coordinator’s planning area, or 
by obtaining a geomagnetic field data product for the Planning Coordinator’s planning 
area from a government or research organization. The geomagnetic field data product 
does not need to be derived from a magnetometer or observatory within the Planning 
Coordinator’s planning area.
R11. Each responsible entity, as determined in Requirement R1, shall implement a process 
to obtain GIC monitor data from at least one GIC monitor located in the Planning 
Coordinator's planning area or other part of the system included in the Planning 
Coordinator's GIC System model. [Violation Risk Factor: Lower] [Time Horizon: Long‐
term Planning]
M11. Each responsible entity, as determined in Requirement R1, shall have evidence such 
as electronic or hard copies of its GIC monitor location(s) and documentation of its 
process to obtain GIC monitor data in accordance with Requirement R11.

Draft 2 of TPL‐007‐2 
October 2017 

Page 12 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R12. Each responsible entity, as determined in Requirement R1, shall implement a process 
to obtain geomagnetic field data for its Planning Coordinator’s planning area. 
[Violation Risk Factor: Lower] [Time Horizon: Long‐term Planning]
M12. Each responsible entity, as determined in Requirement R1, shall have evidence such 
as electronic or hard copies of its process to obtain geomagnetic field data for its 
Planning Coordinator’s planning area in accordance with Requirement R12.

C. Compliance
1.

Compliance Monitoring Process 
1.1. Compliance Enforcement Authority: “Compliance Enforcement Authority” 
means NERC or the Regional Entity, or any entity as otherwise designated by an 
Applicable Governmental Authority, in their respective roles of monitoring 
and/or enforcing compliance with mandatory and enforceable Reliability 
Standards in their respective jurisdictions. 
1.2. Evidence Retention: The following evidence retention period(s) identify the 
period of time an entity is required to retain specific evidence to demonstrate 
compliance. For instances where the evidence retention period specified below 
is shorter than the time since the last audit, the Compliance Enforcement 
Authority may ask an entity to provide other evidence to show that it was 
compliant for the full‐time period since the last audit. 
The applicable entity shall keep data or evidence to show compliance as 
identified below unless directed by its Compliance Enforcement Authority to 
retain specific evidence for a longer period of time as part of an investigation. 


For Requirements R1, R2, R3, R5, R6, R9, and R10, each responsible entity 
shall retain documentation as evidence for five years. 



For Requirements R4 and R8, each responsible entity shall retain 
documentation of the current GMD Vulnerability Assessment and the 
preceding GMD Vulnerability Assessment. 



For Requirement R7, each responsible entity shall retain documentation as 
evidence for five years or until all actions in the Corrective Action Plan are 
completed, whichever is later. 



For Requirements R11 and R12, each responsible entity shall retain 
documentation as evidence for three years. 

1.3. Compliance Monitoring and Enforcement Program: As defined in the NERC 
Rules of Procedure, “Compliance Monitoring and Enforcement Program” refers 
to the identification of the processes that will be used to evaluate data or 
information for the purpose of assessing performance or outcomes with the 
associated Reliability Standard. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 13 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Table 1: Steady State Planning GMD Event

Steady State: 
a. Voltage collapse, Cascading and uncontrolled islanding shall not occur. 
b. Generation loss is acceptable as a consequence of the steady state planning GMD events.
c. Planned System adjustments such as Transmission configuration changes and re‐dispatch of generation are allowed if such 
adjustments are executable within the time duration applicable to the Facility Ratings.
Category

Initial Condition

Event

Interruption of
Firm
Transmission
Service Allowed

Load Loss
Allowed

1. System as may be 
Benchmark GMD 
postured in response 
Event ‐ GMD Event  to space weather 
with Outages 
information1, and then 
2. GMD event2 

Reactive Power compensation devices 
and other Transmission Facilities 
removed as a result of Protection 
System operation or Misoperation due 
to harmonics during the GMD event 

Yes3 

Yes3 

1. System as may be 
postured in response 
to space weather 
information1, and then 
2. GMD event2 

Reactive Power compensation devices 
and other Transmission Facilities 
removed as a result of Protection 
System operation or Misoperation due 
to harmonics during the GMD event 

Yes 

Yes 

Supplemental 
GMD Event ‐ GMD 
Event with 
Outages 

Table 1: Steady State Performance Footnotes

1. The System condition for GMD planning may include adjustments to posture the System that are executable in response to 
space weather information. 
2. The GMD conditions for the benchmark and supplemental planning events are described in Attachment 1. 
3. Load loss as a result of manual or automatic Load shedding (e.g., UVLS) and/or curtailment of Firm Transmission Service may 
be used to meet BES performance requirements during studied GMD conditions. The likelihood and magnitude of Load loss or 
curtailment of Firm Transmission Service should be minimized.
 

Draft 2 of TPL‐007‐2 
October 2017 

Page 14 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Violation Severity Levels
R#

R1. 

Draft 2 of TPL‐007‐2 
October 2017 

Violation Severity Levels
Lower VSL

N/A 

Moderate VSL

N/A 

High VSL

Severe VSL

N/A 

The Planning Coordinator, in 
conjunction with its 
Transmission Planner(s), 
failed to determine and 
identify individual or joint 
responsibilities of the 
Planning Coordinator and 
Transmission Planner(s) in 
the Planning Coordinator’s 
planning area for 
maintaining models, 
performing the study or 
studies needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments, 
and implementing 
process(es) to obtain GMD 
measurement data as 
specified in this standard. 

Page 15 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R#

R2. 

R3. 

Draft 2 of TPL‐007‐2 
October 2017 

Violation Severity Levels
Lower VSL

N/A 

N/A 

Moderate VSL

N/A 

N/A 

High VSL

The responsible entity did 
not maintain either System 
models or GIC System 
models of the responsible 
entity’s planning area for 
performing the studies 
needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments. 

N/A 

Severe VSL

The responsible entity did 
not maintain both System 
models and GIC System 
models of the responsible 
entity’s planning area for 
performing the studies 
needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments. 
The responsible entity did 
not have criteria for 
acceptable System steady 
state voltage performance 
for its System during the 
GMD events described in 
Attachment 1 as required. 

Page 16 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 60 calendar months 
and less than or equal to 64 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy one of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 64 calendar months 
and less than or equal to 68 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy two of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 68 calendar months 
and less than or equal to 72 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy three of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 72 calendar months 
since the last benchmark 
GMD Vulnerability 
Assessment; 
OR 
The responsible entity does 
not have a completed 
benchmark GMD 
Vulnerability Assessment. 

R4. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 17 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R5. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 90 
calendar days and less than 
or equal to 100 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 100 
calendar days and less than 
or equal to 110 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 110 
calendar days after receipt 
of a written request. 

The responsible entity did 
not provide the maximum 
effective GIC value to the 
Transmission Owner and 
Generator Owner that owns 
each applicable BES power 
transformer in the planning 
area; 
OR  
The responsible entity did 
not provide the effective GIC 
time series, GIC(t), upon 
written request. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 18 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R6. 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for 5% or less or one of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 24 
calendar months and less 
than or equal to 26 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1. 

Draft 2 of TPL‐007‐2 
October 2017 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 5% up to (and 
including) 10% or two of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase;  
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 26 
calendar months and less 
than or equal to 28 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 10% up to 
(and including) 15% or three 
of its solely owned and 
jointly owned applicable BES 
power transformers 
(whichever is greater) where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 28 
calendar months and less 
than or equal to 30 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 15% or more 
than three of its solely 
owned and jointly owned 
applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 30 
calendar months of receiving 
GIC flow information 
specified in Requirement R5, 
Part 5.1; 
OR 

Page 19 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

Lower VSL

The responsible entity's 
Corrective Action Plan failed 
to comply with one of the 
elements in Requirement 
R7, Parts 7.1 through 7.5. 
R7. 

Draft 2 of TPL‐007‐2 
October 2017 

Moderate VSL

High VSL

Severe VSL

OR 
The responsible entity failed 
to include one of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

OR 
The responsible entity failed 
to include two of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

The responsible entity failed 
to include three of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

The responsible entity's 
Corrective Action Plan failed 
to comply with two of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed 
to comply with three of the 
elements in Requirement 
R7, Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed 
to comply with four or more 
of the elements in 
Requirement R7, Parts 7.1 
through 7.5; 
OR 
The responsible entity did 
not have a Corrective Action 
Plan as required by 
Requirement R7. 

Page 20 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R8. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
one of elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 60 calendar months 
and less than or equal to 64 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
two of elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 64 calendar months 
and less than or equal to 68 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
three of the elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 68 calendar months 
and less than or equal to 72 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
four of the elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 72 calendar months 
since the last supplemental 
GMD Vulnerability 
Assessment; 
OR 
The responsible entity does 
not have a completed 
supplemental GMD 
Vulnerability Assessment. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 21 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R9. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 90 
calendar days and less than 
or equal to 100 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 100 
calendar days and less than 
or equal to 110 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 110 
calendar days after receipt 
of a written request. 

The responsible entity did 
not provide the maximum 
effective GIC value to the 
Transmission Owner and 
Generator Owner that owns 
each applicable BES power 
transformer in the planning 
area; 
OR 
The responsible entity did 
not provide the effective GIC 
time series, GIC(t), upon 
written request. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 22 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R10. 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for 5% or less or one of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 24 
calendar months and less 
than or equal to 26 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1. 

Draft 2 of TPL‐007‐2 
October 2017 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 5% up to (and 
including) 10% or two of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 26 
calendar months and less 
than or equal to 28 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 10% up to 
(and including) 15% or three 
of its solely owned and 
jointly owned applicable BES 
power transformers 
(whichever is greater) where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 28 
calendar months and less 
than or equal to 30 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1; 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 15% or more 
than three of its solely 
owned and jointly owned 
applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 30 
calendar months of receiving 
GIC flow information 
specified in Requirement R9, 
Part 9.1; 
OR 

Page 23 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R#

Violation Severity Levels
Lower VSL

R11. 

R12. 

N/A 

N/A 

Moderate VSL

High VSL

Severe VSL

OR 
The responsible entity failed 
to include one of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

OR 
The responsible entity failed 
to include two of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

The responsible entity failed 
to include three of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

N/A 

N/A 

N/A 

The responsible entity did 
not implement a process to 
obtain GIC monitor data 
from at least one GIC 
monitor located in the 
Planning Coordinator’s 
planning area or other part 
of the system included in the 
Planning Coordinator’s GIC 
System Model. 

N/A 

The responsible entity did 
not implement a process to 
obtain geomagnetic field 
data for its Planning 
Coordinator’s planning area. 

D. Regional Variances
None. 

E. Associated Documents
Attachment 1 
Draft 2 of TPL‐007‐2 
October 2017 

Page 24 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Version History
Version

1 

2 

Draft 2 of TPL‐007‐2 
October 2017 

Date

Action

December 17, 
Adopted by the NERC Board of Trustees 
2014 
TBD 

Revised to respond to directives in FERC 
Order No. 830. 

Change
Tracking

New 

Revised 

Page 25 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Attachment 1
Calculating Geoelectric Fields for the Benchmark and Supplemental GMD Events

The benchmark GMD event1 defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  benchmark  GMD  Vulnerability  Assessment.  It  is  composed  of  the 
following  elements:  (1)  a  reference  peak  geoelectric  field  amplitude  of  8  V/km  derived  from 
statistical  analysis  of  historical  magnetometer  data;  (2)  scaling  factors  to  account  for  local 
geomagnetic  latitude;  (3)  scaling  factors  to  account  for  local  earth  conductivity;  and  (4)  a 
reference geomagnetic field time series or waveform to facilitate time‐domain analysis of GMD 
impact on equipment. 
The supplemental GMD event is composed of similar elements as described above, except (1) the 
reference  peak  geoelectric  field  amplitude  is  12  V/km  over  a  localized  area;  and  (2)  the 
geomagnetic field time series or waveform includes a local enhancement in the waveform.2 
The regional geoelectric field peak amplitude used in GMD Vulnerability Assessment, Epeak, can 
be obtained from the reference geoelectric field value of 8 V/km for the benchmark GMD event 
(1) or 12 V/km for the supplemental GMD event (2) using the following relationships: 
 

8	

 

12	

	 	
	 	

	 	 	

⁄

	 	 	

⁄

 

(1) 
 

(2) 

where, α is the scaling factor to account for local geomagnetic latitude, and β is a scaling factor 
to account for the local earth conductivity structure. Subscripts b and s for the β scaling factor 
denote association with the benchmark or supplemental GMD events, respectively. 
Scaling the Geomagnetic Field

The benchmark and supplemental GMD events are defined for geomagnetic latitude of 60 and 
must  be  scaled  to  account  for  regional  differences  based  on  geomagnetic  latitude.  Table  2 
provides a scaling factor correlating peak geoelectric field to geomagnetic latitude. Alternatively, 
the scaling factor  is computed with the empirical expression: 
 

0.001

.

 

(3) 

where, L is the geomagnetic latitude in degrees and 0.1 ≤ α ≤ 1. 

1 The Benchmark Geomagnetic Disturbance Event Description, May 2016 is available on the Related Information webpage for 

TPL‐007‐1: http://www.nerc.com/pa/Stand/TPL0071RD/Benchmark_clean_May12_complete.pdf. 
2 The extent of local enhancements is on the order of 100 km in North‐South (latitude) direction but longer in East‐West 

(longitude) direction. The local enhancement in the geomagnetic field occurs over the time period of 2‐5 minutes. Additional 
information is available in the Supplemental Geomagnetic Disturbance Event Description, October 2017 white paper on the 
Project 2013‐03 Geomagnetic Disturbance Mitigation project webpage: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐
03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
Draft 2 of TPL‐007‐2 
October 2017 

Page 26 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

For  large  planning  areas  that  cover  more  than  one  scaling  factor  from  Table  2,  the  GMD 
Vulnerability Assessment should be based on a peak geoelectric field that is: 


calculated by using the most conservative (largest) value for α; or 



calculated assuming a non‐uniform or piecewise uniform geomagnetic field. 
Table 2: Geomagnetic Field Scaling Factors for the
Benchmark and Supplemental GMD
Events
Geomagnetic Latitude
(Degrees)

Scaling Factor1
()

≤ 40 

0.10 

45 

0.2 

50 

0.3 

54 

0.5 

56 

0.6 

57 

0.7 

58 

0.8 

59 

0.9 

≥ 60 

1.0 

Scaling the Geoelectric Field

The benchmark GMD event is defined for the reference Quebec earth model described in Table 
4. The peak geoelectric field, Epeak, used in a GMD Vulnerability Assessment may be obtained by 
either: 


Calculating the geoelectric field for the ground conductivity in the planning area and the 
reference geomagnetic field time series scaled according to geomagnetic latitude, using 
a procedure such as the plane wave method described in the NERC GMD Task Force GIC 
Application Guide;3 or 



Using the earth conductivity scaling factor β from Table 3 that correlates to the ground 
conductivity map in Figure 1 or Figure 2. Along with the scaling factor  from equation 
(3) or Table 2, β is applied to the reference geoelectric field using equation (1 or 2, as 
applicable)  to  obtain  the  regional  geoelectric  field  peak  amplitude  Epeak  to  be  used  in 
GMD Vulnerability Assessments. When a ground conductivity model is not available, the 
planning entity should use the largest β factor of adjacent physiographic regions or a 
technically justified value. 

3 Available at the NERC GMD Task Force project webpage: http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐

Task‐Force‐(GMDTF)‐2013.aspx. 
Draft 2 of TPL‐007‐2 
October 2017 

Page 27 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

The earth models used to calculate Table 3 for the United States were obtained from publicly 
available  information  published  on  the  U.  S.  Geological  Survey  website.4  The  models  used  to 
calculate Table 3 for Canada were obtained from Natural Resources Canada (NRCan) and reflect 
the  average  structure  for  large  regions.  A  planner  can  also  use  specific  earth  model(s)  with 
documented  justification  and  the  reference  geomagnetic  field  time  series  to  calculate  the  β 
factor(s) as follows: 
 

⁄8 for	the	benchmark	GMD	event 

(4) 

 

⁄12 	for	the	supplemental	GMD		 

(5) 

where, E is the absolute value of peak geoelectric in V/km obtained from the technically justified 
earth model and the reference geomagnetic field time series. 
For large planning areas that span more than one β scaling factor, the most conservative (largest) 
value for β may be used in determining the peak geoelectric field to obtain conservative results. 
Alternatively,  a  planner  could  perform  analysis  using  a  non‐uniform  or  piecewise  uniform 
geoelectric field. 
Applying the Localized Peak Geoelectric Field in the Supplemental GMD Event

The peak geoelectric field of the supplemental GMD event occurs in a localized area.5 Planners 
have flexibility to determine how to apply the localized peak geoelectric field over the planning 
area in performing GIC calculations. Examples of approaches are: 


Apply the peak geoelectric field (12 V/km  scaled to the planning area) over the entire 
planning area; 



Apply a spatially limited (12 V/km scaled to the planning area) peak geoelectric field (e.g., 
100 km in North‐South latitude direction and 500 km in East‐West longitude direction) 
over a portion(s) of the system, and apply the benchmark GMD event over the rest of the 
system; or 



Other methods to adjust the benchmark GMD event analysis to account for the localized 
geoelectric field enhancement of the supplemental GMD event. 

4 Available at http://geomag.usgs.gov/conductivity/. 

5 See the Supplemental Geomagnetic Disturbance Description white paper located on the Project 2013‐03 Geomagnetic 

Disturbance Mitigation project webpage: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐
Mitigation.aspx. 
Draft 2 of TPL‐007‐2 
October 2017 

Page 28 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 1: Physiographic Regions of the Continental United States6

 

 
Figure 2: Physiographic Regions of Canada

 

6 Additional map detail is available at the U.S. Geological Survey: http://geomag.usgs.gov/. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 29 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Table 3: Geoelectric Field Scaling Factors
Earth model

Scaling Factor
Benchmark Event
(b)

Scaling Factor
Supplemental
Event
(s)

AK1A 

0.56 

0.51 

AK1B 

0.56 

0.51 

AP1 

0.33 

0.30 

AP2 

0.82 

0.78 

BR1 

0.22 

0.22 

CL1 

0.76 

0.73 

CO1 

0.27 

0.25 

CP1 

0.81 

0.77 

CP2 

0.95 

0.86 

FL1 

0.76 

0.73 

CS1 

0.41 

0.37 

IP1 

0.94 

0.90 

IP2 

0.28 

0.25 

IP3 

0.93 

0.90 

IP4 

0.41 

0.35 

NE1 

0.81 

0.77 

PB1 

0.62 

0.55 

PB2 

0.46 

0.39 

PT1 

1.17 

1.19 

SL1 

0.53 

0.49 

SU1 

0.93 

0.90 

BOU 

0.28 

0.24 

FBK 

0.56 

0.56 

PRU 

0.21 

0.22 

BC 

0.67 

0.62 

PRAIRIES 

0.96 

0.88 

SHIELD 

1.0 

1.0 

ATLANTIC 

0.79 

0.76 

 

Draft 2 of TPL‐007‐2 
October 2017 

Page 30 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Rationale:  Scaling  factors  in  Table  3  are  dependent  upon  the  frequency  content  of  the 
reference storm. Consequently, the benchmark GMD event and the supplemental GMD event 
may produce different scaling factors for a given earth model. 
The scaling factor associated with the benchmark GMD event for the Florida earth model (FL1) 
has been updated based on the earth model published on the USGS public website. 
 
Table 4: Reference Earth Model (Quebec)
Layer Thickness (km)

Resistivity (Ω-m)

15 

20,000 

10 

200 

125 

1,000 

200 

100 

∞ 

3 

Reference Geomagnetic Field Time Series or Waveform for the Benchmark GMD
Event7

The geomagnetic field measurement record of the March 13‐14 1989 GMD event, measured at 
the  NRCan  Ottawa  geomagnetic  observatory,  is  the  basis  for  the  reference  geomagnetic  field 
waveform to be used to calculate the GIC time series, GIC(t), required for transformer thermal 
impact assessment. 
The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the 
amplitudes  of  the  geomagnetic  field  measurement  data  were  scaled  up  to  the  60  reference 
geomagnetic  latitude  (see  Figure  3)  such  that  the  resulting  peak  geoelectric  field  amplitude 
computed using the reference earth model was 8 V/km (see Figures 4 and 5). The sampling rate 
for the geomagnetic field waveform is 10 seconds.8 To use this geoelectric field time series when 
a  different  earth  model  is  applicable,  it  should  be  scaled  with  the  appropriate  benchmark 
conductivity scaling factor b. 

7 Refer to the Benchmark Geomagnetic Disturbance Event Description white paper for details on the determination of the 

reference geomagnetic field waveform: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx. 
8 The data file of the benchmark geomagnetic field waveform is available on the Related Information webpage for TPL‐007‐1: 

http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx. 
Draft 2 of TPL‐007‐2 
October 2017 

Page 31 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 3: Benchmark Geomagnetic Field Waveform
Red Bn (Northward), Blue Be (Eastward)

 

Figure 4: Benchmark Geoelectric Field Waveform
EE (Eastward)
Draft 2 of TPL‐007‐2 
October 2017 

Page 32 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

 

Figure 5: Benchmark Geoelectric Field Waveform
EN (Northward)
Reference Geomagnetic Field Time Series or Waveform for the Supplemental GMD
Event9

The geomagnetic field measurement record of the March 13‐14, 1989 GMD event, measured at 
the  NRCan  Ottawa  geomagnetic  observatory,  is  the  basis  for  the  reference  geomagnetic  field 
waveform to be used to calculate the GIC time series, GIC(t), required for transformer thermal 
impact assessment for the supplemental GMD event. The supplemental GMD event waveform 
differs  from  the  benchmark  GMD  event  waveform  in  that  the  supplemental  GMD  event 
waveform has a local enhancement. 
The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the 
amplitudes  of  the  geomagnetic  field  measurement  data  were  scaled  up  to  the  60  reference 
geomagnetic  latitude  (see  Figure  6)  such  that  the  resulting  peak  geoelectric  field  amplitude 
computed using the reference earth model was 12 V/km (see Figure7). The sampling rate for the 
geomagnetic  field  waveform  is  10  seconds.10  To  use  this  geoelectric  field  time  series  when  a 
different  earth  model  is  applicable,  it  should  be  scaled  with  the  appropriate  supplemental 
conductivity scaling factor s. 

9 Refer to the Supplemental Geomagnetic Disturbance Event Description white paper for details on the determination of the 

reference geomagnetic field waveform: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐
Mitigation.aspx. 
10 The data file of the benchmark geomagnetic field waveform is available on the NERC GMD Task Force project webpage: 
http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐Task‐Force‐(GMDTF)‐2013.aspx.
Draft 2 of TPL‐007‐2 
October 2017 

Page 33 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

4000

2000

Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

-10000

Figure 6: Supplemental Geomagnetic Field Waveform
Red BN (Northward), Blue BE (Eastward)

 
12 V/km

Figure 7: Supplemental Geoelectric Field Waveform
Blue EN (Northward), Red EE (Eastward)

Draft 2 of TPL‐007‐2 
October 2017 

Page 34 of 43 

TPL‐007‐2 – Supplemental Material 

Guidelines and Technical Basis
The diagram below provides an overall view of the GMD Vulnerability Assessment process: 

The requirements in this standard cover various aspects of the GMD Vulnerability Assessment 
process. 
Benchmark GMD Event (Attachment 1)

The benchmark GMD event defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  benchmark  GMD  Vulnerability  Assessment.  The  Benchmark 
Geomagnetic  Disturbance  Event  Description,  May  201611  white  paper  includes  the  event 
description, analysis, and example calculations. 
Supplemental GMD Event (Attachment 1)

The supplemental GMD event defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  supplemental  GMD  Vulnerability  Assessment.  The  Supplemental 
Geomagnetic  Disturbance  Event  Description,  October  201712  white  paper  includes  the  event 
description and analysis.
Requirement R2

A GMD Vulnerability Assessment requires a GIC System model, which is a dc representation of 
the System, to calculate GIC flow. In a GMD Vulnerability Assessment, GIC simulations are used 
to determine transformer Reactive Power absorption and transformer thermal response. Details 
for  developing  the  GIC  System  model  are  provided  in  the  NERC  GMD  Task  Force  guide: 
Application  Guide  for  Computing  Geomagnetically‐Induced  Current  in  the  Bulk  Power  System, 
December 2013.13 
Underground pipe‐type cables present a special modeling situation in that the steel pipe that 
encloses  the  power  conductors  significantly  reduces  the  geoelectric  field  induced  into  the 
conductors  themselves,  while  they  remain  a  path  for  GIC.  Solid  dielectric  cables  that  are  not 
enclosed  by  a  steel  pipe  will  not  experience  a  reduction  in  the  induced  geoelectric  field.  A 
11 http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx.
12

http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GIC%20Application 
%20Guide%202013_approved.pdf.
13

Draft 2 of TPL‐007‐2 
October 2017 

Page 35 of 43 

TPL‐007‐2 – Supplemental Material 

planning  entity  should  account  for  special  modeling  situations  in  the  GIC  system  model,  if 
applicable. 
Requirement R4

The Geomagnetic Disturbance Planning Guide,14 December 2013 developed by the NERC GMD 
Task Force provides technical information on GMD‐specific considerations for planning studies. 
Requirement R5

The benchmark thermal impact assessment of transformers specified in Requirement R6 is based 
on GIC information for the benchmark GMD Event. This GIC information is determined by the 
planning entity through simulation of the GIC System model and must be provided to the entity 
responsible for conducting the thermal impact assessment. GIC information should be provided 
in accordance with Requirement R5 each time the GMD Vulnerability Assessment is performed 
since,  by  definition,  the  GMD  Vulnerability  Assessment  includes  a  documented  evaluation  of 
susceptibility to localized equipment damage due to GMD. 
The maximum effective GIC value provided in Part 5.1 is used for the benchmark thermal impact 
assessment. Only those transformers that experience an effective GIC value of 75 A or greater 
per phase require evaluation in Requirement R6. 
GIC(t) provided in Part 5.2 is used to convert the steady state GIC flows to time‐series GIC data 
for the benchmark thermal impact assessment of transformers. This information may be needed 
by  one  or  more  of  the  methods  for  performing  a  benchmark  thermal  impact  assessment. 
Additional  information  is  in  the  following  section  and  the  Transformer  Thermal  Impact 
Assessment White Paper,15 October 2017. 
The peak GIC value of 75 Amps per phase has been shown through thermal modeling to be a 
conservative threshold below which the risk of exceeding known temperature limits established 
by technical organizations is low. 
Requirement R6

The  benchmark  thermal  impact  assessment  of  a  power  transformer  may  be  based  on 
manufacturer‐provided  GIC  capability  curves,  thermal  response  simulation,  thermal  impact 
screening, or other technically justified means. Approaches for conducting the assessment are 
presented in the Transformer Thermal Impact Assessment White Paper ERO Enterprise‐Endorsed 
Implementation Guidance16 for this requirement. This ERO‐Endorsed document is posted on the 
NERC Compliance Guidance17 webpage. 

14

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
15 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
16 http://www.nerc.com/pa/comp/guidance/EROEndorsedImplementationGuidance/TPL‐007‐1_Transformer_Thermal_Impact_ 
Assessment_White_Paper.pdf.
17 http://www.nerc.com/pa/comp/guidance/Pages/default.aspx.
Draft 2 of TPL‐007‐2 
October 2017 

Page 36 of 43 

TPL‐007‐2 – Supplemental Material 

Transformers are exempt from the benchmark thermal impact assessment requirement if the 
effective GIC value for the transformer is less than 75 A per phase, as determined by a GIC analysis 
of the System. Justification for this criterion is provided in the Screening Criterion for Transformer 
Thermal  Impact  Assessment  White  Paper,18  October  2017.  A  documented  design  specification 
exceeding  this  value  is  also  a  justifiable  threshold  criterion  that  exempts  a  transformer  from 
Requirement R6. 
The  benchmark  threshold  criteria  and  its  associated  transformer  thermal  impact  must  be 
evaluated on the basis of effective GIC. Refer to the white papers for additional information. 
Requirement R7

Technical  considerations  for  GMD  mitigation  planning,  including  operating  and  equipment 
strategies,  are  available  in  Chapter  5  of  the  Geomagnetic  Disturbance  Planning  Guide,19 
December 2013. Additional information is available in the 2012 Special  Reliability Assessment 
Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐Power System, 20 February 2012. 
Requirement R8

The Geomagnetic Disturbance Planning Guide,21 December 2013 developed by the NERC GMD 
Task Force provides technical information on GMD‐specific considerations for planning studies. 
The  supplemental  GMD  Vulnerability  Assessment  process  is  similar  to  the  benchmark  GMD 
Vulnerability Assessment process described under Requirement R4. 
Requirement R9

The supplemental thermal impact assessment specified of transformers in Requirement R10 is 
based on GIC information for the supplemental GMD Event. This GIC information is determined 
by the planning entity through simulation of the GIC System model and must be provided to the 
entity  responsible  for  conducting  the  thermal  impact  assessment.  GIC  information  should  be 
provided  in  accordance with  Requirement R9  each  time  the  GMD  Vulnerability  Assessment  is 
performed  since,  by  definition,  the  GMD  Vulnerability  Assessment  includes  a  documented 
evaluation of susceptibility to localized equipment damage due to GMD. 
The  maximum  effective  GIC  value  provided  in  Part  9.1  is  used  for  the  supplemental  thermal 
impact assessment. Only those transformers that experience an effective GIC value of 85 A or 
greater per phase require evaluation in Requirement R10. 
GIC(t) provided in Part 9.2 is used to convert the steady state GIC flows to time‐series GIC data 
for  the  supplemental  thermal  impact  assessment  of  transformers.  This  information  may  be 

18

http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
20 http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf.
21 http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
19

Draft 2 of TPL‐007‐2 
October 2017 

Page 37 of 43 

TPL‐007‐2 – Supplemental Material 

needed  by  one  or  more  of  the  methods  for  performing  a  supplemental  thermal  impact 
assessment. Additional information is in the following section. 
The peak GIC value of 85 Amps per phase has been shown through thermal modeling to be a 
conservative threshold below which the risk of exceeding known temperature limits established 
by technical organizations is low. 
Requirement R10

The  supplemental  thermal  impact  assessment  of  a  power  transformer  may  be  based  on 
manufacturer‐provided  GIC  capability  curves,  thermal  response  simulation,  thermal  impact 
screening, or other technically justified means. Approaches for conducting the assessment are 
presented in the Transformer Thermal Impact Assessment White Paper ERO Enterprise‐Endorsed 
Implementation Guidance22 discussed in the Requirement R6 section above. A later version of the 
Transformer Thermal Impact Assessment White Paper,23 October 2017, has been developed to 
include  updated  information  pertinent  to  the  supplemental  GMD  event  and  supplemental 
thermal impact assessment. 
Transformers are exempt from the supplemental thermal impact assessment requirement if the 
effective GIC value for the transformer is less than 85 A per phase, as determined by a GIC analysis 
of  the  System.  Justification  for  this  criterion  is  provided  in  the  revised  Screening  Criterion  for 
Transformer  Thermal  Impact  Assessment  White  Paper,24  October  2017.  A  documented  design 
specification  exceeding  this  value  is  also  a  justifiable  threshold  criterion  that  exempts  a 
transformer from Requirement R10. 
The  supplemental  threshold  criteria  and  its  associated  transformer  thermal  impact  must  be 
evaluated on the basis of effective GIC. Refer to the white papers for additional information. 
Requirement R11

Technical  considerations  for  GIC  monitoring  are  contained  in  Chapter  6  of  the  2012  Special 
Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐Power 
System, 25 February 2012. GIC monitoring is generally performed by Hall effect transducers that 
are attached to the neutral of the wye‐grounded transformer. Data from GIC monitors is useful 
for model validation and situational awareness. 
Responsible entities consider the following in  developing  a process for obtaining  GIC monitor 
data: 


Monitor  locations.  An  entity's  operating  process  may  be  constrained  by  location  of 
existing GIC monitors. However, when planning for additional GIC monitoring installations 
consider that data from monitors located in areas found to have high GIC based on system 

22 http://www.nerc.com/pa/comp/guidance/EROEndorsedImplementationGuidance/TPL‐007‐1_Transformer_Thermal_Impact_ 

Assessment_White_Paper.pdf.
23 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
24 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
25 http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf.
Draft 2 of TPL‐007‐2 
October 2017 

Page 38 of 43 

TPL‐007‐2 – Supplemental Material 

studies  may  provide  more  useful  information  for  validation  and  situational  awareness 
purposes.  Conversely,  data  from  GIC  monitors  that  are  located  in  the  vicinity  of 
transportation systems using direct current (e.g., subways or light rail) may be unreliable. 


Monitor  specifications.  Capabilities  of  Hall  effect  transducers,  existing  and  planned, 
should  be  considered  in  the  operating  process.  When  planning  new  GIC  monitor 
installations,  consider  monitor  data  range  (e.g.,  ‐500  A  through  +  500  A)  and  ambient 
temperature ratings consistent with temperatures in the region in which the monitor will 
be installed. 



Sampling  Interval.  An  entity's  operating  process  may  be  constrained  by  capabilities  of 
existing GIC monitors. However, when possible specify data sampling during periods of 
interest at a rate of 10 seconds or faster. 



Collection Periods. The process should specify when the entity expects GIC data to be 
collected. For example, collection could be required during periods where the Kp index is 
above  a  threshold,  or  when  GIC  values  are  above  a  threshold.  Determining  when  to 
discontinue collecting GIC data should also be specified to maintain consistency in data 
collection. 



Data format. Specify time and value formats. For example, Greenwich Mean Time (GMT) 
(MM/DD/YYYY  HH:MM:SS)  and  GIC  Value  (Ampere).  Positive  (+)  and  negative  (‐)  signs 
indicate direction of GIC flow. Positive reference is flow from ground  into transformer 
neutral. Time fields should indicate the sampled time rather than system or SCADA time 
if supported by the GIC monitor system. 



Data retention. The entity's process should specify data retention periods, for example 1 
year.  Data  retention  periods  should  be  adequately  long  to  support  availability  for  the 
entity's model validation process and external reporting requirements, if any. 



Additional  information.  The  entity's  process  should  specify  collection  of  other 
information necessary for making the data useful, for example monitor location and type 
of neutral connection (e.g., three‐phase or single‐phase). 

Requirement R12

Magnetometers measure changes in the earth's magnetic field. Entities should obtain data from 
the nearest accessible magnetometer. Sources of magnetometer data include: 

Draft 2 of TPL‐007‐2 
October 2017 

Page 39 of 43 

TPL‐007‐2 – Supplemental Material 






Observatories such as those operated by U.S. Geological Survey and Natural Resources 
Canada, see figure below for locations:26 

 
Research institutions and academic universities; 
Entities with installed magnetometers. 

Entities that choose to install magnetometers should consider equipment specifications and data 
format  protocols  contained  in  the  latest  version  of  the  INTERMAGNET  Technical  Reference 
Manual, Version 4.6, 2012.27 
 

Rationale
During development of TPL‐007‐1, text boxes were embedded within the standard to explain the 
rationale for various parts of the standard. The text from the rationale text boxes was moved to 
this section upon approval of TPL‐007‐1 by the NERC Board of Trustees. In developing TPL‐007‐2, 
the SDT has made changes to the sections below only when necessary for clarity. Changes are 
marked with brackets [ ].
Rationale for Applicability:

Instrumentation transformers and station service transformers do not have significant impact on 
geomagnetically‐induced current (GIC) flows; therefore, these transformers are not included in 
the applicability for this standard. 
Terminal voltage describes line‐to‐line voltage. 
Rationale for R1:

In some areas, planning entities may determine that the most effective approach to conduct a 
GMD Vulnerability Assessment is through a regional planning organization. No requirement in 
the standard is intended to prohibit a collaborative approach where roles and responsibilities are 
determined by a planning organization made up of one or more Planning Coordinator(s). 

26
27

http://www.intermagnet.org/index‐eng.php.
http://www.intermagnet.org/publications/intermag_4‐6.pdf.

Draft 2 of TPL‐007‐2 
October 2017 

Page 40 of 43 

TPL‐007‐2 – Supplemental Material 
Rationale for R2:

A GMD Vulnerability Assessment requires a GIC System model to calculate GIC flow which is used 
to  determine  transformer  Reactive  Power  absorption  and  transformer  thermal  response. 
Guidance for developing the GIC System model is provided in the Application Guide Computing 
Geomagnetically‐Induced Current in the Bulk‐Power System,28 December 2013, developed by the 
NERC GMD Task Force. 
The System model specified in Requirement R2 is used in conducting steady state power flow 
analysis that accounts for the Reactive Power absorption of power transformer(s) due to GIC in 
the System. 
The GIC System model includes all power transformer(s) with a high side, wye‐grounded winding 
with terminal voltage greater than 200 kV. The model is used to calculate GIC flow in the network. 
The projected System condition for GMD planning may include adjustments to the System that 
are executable in response to space weather information. These adjustments could include, for 
example, recalling or postponing maintenance outages. 
The Violation Risk Factor (VRF) for Requirement R2 is changed from Medium to High. This change 
is  for  consistency  with  the  VRF  for  approved  standard  TPL‐001‐4  Requirement  R1,  which  is 
proposed for revision in the NERC filing dated August 29, 2014 (Docket No. RM12‐1‐000). NERC 
guidelines require consistency among Reliability Standards. 
Rationale for R3:

Requirement R3 allows a responsible entity the flexibility to determine the System steady state 
voltage criteria for System steady state performance in Table 1. Steady state voltage limits are 
an example of System steady state performance criteria. 
Rationale for R4:

The GMD Vulnerability Assessment includes steady state power flow analysis and the supporting 
study or studies using the models specified in Requirement R2 that account for the effects of GIC. 
Performance criteria are specified in Table 1. 
At least one System On‐Peak Load and at least one System Off‐Peak Load must be examined in 
the analysis. 
Distribution  of  GMD  Vulnerability  Assessment  results  provides  a  means  for  sharing  relevant 
information with other entities responsible for planning reliability. Results of GIC studies may 
affect neighboring systems and should be taken into account by planners. 

28

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GIC%20Application 
%20Guide%202013_approved.pdf.
Draft 2 of TPL‐007‐2 
October 2017 

Page 41 of 43 

TPL‐007‐2 – Supplemental Material 

The Geomagnetic Disturbance Planning Guide,29 December 2013 developed by the NERC GMD 
Task Force provides technical information on GMD‐specific considerations for planning studies. 
The  provision  of  information  in  Requirement  R4,  Part  4.3,  shall  be  subject  to  the  legal  and 
regulatory obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R5:

This GIC information is necessary for determining the thermal impact of GIC on transformers in 
the planning area and must be provided to entities responsible for performing the thermal impact 
assessment  so  that  they  can  accurately  perform  the  assessment.  GIC  information  should  be 
provided  in  accordance  with  Requirement  R5  as  part  of  the  GMD  Vulnerability  Assessment 
process since, by definition, the GMD Vulnerability Assessment includes documented evaluation 
of susceptibility to localized equipment damage due to GMD. 
The maximum effective GIC value provided in Part 5.1 is used for transformer thermal impact 
assessment. 
GIC(t) provided in Part 5.2 can alternatively be used to convert the steady state GIC flows to time‐
series GIC data for transformer thermal impact assessment. This information may be needed by 
one or more of the methods for performing a thermal impact assessment. Additional guidance is 
available in the Transformer Thermal Impact Assessment White Paper,30 October 2017. 
A Transmission Owner or Generator Owner that desires GIC(t) may request it from the planning 
entity. The planning entity shall provide GIC(t) upon request once GIC has been calculated, but 
no later than 90 calendar days after receipt of a request from the owner and after completion of 
Requirement R5, Part 5.1. 
The  provision  of  information  in  Requirement  R5  shall  be  subject  to  the  legal  and  regulatory 
obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R6:

The transformer thermal impact screening criterion has been revised from 15 A per phase to 75 
A  per  phase  [for  the  benchmark  GMD  event].  Only  those  transformers  that  experience  an 
effective  GIC  value  of  75  A  per  phase  or  greater  require  evaluation  in  Requirement  R6.  The 
justification is provided in the Screening Criterion for Transformer Thermal Impact Assessment 
White Paper,31 October 2017. 
The thermal impact assessment may be based on manufacturer‐provided GIC capability curves, 
thermal response simulation, thermal impact screening, or other technically justified means. The 
transformer thermal assessment will be repeated or reviewed using previous assessment results 
each  time  the  planning  entity  performs  a  GMD  Vulnerability  Assessment  and  provides  GIC 

29

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
30 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
31 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
Draft 2 of TPL‐007‐2 
October 2017 

Page 42 of 43 

TPL‐007‐2 – Supplemental Material 

information  as  specified  in  Requirement  R5.  Approaches  for  conducting  the  assessment  are 
presented in the Transformer Thermal Impact Assessment White Paper,32 October 2017. 
Thermal impact assessments are provided to the planning entity, as determined in Requirement 
R1, so that identified issues can be included in the GMD Vulnerability Assessment (R4), and the 
Corrective Action Plan (R7) as necessary. 
Thermal  impact  assessments  of  non‐BES  transformers  are  not  required  because  those 
transformers do not have a wide‐area effect on the reliability of the interconnected Transmission 
system. 
The  provision  of  information  in  Requirement  R6,  Part  6.4,  shall  be  subject  to  the  legal  and 
regulatory obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R7:

Corrective Action Plans are defined in the NERC Glossary of Terms: 
A  list  of  actions  and  an  associated  timetable  for  implementation  to  remedy  a  specific 
problem. 
Corrective Action Plans must, subject to the vulnerabilities identified in the assessments, contain 
strategies for protecting against the potential impact of the benchmark GMD event, based on 
factors such as the age, condition, technical specifications, system configuration, or location of 
specific equipment. Chapter 5 of the NERC GMD Task Force Geomagnetic Disturbance Planning 
Guide,33  December  2013  provides  a  list  of  mitigating  measures  that  may  be  appropriate  to 
address an identified performance issue. 
The provision of information in Requirement R7, Part 7.3 [Part 7.5 in TPL‐007‐2], shall be subject 
to  the  legal  and  regulatory  obligations  for  the  disclosure  of  confidential  and/or  sensitive 
information. 
Rationale for Table 3:

Table 3 has been revised to use the same ground model designation, FL1, as is being used by 
USGS.  The  calculated  scaling  factor  for  FL1  is  0.74.  [The  scaling  factor  associated  with  the 
benchmark GMD event for the Florida earth model (FL1) has been updated to 0.76 in TPL‐007‐2 
based on the earth model published on the USGS public website.] 

32

http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
33

Draft 2 of TPL‐007‐2 
October 2017 

Page 43 of 43 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Standard Development Timeline
This section is maintained by the drafting team during the development of the standard and will 
be removed when the standard is adopted by the NERC Board of Trustees (Board). 

Description of Current Draft
Completed Actions

Date

Standards Committee approved Standard Authorization Request 
(SAR) for posting 

December 14, 2016 

SAR posted for comment 

December 16, 2016 – 
January 20, 2017 

45‐day formal comment period with initial ballot 

June 28 – August 11, 
2017 

 
Anticipated Actions

Date

45‐day formal comment period with ballot 

June 2017 

45‐day formal comment period with additional ballot 

September 2017 

10‐day final ballot 

TBDOctober 2017 

Board adoption 

February 
2018November 2017 

 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 1 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

New or Modified Term(s) Used in NERC Reliability Standards
This section includes all new or modified terms used in the proposed standard that will be 
included in the Glossary of Terms Used in NERC Reliability Standards upon applicable regulatory 
approval. Terms used in the proposed standard that are already defined and are not being 
modified can be found in the Glossary of Terms Used in NERC Reliability Standards. The new or 
revised terms listed below will be presented for approval with the proposed standard. Upon 
Board adoption, this section will be removed. 
 
Term(s):

None 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 2 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Upon Board adoption, the rationale boxes will be moved to the Supplemental Material Section. 

A. Introduction
1.

Title:  
Events 

Transmission System Planned Performance for Geomagnetic Disturbance 

2.

Number: 

TPL‐007‐2 

3.

Purpose:  Establish requirements for Transmission system planned performance 
during geomagnetic disturbance (GMD) events. 

4.

Applicability: 
4.1. Functional Entities: 
4.1.1. Planning Coordinator with a planning area that includes a Facility or 
Facilities specified in 4.2; 
4.1.2. Transmission Planner with a planning area that includes a Facility or 
Facilities specified in 4.2; 
4.1.3. Transmission Owner who owns a Facility or Facilities specified in 4.2; and 
4.1.4. Generator Owner who owns a Facility or Facilities specified in 4.2. 
4.2. Facilities: 
4.2.1. Facilities that include power transformer(s) with a high side, wye‐
grounded winding with terminal voltage greater than 200 kV. 

5.

Effective Date: See Implementation Plan for TPL‐007‐1 2. 

6.

Background: During a GMD event, geomagnetically‐induced currents (GIC) may cause 
transformer hot‐spot heating or damage, loss of Reactive Power sources, increased 
Reactive Power demand, and Misoperation(s), the combination of which may result in 
voltage collapse and blackout. 

B. Requirements and Measures
R1. Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall 
identify the individual and joint responsibilities of the Planning Coordinator and 
Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining 
models, performing the study or studies needed to complete benchmark and 
supplemental GMD Vulnerability Assessments, and implementing process(es) to 
obtain GMD measurement data as specified in this standard. [Violation Risk Factor: 
Lower] [Time Horizon: Long‐term Planning] 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 3 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

M1. Each Planning Coordinator, in conjunction with its Transmission Planners, shall provide 
documentation on roles and responsibilities, such as meeting minutes, agreements, 
copies of procedures or protocols in effect between entities or between departments 
of a vertically integrated system, or email correspondence that identifies an 
agreement has been reached on individual and joint responsibilities for maintaining 
models, performing the study or studies needed to complete benchmark and 
supplemental GMD Vulnerability Assessments, and implementing process(es) to 
obtain GMD measurement data in accordance with Requirement R1. 
R2. Each responsible entity, as determined in Requirement R1, shall maintain System 
models and GIC System models of the responsible entity’s planning area for 
performing the study or studies needed to complete benchmark and supplemental 
GMD Vulnerability Assessments. [Violation Risk Factor: High] [Time Horizon: Long‐
term Planning] 
M2. Each responsible entity, as determined in Requirement R1, shall have evidence in 
either electronic or hard copy format that it is maintaining System models and GIC 
System models of the responsible entity’s planning area for performing the study or 
studies needed to complete benchmark and supplemental GMD Vulnerability 
Assessments. 
R3. Each responsible entity, as determined in Requirement R1, shall have criteria for 
acceptable System steady state voltage performance for its System during the GMD 
events described in Attachment 1. [Violation Risk Factor: Medium] [Time Horizon: 
Long‐term Planning] 
M3. Each responsible entity, as determined in Requirement R1, shall have evidence, such 
as electronic or hard copies of the criteria for acceptable System steady state voltage 
performance for its System in accordance with Requirement R3. 
Benchmark GMD Vulnerability Assessment(s)

R4. Each responsible entity, as determined in Requirement R1, shall complete a 
benchmark GMD Vulnerability Assessment of the Near‐Term Transmission Planning 
Horizon at least once every 60 calendar months. This benchmark GMD Vulnerability 
Assessment shall use a study or studies based on models identified in Requirement R2, 
document assumptions, and document summarized results of the steady state 
analysis. [Violation Risk Factor: High] [Time Horizon: Long‐term Planning] 
4.1. The study or studies shall include the following conditions: 
4.1.1. System On‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon; and 
4.1.2. System Off‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 4 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

4.2. The study or studies shall be conducted based on the benchmark GMD event 
described in Attachment 1 to determine whether the System meets the 
performance requirements for the steady state planning benchmark GMD event 
contained in Table 1. 
4.3. The benchmark GMD Vulnerability Assessment shall be provided: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and 
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to 
any functional entity that submits a written request and has a reliability‐related 
need within 90 calendar days of receipt of such request or within 90 calendar 
days of completion of the benchmark GMD Vulnerability Assessment, whichever 
is later. 
4.3.1. If a recipient of the benchmark GMD Vulnerability Assessment provides 
documented comments on the results, the responsible entity shall 
provide a documented response to that recipient within 90 calendar days 
of receipt of those comments. 
M4. Each responsible entity, as determined in Requirement R1, shall have dated evidence 
such as electronic or hard copies of its benchmark GMD Vulnerability Assessment 
meeting all of the requirements in Requirement R4. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email records, 
web postings with an electronic notice of posting, or postal receipts showing recipient 
and date, that it has distributed its benchmark GMD Vulnerability Assessment: (i) to 
the responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, and 
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to any 
functional entity that submits a written request and has a reliability‐related need 
within 90 calendar days of receipt of such request or within 90 calendar days of 
completion of the benchmark GMD Vulnerability Assessment, whichever is later, as 
specified in Requirement R4. Each responsible entity, as determined in Requirement 
R1, shall also provide evidence, such as email notices or postal receipts showing 
recipient and date, that it has provided a documented response to comments received 
on its benchmark GMD Vulnerability Assessment within 90 calendar days of receipt of 
those comments in accordance with Requirement R4. 
R5. Each responsible entity, as determined in Requirement R1, shall provide GIC flow 
information to be used for the benchmark thermal impact assessment of transformers 
specified in Requirement R6 to each Transmission Owner and Generator Owner that 
owns an applicable Bulk Electric System (BES) power transformer in the planning area. 
The GIC flow information shall include: [Violation Risk Factor: Medium] [Time Horizon: 
Long‐term Planning] 
5.1. The maximum effective GIC value for the worst case geoelectric field orientation 
for the benchmark GMD event described in Attachment 1. This value shall be 
provided to the Transmission Owner or Generator Owner that owns each 
applicable BES power transformer in the planning area. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 5 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

5.2. The effective GIC time series, GIC(t), calculated using the benchmark GMD event 
described in Attachment 1 in response to a written request from the 
Transmission Owner or Generator Owner that owns an applicable BES power 
transformer in the planning area. GIC(t) shall be provided within 90 calendar 
days of receipt of the written request and after determination of the maximum 
effective GIC value in Part 5.1. 
M5. Each responsible entity, as determined in Requirement R1, shall provide evidence, 
such as email records, web postings with an electronic notice of posting, or postal 
receipts showing recipient and date, that it has provided the maximum effective 
benchmark GIC valuevalues to the Transmission Owner and Generator Owner that 
owns each applicable BES power transformer in the planning area as specified in 
Requirement R5, Part 5.1. Each responsible entity, as determined in Requirement R1, 
shall also provide evidence, such as email records, web postings with an electronic 
notice of posting, or postal receipts showing recipient and date, that it has provided 
GIC(t) in response to a written request from the Transmission Owner or Generator 
Owner that owns an applicable BES power transformer in the planning area. 
R6. Each Transmission Owner and Generator Owner shall conduct a benchmark thermal 
impact assessment for its solely and jointly owned applicable BES power transformers 
where the maximum effective GIC value provided in Requirement R5, Part 5.1, is 75 A 
per phase or greater. The benchmark thermal impact assessment shall: [Violation Risk 
Factor: Medium] [Time Horizon: Long‐term Planning] 
6.1. Be based on the effective GIC flow information provided in Requirement R5; 
6.2. Document assumptions used in the analysis; 
6.3. Describe suggested actions and supporting analysis to mitigate the impact of 
GICs, if any; and  
6.4. Be performed and provided to the responsible entities, as determined in 
Requirement R1, within 24 calendar months of receiving GIC flow information 
specified in Requirement R5, Part 5.1. 
M6. Each Transmission Owner and Generator Owner shall have evidence such as electronic 
or hard copies of its benchmark thermal impact assessment for all of its solely and 
jointly owned applicable BES power transformers where the maximum effective GIC 
value provided in Requirement R5, Part 5.1, is 75 A per phase or greater, and shall 
have evidence such as email records, web postings with an electronic notice of 
posting, or postal receipts showing recipient and date, that it has provided its thermal 
impact assessment to the responsible entities as specified in Requirement R6. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 6 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Rationale for Requirement R7: The proposed requirement addresses directives in Order 
No. 830 for establishing Corrective Action Plan (CAP) deadlines associated with GMD 
Vulnerability Assessments. In Order No. 830, FERC directed revisions to TPL‐007 such that 
CAPs are developed within one year from the completion of GMD Vulnerability 
Assessments (P. 101). Furthermore, FERC directed establishment of implementation 
deadlines after the completion of the CAP as follows (P. 102): 


Two years for non‐hardware mitigation; and 



Four years for hardware mitigation. 

The objective of Part 7.4 is to provide awareness to potentially impacted entities when 
implementation of planned mitigation is not achievable within the deadlines established 
in Part 7.3. Examples of situations beyond the control of the of the responsible entity (see 
Section 7.4) include, but are not limited to: 


Delays resulting from regulatory/legal processes, such as permitting; 



Delays resulting from stakeholder processes required by tariff; 



Delays resulting from equipment lead times; or 



Delays resulting from the inability to acquire necessary Right‐of‐Way. 

R7. Each responsible entity, as determined in Requirement R1, that concludes through the 
benchmark GMD Vulnerability Assessment conducted in Requirement R4 that their 
System does not meet the performance requirements for the steady state planning 
benchmark GMD event contained in Table 1, shall develop a Corrective Action Plan 
(CAP) addressing how the performance requirements will be met. The CAP shall: 
[Violation Risk Factor: High] [Time Horizon: Long‐term Planning] 
7.1. List System deficiencies and the associated actions needed to achieve required 
System performance. Examples of such actions include: 


Installation, modification, retirement, or removal of Transmission and 
generation Facilities and any associated equipment. 



Installation, modification, or removal of Protection Systems or Remedial 
Action Schemes. 



Use of Operating Procedures, specifying how long they will be needed as 
part of the CAP. 



Use of Demand‐Side Management, new technologies, or other initiatives. 

7.2. Be developed within one year of completion of the benchmark GMD 
Vulnerability Assessment.
7.3. Include a timetable, subject to revision by the responsible entity in Part 7.4, for 
implementing the selected actions from Part 7.1. The timetable shall: 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 7 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

7.3.1. Specify implementation of non‐hardware mitigation, if any, within two 
years of development of the CAP; and 
7.3.2. Specify implementation of hardware mitigation, if any, within four years 
of development of the CAP.
7.4. Be revised if situations beyond the control of the responsible entity determined 
in Requirement R1 prevent implementation of the CAP within the timetable for 
implementation provided in Part 7.3. The revised CAP shall document the 
following, and be updated at least once every 12 calendar months until 
implemented:  
7.4.1. Circumstances causing the delay for fully or partially implementing the 
selected actions in Part 7.1;  
7.4.2. Description of the original CAP, and any previous changes to the CAP, 
with the associated timetable(s) for implementing the selected actions in 
Part 7.1; and 
7.4.3. Revisions to the selected actions in Part 7.1, if any, including utilization of 
Operating Procedures if applicable, and the updated timetable for 
implementing the selected actions. 
7.5. Be provided: (i) to the responsible entity’s Reliability Coordinator, adjacent 
Planning Coordinator(s), adjacent Transmission Planner(s), and functional 
entities referenced in the CAP within 90 calendar days of development or 
revision, and (ii) to any functional entity that submits a written request and has a 
reliability‐related need within 90 calendar days of receipt of such request or 
within 90 calendar days of development or revision, whichever is later. 
7.5.1. If a recipient of the CAP provides documented comments on the results, 
the responsible entity shall provide a documented response to that 
recipient within 90 calendar days of receipt of those comments.
M7. Each responsible entity, as determined in Requirement R1, that concludes, through 
the benchmark GMD Vulnerability Assessment conducted in Requirement R4, that the 
responsible entity’s System does not meet the performance requirements for the 
steady state planning benchmark GMD event contained in Table 1 shall have evidence 
such as dated electronic or hard copies of its CAP including timetable for 
implementing selected actions, as specified in Requirement R7. Each responsible 
entity, as determined in Requirement R1, shall also provide evidence, such as email 
records or postal receipts showing recipient and date, that it has revised its CAP if 
situations beyond the responsible entity's control prevent implementation of the CAP 
within the timetable specified. Each responsible entity, as determined in Requirement 
R1, shall also provide evidence, such as email records, web postings with an electronic 
notice of posting, or postal receipts showing recipient and date, that it has distributed 
its CAP or relevant information, if any, (i) to the responsible entity’s Reliability 
Coordinator, adjacent Planning Coordinator(s), adjacent Transmission Planner(s), and 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 8 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

functional entities referenced in the CAP within 90 calendar days of development or 
revision, and (ii) to any functional entity that submits a written request and has a 
reliability‐related need within 90 calendar days of receipt of such request or within 90 
calendar days of development or revision, whichever is later as specified in 
Requirement R7. Each responsible entity, as determined in Requirement R1, shall also 
provide evidence, such as email notices or postal receipts showing recipient and date, 
that it has provided a documented response to comments received on its CAP within 
90 calendar days of receipt of those comments, in accordance with Requirement R7. 
Supplemental GMD Vulnerability Assessment(s)

Rationale for Requirements R8 ‐– R10: The proposed requirements address directives in 
Order No. 830 for revising the benchmark GMD event used in GMD Vulnerability 
Assessments (P .44, P47P 47‐49). The requirements add a supplemental GMD 
Vulnerability Assessment based on the supplemental GMD event that accounts for 
localized peak geoelectric fields. 
R8.

Each responsible entity, as determined in Requirement R1, shall complete a 
supplemental GMD Vulnerability Assessment of the Near‐Term Transmission Planning 
Horizon at least once every 60 calendar months. This supplemental GMD Vulnerability 
Assessment shall use a study or studies based on models identified in Requirement 
R2, document assumptions, and document summarized results of the steady state 
analysis. [Violation Risk Factor: High] [Time Horizon: Long‐term Planning]
8.1. The study or studies shall include the following conditions: 
8.1.1. System On‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon; and  
8.1.2. System Off‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon.
8.2. The study or studies shall be conducted based on the supplemental GMD event 
described in Attachment 1 to determine whether the System meets the 
performance requirements for the steady state planning supplemental GMD 
event contained in Table 1.
8.3. If the analysis concludes there is Cascading caused by the supplemental GMD 
event described in Attachment 1, an evaluation of possible actions designed to 
reduce the likelihood or mitigate the consequences and adverse impacts of the 
event(s) shall be conducted.

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 9 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

8.4. The supplemental GMD Vulnerability Assessment shall be provided: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, 
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to 
any functional entity that submits a written request and has a reliability‐related 
need within 90 calendar days of receipt of such request or within 90 calendar 
days of completion of the supplemental GMD Vulnerability Assessment, 
whichever is later. 
8.4.1. If a recipient of the supplemental GMD Vulnerability Assessment 
provides documented comments on the results, the responsible entity 
shall provide a documented response to that recipient within 90 calendar 
days of receipt of those comments.
M8. Each responsible entity, as determined in Requirement R1, shall have dated evidence 
such as electronic or hard copies of its supplemental GMD Vulnerability Assessment 
meeting all of the requirements in Requirement R8. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email records, 
web postings with an electronic notice of posting, or postal receipts showing recipient 
and date, that it has distributed its supplemental GMD Vulnerability: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, adjacent 
Transmission Planners within 90 calendar days of completion, and (ii) to any 
functional entity that submits a written request and has a reliability‐related need 
within 90 calendar days of receipt of such request or within 90 calendar days of 
completion of the supplemental GMD Vulnerability Assessment, whichever is later, as 
specified in Requirement R8. Each responsible entity, as determined in Requirement 
R1, shall also provide evidence, such as email notices or postal receipts showing 
recipient and date, that it has provided a documented response to comments 
received on its supplemental GMD Vulnerability Assessment within 90 calendar days 
of receipt of those comments in accordance with Requirement R8.
R9.

Each responsible entity, as determined in Requirement R1, shall provide GIC flow 
information to be used for the supplemental thermal impact assessment of 
transformers specified in Requirement R10 to each Transmission Owner and 
Generator Owner that owns an applicable Bulk Electric System (BES) power 
transformer in the planning area. The GIC flow information shall include: [Violation 
Risk Factor: Medium] [Time Horizon: Long‐term Planning]
9.1. The maximum effective GIC value for the worst case geoelectric field orientation 
for the supplemental GMD event described in Attachment 1. This value shall be 
provided to the Transmission Owner or Generator Owner that owns each 
applicable BES power transformer in the planning area.  

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 10 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

9.2. The effective GIC time series, GIC(t), calculated using the supplemental GMD 
event described in Attachment 1 in response to a written request from the 
Transmission Owner or Generator Owner that owns an applicable BES power 
transformer in the planning area. GIC(t) shall be provided within 90 calendar 
days of receipt of the written request and after determination of the maximum 
effective GIC value in Part 9.1.
M9. Each responsible entity, as determined in Requirement R1, shall provide evidence, 
such as email records, web postings with an electronic notice of posting, or postal 
receipts showing recipient and date, that it has provided the maximum effective 
supplemental GIC valuevalues to the Transmission Owner and Generator Owner that 
owns each applicable BES power transformer in the planning area as specified in 
Requirement R9, Part 9.1. Each responsible entity, as determined in Requirement R1, 
shall also provide evidence, such as email records, web postings with an electronic 
notice of posting, or postal receipts showing recipient and date, that it has provided 
GIC(t) in response to a written request from the Transmission Owner or Generator 
Owner that owns an applicable BES power transformer in the planning area.
R10. Each Transmission Owner and Generator Owner shall conduct a supplemental 
thermal impact assessment for its solely and jointly owned applicable BES power 
transformers where the maximum effective GIC value provided in Requirement R9, 
Part 9.1, is 85 A per phase or greater. The supplemental thermal impact assessment 
shall: [Violation Risk Factor: Medium] [Time Horizon: Long‐term Planning]
10.1.  Be based on the effective GIC flow information provided in Requirement R9; 
10.2.  Document assumptions used in the analysis; 
10.3.  Describe suggested actions and supporting analysis to mitigate the impact of 
GICs, if any; and  
10.4.  Be performed and provided to the responsible entities, as determined in 
Requirement R1, within 24 calendar months of receiving GIC flow information 
specified in Requirement R9, Part 9.1.
M10. Each Transmission Owner and Generator Owner shall have evidence such as 
electronic or hard copies of its supplemental thermal impact assessment for all of its 
solely and jointly owned applicable BES power transformers where the maximum 
effective GIC value provided in Requirement R9, Part 9.1, is 85 A per phase or greater, 
and shall have evidence such as email records, web postings with an electronic notice 
of posting, or postal receipts showing recipient and date, that it has provided its 
supplemental thermal impact assessment to the responsible entities as specified in 
Requirement R10.

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 11 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
GMD Measurement Data Processes

Rationale for Requirements R11 and R12: The proposed requirements address directives 
in Order No. 830 for requiring responsible entities to collect GIC monitoring and 
magnetometer data as necessary to enable model validation and situational awareness 
(P. 88; P. 90‐92).90‐92). GMD measurement data refers to GIC monitor data and 
geomagnetic field data in Requirements R11 and R12, respectively. See the Guidelines 
and Technical Basis section of this standard for technical information. 
The objective of Requirement R11 is for entities to obtain GIC data for the Planning 
Coordinator's planning area or other part of the system included in the Planning 
Coordinator's GIC System model to inform GMD Vulnerability Assessments. Technical 
considerations for GIC monitoring are contained in Chapter 69 of the 2012 Special 
Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐
Power System (NERC 2012 GMD Report). GIC monitoring is generally performed by Hall 
effect transducers that are attached to the neutral of the transformer and measure dc 
current flowing through the neutral. 
The objective of Requirement R12 is for entities to obtain geomagnetic field data for the 
Planning Coordinator's planning area to inform GMD Vulnerability Assessments. 
Magnetometers provide geomagnetic field data by measuring changes in the earth's 
magnetic field. Sources of geomagnetic field data include: 


Observatories such as those operated by U.S. Geological Survey, Natural 
Resources Canada, research organizations, or university research facilities. ; 



Installed magnetometers; and 



Commercial or third‐party sources of geomagnetic field data. 

Geomagnetic field data for a Planning Coordinator’s planning area is obtained from one 
or more of the above data sources located in the Planning Coordinator’s planning area, or 
by obtaining a geomagnetic field data product for the Planning Coordinator’s planning 
area from a government or research organization. The geomagnetic field data product 
does not need to be derived from a magnetometer or observatory within the Planning 
Coordinator’s planning area.
R11. Each responsible entity, as determined in Requirement R1, shall implement a process 
to obtain GIC monitor data from at least one GIC monitor located in the Planning 
Coordinator's planning area or other part of the system included in the Planning 
Coordinator's GIC System model. [Violation Risk Factor: Lower] [Time Horizon: Long‐
term Planning]
M11. Each responsible entity, as determined in Requirement R1, shall have evidence such 
as electronic or hard copies of its GIC monitor location(s) and documentation of its 
process to obtain GIC monitor data in accordance with Requirement R11.

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 12 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R12. Each responsible entity, as determined in Requirement R1, shall implement a process 
to obtain geomagnetic field data for its Planning Coordinator’s planning area. 
[Violation Risk Factor: Lower] [Time Horizon: Long‐term Planning]
M12. Each responsible entity, as determined in Requirement R1, shall have evidence such 
as electronic or hard copies of its process to obtain geomagnetic field data for its 
Planning Coordinator’s planning area in accordance with Requirement R12.

C. Compliance
1.

Compliance Monitoring Process 
1.1. Compliance Enforcement Authority: “Compliance Enforcement Authority” 
means NERC or the Regional Entity, or any entity as otherwise designated by an 
Applicable Governmental Authority, in their respective roles of monitoring 
and/or enforcing compliance with mandatory and enforceable Reliability 
Standards in their respective jurisdictions. 
1.2. Evidence Retention: The following evidence retention period(s) identify the 
period of time an entity is required to retain specific evidence to demonstrate 
compliance. For instances where the evidence retention period specified below 
is shorter than the time since the last audit, the Compliance Enforcement 
Authority may ask an entity to provide other evidence to show that it was 
compliant for the full‐time period since the last audit. 
The applicable entity shall keep data or evidence to show compliance as 
identified below unless directed by its Compliance Enforcement Authority to 
retain specific evidence for a longer period of time as part of an investigation. 


For Requirements R1, R2, R3, R5, R6, R9, and R10, each responsible entity 
shall retain documentation as evidence for five years. 



For Requirements R4 and R8, each responsible entity shall retain 
documentation of the current GMD Vulnerability Assessment and the 
preceding GMD Vulnerability Assessment. 



For Requirement R7, each responsible entity shall retain documentation as 
evidence for five years or until all actions in the Corrective Action Plan are 
completed, whichever is later. 



For Requirements R11 and R12, each responsible entity shall retain 
documentation as evidence for three years. 

1.3. Compliance Monitoring and Enforcement Program: As defined in the NERC 
Rules of Procedure, “Compliance Monitoring and Enforcement Program” refers 
to the identification of the processes that will be used to evaluate data or 
information for the purpose of assessing performance or outcomes with the 
associated Reliability Standard. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 13 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Table 1 –: Steady State Planning GMD Event

Steady State: 
a. Voltage collapse, Cascading and uncontrolled islanding shall not occur. 
b. Generation loss is acceptable as a consequence of the steady state planning GMD events.
c. Planned System adjustments such as Transmission configuration changes and re‐dispatch of generation are allowed if such 
adjustments are executable within the time duration applicable to the Facility Ratings.
Category

Initial Condition

Event

Interruption of
Firm
Transmission
Service Allowed

Load Loss
Allowed

1. System as may be 
Benchmark GMD 
postured in response 
Event ‐ GMD Event  to space weather 
with Outages 
information1, and then 
2. GMD event2 

Reactive Power compensation devices 
and other Transmission Facilities 
removed as a result of Protection 
System operation or Misoperation due 
to harmonics during the GMD event 

Yes3 

Yes3 

1. System as may be 
postured in response 
to space weather 
information1, and then 
2. GMD event2 

Reactive Power compensation devices 
and other Transmission Facilities 
removed as a result of Protection 
System operation or Misoperation due 
to harmonics during the GMD event 

Yes 

Yes 

Supplemental 
GMD Event ‐ GMD 
Event with 
Outages 

Table 1 –: Steady State Performance Footnotes

1. The System condition for GMD planning may include adjustments to posture the System that are executable in response to 
space weather information. 
2. The GMD conditions for the benchmark and supplemental planning events are described in Attachment 1. 
3. Load loss as a result of manual or automatic Load shedding (e.g., UVLS) and/or curtailment of Firm Transmission Service may 
be used to meet BES performance requirements during studied GMD conditions. The likelihood and magnitude of Load loss or 
curtailment of Firm Transmission Service should be minimized.
 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 14 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Violation Severity Levels
R#

R1. 

Draft 12 of TPL‐007‐2 
June 2017 
 

Violation Severity Levels
Lower VSL

N/A 

PageOctober 2017 

Moderate VSL

N/A 

High VSL

Severe VSL

N/A 

The Planning Coordinator, in 
conjunction with its 
Transmission Planner(s), 
failed to determine and 
identify individual or joint 
responsibilities of the 
Planning Coordinator and 
Transmission Planner(s) in 
the Planning Coordinator’s 
planning area for 
maintaining models, 
performing the study or 
studies needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments, 
and implementing 
process(es) to obtain GMD 
measurement data as 
specified in this standard. 

Page 15 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R#

R2. 

R3. 

Draft 12 of TPL‐007‐2 
June 2017 
 

Violation Severity Levels
Lower VSL

N/A 

N/A 

PageOctober 2017 

Moderate VSL

High VSL

Severe VSL

N/A 

The responsible entity did 
not maintain either System 
models or GIC System 
models of the responsible 
entity’s planning area for 
performing the study or 
studies needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments. 

The responsible entity did 
not maintain both System 
models and GIC System 
models of the responsible 
entity’s planning area for 
performing the study or 
studies needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments. 

N/A 

The responsible entity did 
not have criteria for 
acceptable System steady 
state voltage performance 
for its System during the 
GMD events described in 
Attachment 1 as required. 

N/A 

Page 16 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 60 calendar months 
and less than or equal to 64 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy one of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 64 calendar months 
and less than or equal to 68 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy two of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 68 calendar months 
and less than or equal to 72 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy three of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 72 calendar months 
since the last benchmark 
GMD Vulnerability 
Assessment; 
OR 
The responsible entity does 
not have a completed 
benchmark GMD 
Vulnerability Assessment. 

R4. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 17 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R5. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 90 
calendar days and less than 
or equal to 100 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 100 
calendar days and less than 
or equal to 110 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 110 
calendar days after receipt 
of a written request. 

The responsible entity did 
not provide the maximum 
effective GIC value to the 
Transmission Owner and 
Generator Owner that owns 
each applicable BES power 
transformer in the planning 
area; 
OR  
The responsible entity did 
not provide the effective GIC 
time series, GIC(t), upon 
written request. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 18 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R6. 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for 5% or less or one of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 24 
calendar months and less 
than or equal to 26 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 5% up to (and 
including) 10% or two of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase;  
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 26 
calendar months and less 
than or equal to 28 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 10% up to 
(and including) 15% or three 
of its solely owned and 
jointly owned applicable BES 
power transformers 
(whichever is greater) where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 28 
calendar months and less 
than or equal to 30 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 15% or more 
than three of its solely 
owned and jointly owned 
applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 30 
calendar months of receiving 
GIC flow information 
specified in Requirement R5, 
Part 5.1; 
OR 

Page 19 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

Lower VSL

The responsible entity's 
Corrective Action Plan failed 
to comply with one of the 
elements in Requirement 
R7, Parts 7.1 through 7.5. 
R7. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Moderate VSL

High VSL

Severe VSL

OR 
The responsible entity failed 
to include one of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

OR 
The responsible entity failed 
to include two of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

The responsible entity failed 
to include three of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

The responsible entity's 
Corrective Action Plan failed 
to comply with two of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed 
to comply with three of the 
elements in Requirement 
R7, Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed 
to comply with four or more 
of the elements in 
Requirement R7, Parts 7.1 
through 7.5; 
OR 
The responsible entity did 
not have a Corrective Action 
Plan as required by 
Requirement R7. 

Page 20 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R8. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
one of elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 60 calendar months 
and less than or equal to 64 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment; 
OR 
.The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
one of elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
two of elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 64 calendar months 
and less than or equal to 68 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
three of the elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 68 calendar months 
and less than or equal to 72 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
four of the elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 72 calendar months 
since the last supplemental 
GMD Vulnerability 
Assessment; 
OR 
The responsible entity does 
not have a completed 
supplemental GMD 
Vulnerability Assessment. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 21 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R9. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 90 
calendar days and less than 
or equal to 100 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 100 
calendar days and less than 
or equal to 110 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 110 
calendar days after receipt 
of a written request. 

The responsible entity did 
not provide the maximum 
effective GIC value to the 
Transmission Owner and 
Generator Owner that owns 
each applicable BES power 
transformer in the planning 
area; 
OR 
The responsible entity did 
not provide the effective GIC 
time series, GIC(t), upon 
written request. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 22 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R10. 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for 5% or less or one of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 24 
calendar months and less 
than or equal to 26 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 5% up to (and 
including) 10% or two of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 26 
calendar months and less 
than or equal to 28 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1; 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 10% up to 
(and including) 15% or three 
of its solely owned and 
jointly owned applicable BES 
power transformers 
(whichever is greater) where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 28 
calendar months and less 
than or equal to 30 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1; 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 15% or more 
than three of its solely 
owned and jointly owned 
applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 30 
calendar months of receiving 
GIC flow information 
specified in Requirement R9, 
Part 9.1; 
OR 

Page 23 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R#

R11. 

R12. 

Violation Severity Levels
Lower VSL

N/A 

N/A 

Moderate VSL

High VSL

Severe VSL

OR 
The responsible entity failed 
to include one of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

OR 
The responsible entity failed 
to include two of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

The responsible entity failed 
to include three of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

N/A 

N/A 

N/A 

The responsible entity did 
not implement a process to 
obtain GIC monitor data 
from at least one GIC 
monitor located in the 
Planning Coordinator’s 
planning area or other part 
of the system included in the 
Planning Coordinator’s GIC 
System Model. 

N/A 

The responsible entity did 
not implement a process to 
obtain geomagnetic field 
data for its Planning 
Coordinator’s planning area. 

D. Regional Variances
None. 

E. Associated Documents
None. 
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 24 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Attachment 1 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 25 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Version History
Version

1 

2 

Draft 12 of TPL‐007‐2 
June 2017 
 

Date

Action

December 17, 
Adopted by the NERC Board of Trustees 
2014 
TBD 

Revised to respond to directives in FERC 
Order No. 830. 

PageOctober 2017 

Change
Tracking

New 

Revised 

Page 26 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Standard Attachments
The following attachments are part of TPL‐007‐2. 
 
 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 27 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Attachment 1
Calculating Geoelectric Fields for the Benchmark and Supplemental GMD Events

The benchmark GMD event1 defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  benchmark  GMD  Vulnerability  Assessment.  It  is  composed  of  the 
following  elements:  (1)  a  reference  peak  geoelectric  field  amplitude  of  8  V/km  derived  from 
statistical  analysis  of  historical  magnetometer  data;  (2)  scaling  factors  to  account  for  local 
geomagnetic  latitude;  (3)  scaling  factors  to  account  for  local  earth  conductivity;  and  (4)  a 
reference geomagnetic field time series or waveform to facilitate time‐domain analysis of GMD 
impact on equipment. 
The supplemental GMD event is composed of similar elements as described above, except (1) the 
reference  peak  geoelectric  field  amplitude  is  12  V/km  over  a  localized  area;  and  (2)  the 
geomagnetic field time series or waveform includes a local enhancement in the waveform.2 
The regional geoelectric field peak amplitude used in GMD Vulnerability Assessment, Epeak, can 
be obtained from the reference geoelectric field value of 8 V/km for the benchmark GMD event 
(1) or 12 V/km for the supplemental GMD event (2) using the following relationships: 
 

8	

 

12	

	 	
	 	

	 	 	

⁄

	 	 	

⁄

 

(1) 
 

(2) 

where, α is the scaling factor to account for local geomagnetic latitude, and β is a scaling factor 
to account for the local earth conductivity structure. Subscripts b and s for the β scaling factor 
denote association with the benchmark or supplemental GMD events, respectively. 
Scaling the Geomagnetic Field

The benchmark and supplemental GMD events are defined for geomagnetic latitude of 60 and 
must  be  scaled  to  account  for  regional  differences  based  on  geomagnetic  latitude.  Table  2 
provides a scaling factor correlating peak geoelectric field to geomagnetic latitude. Alternatively, 
the scaling factor  is computed with the empirical expression: 
 

0.001

.

 

(3) 

where, L is the geomagnetic latitude in degrees and 0.1 ≤ α ≤ 1. 

1 The benchmark GMD event descriptionBenchmark Geomagnetic Disturbance Event Description, May 2016 is available on the 

Related Information pagewebpage for TPL‐007‐1: 
http://www.nerc.com/pa/Stand/TPL0071RD/Benchmark_clean_May12_complete.pdf. 
2 The extent of local enhancements is on the order of 100 km in North‐South (latitude) direction but longer in East‐West 
(longitude) direction. The local enhancement in the geomagnetic field occurs over the time period of 2‐5 minutes. Additional 
information is available in the Supplemental GMD Geomagnetic Disturbance Event Description, October 2017 white paper on 
the Project 2013‐03 Geomagnetic Disturbance Mitigation project pagewebpage: 
http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 28 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

For  large  planning  areas  that  cover  more  than  one  scaling  factor  from  Table  2,  the  GMD 
Vulnerability Assessment should be based on a peak geoelectric field that is: 


calculated by using the most conservative (largest) value for α; or 



calculated assuming a non‐uniform or piecewise uniform geomagnetic field. 
Table 2 :
Geomagnetic Field Scaling Factors for
the Benchmark and Supplemental GMD
Events
Geomagnetic Latitude
(Degrees)

Scaling Factor1
()

≤ 40 

0.10 

45 

0.2 

50 

0.3 

54 

0.5 

56 

0.6 

57 

0.7 

58 

0.8 

59 

0.9 

≥ 60 

1.0 

Scaling the Geoelectric Field

The benchmark GMD event is defined for the reference Quebec earth model described in Table 
4. The peak geoelectric field, Epeak, used in a GMD Vulnerability Assessment may be obtained by 
either: 


Calculating the geoelectric field for the ground conductivity in the planning area and the 
reference geomagnetic field time series scaled according to geomagnetic latitude, using 
a procedure such as the plane wave method described in the NERC GMD Task Force GIC 
Application Guide;3 or 



Using the earth conductivity scaling factor β from Table 3 that correlates to the ground 
conductivity map in Figure 1 or Figure 2. Along with the scaling factor  from equation 
(3) or Table 2, β is applied to the reference geoelectric field using equation (1 or 2, as 
applicable)  to  obtain  the  regional  geoelectric  field  peak  amplitude  Epeak  to  be  used  in 
GMD Vulnerability Assessments. When a ground conductivity model is not available, the 
planning entity should use the largest β factor of adjacent physiographic regions or a 
technically justified value. 

3 Available at the NERC GMD Task Force project webpage: http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐

Task‐Force‐(GMDTF)‐2013.aspxpage: http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐Task‐Force‐(GMDTF)‐
2013.aspx. 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 29 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

The earth models used to calculate Table 3 for the United States were obtained from publicly 
available  information  published  on  the  U.  S.  Geological  Survey  website.4  The  models  used  to 
calculate Table 3 for Canada were obtained from Natural Resources Canada (NRCan) and reflect 
the  average  structure  for  large  regions.  A  planner  can  also  use  specific  earth  model(s)  with 
documented  justification  and  the  reference  geomagnetic  field  time  series  to  calculate  the  β 
factor(s) as follows: 
 

⁄8 for	the	benchmark	GMD	event 

(4) 

 

⁄12 	for	the	supplemental	GMD		 

(5) 

where, E is the absolute value of peak geoelectric in V/km obtained from the technically justified 
earth model and the reference geomagnetic field time series. 
For large planning areas that span more than one β scaling factor, the most conservative (largest) 
value for β may be used in determining the peak geoelectric field to obtain conservative results. 
Alternatively,  a  planner  could  perform  analysis  using  a  non‐uniform  or  piecewise  uniform 
geoelectric field. 
Applying the Localized Peak Geoelectric Field in the Supplemental GMD Event

The peak geoelectric field of the supplemental GMD event occurs in a localized area.5 Planners 
have flexibility to determine how to apply the localized peak geoelectric field over the planning 
area in performing GIC calculations. Examples of approaches are: 


Apply the peak geoelectric field (12 V/km  scaled to the planning area) over the entire 
planning area; 



Apply a spatially limited (12 V/km scaled to the planning area) peak geoelectric field (e.g., 
100 km in North‐South latitude direction and 500 km in East‐West longitude direction) 
over a portion(s) of the system, and apply the benchmark GMD event over the rest of the 
system; or 



Other methods to adjust the benchmark GMD event analysis to account for the localized 
geoelectric field enhancement of the supplemental GMD event. 

4 Available at http://geomag.usgs.gov/conductivity/http://geomag.usgs.gov/conductivity/. 

5 See the Supplemental Geomagnetic Disturbance Description white paper located on the Project 2013‐03 Geomagnetic 

Disturbance Mitigation project pagewebpage: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐
Disturbance‐Mitigation.aspx. 
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 30 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 1: Physiographic Regions of the Continental United States6

 

 
Figure 2: Physiographic Regions of Canada

 

6 Additional map detail is available at the U.S. Geological Survey: http://geomag.usgs.gov/ (). 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 31 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Table 3: Geoelectric Field Scaling Factors
Earth model

Scaling Factor
Benchmark Event
(b)

Scaling Factor
Supplemental
Event
(s)

AK1A 

0.56 

0.51 

AK1B 

0.56 

0.51 

AP1 

0.33 

0.30 

AP2 

0.82 

0.78 

BR1 

0.22 

0.22 

CL1 

0.76 

0.73 

CO1 

0.27 

0.25 

CP1 

0.81 

0.77 

CP2 

0.95 

0.86 

FL1 

0.76 

0.73 

CS1 

0.41 

0.37 

IP1 

0.94 

0.90 

IP2 

0.28 

0.25 

IP3 

0.93 

0.90 

IP4 

0.41 

0.35 

NE1 

0.81 

0.77 

PB1 

0.62 

0.55 

PB2 

0.46 

0.39 

PT1 

1.17 

1.19 

SL1 

0.53 

0.49 

SU1 

0.93 

0.90 

BOU 

0.28 

0.24 

FBK 

0.56 

0.56 

PRU 

0.21 

0.22 

BC 

0.67 

0.62 

PRAIRIES 

0.96 

0.88 

SHIELD 

1.0 

1.0 

ATLANTIC 

0.79 

0.76 

 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 32 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Rationale:  Scaling  factors  in  Table  3  are  dependent  upon  the  frequency  content  of  the 
reference storm. Consequently, the benchmark GMD event and the supplemental GMD event 
may produce different scaling factors for a given earth model. 
The scaling factor associated with the benchmark GMD event for the Florida earth model (FL‐
1FL1) has been updated based on the earth model published on the USGS public website. 
 
Table 4 : Reference Earth Model (Quebec)
Layer Thickness (km)

Resistivity (Ω-m)

15 

20,000 

10 

200 

125 

1,000 

200 

100 

∞ 

3 

Reference Geomagnetic Field Time Series or Waveform for the Benchmark GMD
Event7

The geomagnetic field measurement record of the March 13‐14 1989 GMD event, measured at 
NRCan’sthe NRCan Ottawa geomagnetic observatory, is the basis for the reference geomagnetic 
field  waveform  to  be  used  to  calculate  the  GIC  time  series,  GIC(t),  required  for  transformer 
thermal impact assessment. 
The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the 
amplitudes  of  the  geomagnetic  field  measurement  data  were  scaled  up  to  the  60  reference 
geomagnetic  latitude  (see  Figure  3)  such  that  the  resulting  peak  geoelectric  field  amplitude 
computed using the reference earth model was 8 V/km (see Figures 4 and 5). The sampling rate 
for the geomagnetic field waveform is 10 seconds.8 To use this geoelectric field time series when 
a  different  earth  model  is  applicable,  it  should  be  scaled  with  the  appropriate  benchmark 
conductivity scaling factor b. 

7 Refer to the Benchmark GMDGeomagnetic Disturbance Event Description white paper for details on the determination of the 

reference geomagnetic field waveform: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx. 
8 The data file of the benchmark geomagnetic field waveform is available on the Related Information pagewebpage for TPL‐007‐
1: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx. 
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 33 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 3: Benchmark Geomagnetic Field Waveform
Red Bn (Northward), Blue Be (Eastward)

 

Figure 4: Benchmark Geoelectric Field Waveform
EE (Eastward)
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 34 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

 

Figure 5: Benchmark Geoelectric Field Waveform
EN (Northward)
Reference Geomagnetic Field Time Series or Waveform for the Supplemental GMD
Event9

The geomagnetic field measurement record of the March 13‐14, 1989 GMD event, measured at 
NRCan’sthe NRCan Ottawa geomagnetic observatory, is the basis for the reference geomagnetic 
field  waveform  to  be  used  to  calculate  the  GIC  time  series,  GIC(t),  required  for  transformer 
thermal  impact  assessment  for  the  supplemental  GMD  event.  The  supplemental  GMD  event 
waveform  differs  from  the  benchmark  GMD  event  waveform  in  that  the  supplemental  GMD 
event waveform has a local enhancement. 
The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the 
amplitudes  of  the  geomagnetic  field  measurement  data  were  scaled  up  to  the  60  reference 
geomagnetic  latitude  (see  Figure  6)  such  that  the  resulting  peak  geoelectric  field  amplitude 
computed using the reference earth model was 12 V/km (see Figure7). The sampling rate for the 
geomagnetic  field  waveform  is  10  seconds.10  To  use  this  geoelectric  field  time  series  when  a 
different  earth  model  is  applicable,  it  should  be  scaled  with  the  appropriate  supplemental 
conductivity scaling factor s. 

9 Refer to the Supplemental 

GMDGeomagnetic Disturbance Event Description white paper for details on the determination of 
the reference geomagnetic field waveform: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐
Mitigation.aspxhttp://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
10 The data file of the benchmark geomagnetic field waveform is available on the NERC GMD Task Force project pagewebpage: 
http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐Task‐Force‐(GMDTF)‐2013.aspx.
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 35 of 46 

TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

4000

2000

Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

-10000

Figure 6: Supplemental Geomagnetic Field Waveform
Red BN (Northward), Blue BE (Eastward)

 
12 V/km

Figure 7: Supplemental Geoelectric Field Waveform
Blue EN (Northward), Red EE (Eastward)

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 36 of 46 

TPL‐007‐2 – Supplemental Material 

Guidelines and Technical Basis
The diagram below provides an overall view of the GMD Vulnerability Assessment process: 

The requirements in this standard cover various aspects of the GMD Vulnerability Assessment 
process. 
Benchmark GMD Event (Attachment 1)

The benchmark GMD event defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  benchmark  GMD  Vulnerability  Assessment.  AThe  Benchmark 
Geomagnetic  Disturbance  Event  Description,  May  201611  white  paper  that  includes  the  event 
description, analysis, and example calculations is available on the Project 2013‐03 Geomagnetic 
Disturbance Mitigation project page at:. 
Supplemental GMD Event (Attachment 1)

The supplemental GMD event defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  supplemental  GMD  Vulnerability  Assessment.    AThe  Supplemental 
Geomagnetic Disturbance Event Description, October 201712 white paper that includes the event 
description and analysis is available on the Project 2013‐03 Geomagnetic Disturbance Mitigation 
project page:.
Requirement R2

A GMD Vulnerability Assessment requires a GIC System model, which is a dc representation of 
the System, to calculate GIC flow. In a GMD Vulnerability Assessment, GIC simulations are used 
to determine transformer Reactive Power absorption and transformer thermal response. Details 
for  developing  the  GIC  System  model  are  provided  in  the  NERC  GMD  Task  Force  guide: 
Application Guide for Computing Geomagnetically‐Induced Current in the Bulk Power System. The 
guide is available at:   , December 2013.13 
Underground pipe‐type cables present a special modeling situation in that the steel pipe that 
encloses  the  power  conductors  significantly  reduces  the  geoelectric  field  induced  into  the 
11 http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx.
12

http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GIC%20Application 
%20Guide%202013_approved.pdf.
13

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 37 of 46 

TPL‐007‐2 – Supplemental Material 

conductors  themselves,  while  they  remain  a  path  for  GIC.  Solid  dielectric  cables  that  are  not 
enclosed  by  a  steel  pipe  will  not  experience  a  reduction  in  the  induced  geoelectric  field.  A 
planning  entity  should  account  for  special  modeling  situations  in  the  GIC  system  model,  if 
applicable. 
Requirement R4

The  GMDGeomagnetic  Disturbance  Planning  Guide,14  December  2013  developed  by  the  NERC 
GMD  Task  Force  provides  technical  information  on  GMD‐specific  considerations  for  planning 
studies. It is available at: 
Requirement R5

The benchmark thermal impact assessment of transformers specified in Requirement R6 is based 
on GIC information for the benchmark GMD Event. This GIC information is determined by the 
planning entity through simulation of the GIC System model and must be provided to the entity 
responsible for conducting the thermal impact assessment. GIC information should be provided 
in accordance with Requirement R5 each time the GMD Vulnerability Assessment is performed 
since,  by  definition,  the  GMD  Vulnerability  Assessment  includes  a  documented  evaluation  of 
susceptibility to localized equipment damage due to GMD. 
The maximum effective GIC value provided in Part 5.1 is used for the benchmark thermal impact 
assessment. Only those transformers that experience an effective GIC value of 75 A or greater 
per phase require evaluation in Requirement R6. 
GIC(t) provided in Part 5.2 is used to convert the steady state GIC flows to time‐series GIC data 
for the benchmark thermal impact assessment of transformers. This information may be needed 
by  one  or  more  of  the  methods  for  performing  a  benchmark  thermal  impact  assessment. 
Additional  information  is  in  the  following  section  and  the  thermal  impact  assessment  white 
paperTransformer Thermal Impact Assessment White Paper,15 October 2017. 
The peak GIC value of 75 Amps per phase has been shown through thermal modeling to be a 
conservative threshold below which the risk of exceeding known temperature limits established 
by technical organizations is low. 
Requirement R6

The  benchmark  thermal  impact  assessment  of  a  power  transformer  may  be  based  on 
manufacturer‐provided  GIC  capability  curves,  thermal  response  simulation,  thermal  impact 
screening, or other technically justified means. Approaches for conducting the assessment are 
presented  in  the  Transformer  Thermal  Impact  Assessment  white  paper.  TheWhite  Paper  ERO 
enterprise has endorsed the white paper asEnterprise‐Endorsed Implementation Guidance16 for 
14

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
15 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
16 http://www.nerc.com/pa/comp/guidance/EROEndorsedImplementationGuidance/TPL‐007‐1_Transformer_Thermal_Impact_ 
Assessment_White_Paper.pdf.

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 38 of 46 

TPL‐007‐2 – Supplemental Material 

this  requirement.  The  white  paperThis  ERO‐Endorsed  document  is  posted  on  the  NERC 
compliance guidance page:Compliance Guidance17 webpage. 
http://www.nerc.com/pa/comp/guidance/Pages/default.aspx 
Transformers are exempt from the benchmark thermal impact assessment requirement if the 
effective GIC value for the transformer is less than 75 A per phase, as determined by a GIC analysis 
of the System. Justification for this criterion is provided in the Screening Criterion for Transformer 
Thermal Impact Assessment white paper posted on the Related Information page for TPL‐007‐
1.White Paper,18 October 2017. A documented design specification exceeding this value is also a 
justifiable threshold criterion that exempts a transformer from Requirement R6. 
The  benchmark  threshold  criteria  and  its  associated  transformer  thermal  impact  must  be 
evaluated on the basis of effective GIC. Refer to the white papers for additional information. 
Requirement R7

Technical  considerations  for  GMD  mitigation  planning,  including  operating  and  equipment 
strategies,  are  available  in  Chapter  5  of  the  GMDGeomagnetic  Disturbance  Planning  Guide,19 
December 2013. Additional information is available in the 2012 Special  Reliability Assessment 
Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐Power System:, 20 February 2012. 
Requirement R8

The  GMDGeomagnetic  Disturbance  Planning  Guide,21  December  2013  developed  by  the  NERC 
GMD  Task  Force  provides  technical  information  on  GMD‐specific  considerations  for  planning 
studies. It is available at: 
The  supplemental  GMD  Vulnerability  Assessment  process  is  similar  to  the  benchmark  GMD 
Vulnerability Assessment process described under Requirement R4. 
Requirement R9

The supplemental thermal impact assessment specified of transformers in Requirement R10 is 
based on GIC information for the supplemental GMD Event. This GIC information is determined 
by the planning entity through simulation of the GIC System model and must be provided to the 
entity  responsible  for  conducting  the  thermal  impact  assessment.  GIC  information  should  be 
provided  in  accordance with  Requirement R9  each  time  the  GMD  Vulnerability  Assessment  is 
performed  since,  by  definition,  the  GMD  Vulnerability  Assessment  includes  a  documented 
evaluation of susceptibility to localized equipment damage due to GMD. 

17

http://www.nerc.com/pa/comp/guidance/Pages/default.aspx.
http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
19 http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
20 http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf.
21 http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
18

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 39 of 46 

TPL‐007‐2 – Supplemental Material 

The  maximum  effective  GIC  value  provided  in  Part  9.1  is  used  for  the  supplemental  thermal 
impact assessment. Only those transformers that experience an effective GIC value of 85 A or 
greater per phase require evaluation in Requirement R10. 
GIC(t) provided in Part 9.2 is used to convert the steady state GIC flows to time‐series GIC data 
for  the  supplemental  thermal  impact  assessment  of  transformers.  This  information  may  be 
needed  by  one  or  more  of  the  methods  for  performing  a  supplemental  thermal  impact 
assessment. Additional information is in the following section. 
The peak GIC value of 85 Amps per phase has been shown through thermal modeling to be a 
conservative threshold below which the risk of exceeding known temperature limits established 
by technical organizations is low. 
Requirement R10

The  supplemental  thermal  impact  assessment  of  a  power  transformer  may  be  based  on 
manufacturer‐provided  GIC  capability  curves,  thermal  response  simulation,  thermal  impact 
screening, or other technically justified means. Approaches for conducting the assessment are 
presented  in  the  Transformer  Thermal  Impact  Assessment  white  paperWhite  Paper  ERO 
Enterprise‐Endorsed Implementation Guidance22 discussed in the Requirement R6 section above. 
A revisedlater version of the Transformer Thermal Impact Assessment white paperWhite Paper,23 
October  2017,  has  been  developed  to  include  updated  information  pertinent  to  the 
supplemental  GMD  event  and  supplemental  thermal  impact  assessment.  This  revised  white 
paper is posted on the project page at: 
Transformers are exempt from the supplemental thermal impact assessment requirement if the 
effective GIC value for the transformer is less than 85 A per phase, as determined by a GIC analysis 
of  the  System.  Justification  for  this  criterion  is  provided  in  the  revised  Screening  Criterion  for 
Transformer Thermal Impact Assessment white paper posted on the project page.White Paper,24 
October  2017.  A  documented  design  specification  exceeding  this  value  is  also  a  justifiable 
threshold criterion that exempts a transformer from Requirement R10. 
The  supplemental  threshold  criteria  and  its  associated  transformer  thermal  impact  must  be 
evaluated on the basis of effective GIC. Refer to the white papers for additional information. 
Requirement R11

Technical  considerations  for  GIC  monitoring  are  contained  in  Chapter  6  of  the  NERC  2012 
GMDSpecial  Reliability  Assessment  Interim  Report  (see  Chapter  6).:  Effects  of  Geomagnetic 
Disturbances on the Bulk‐Power System, 25 February 2012. GIC monitoring is generally performed 

22 http://www.nerc.com/pa/comp/guidance/EROEndorsedImplementationGuidance/TPL‐007‐1_Transformer_Thermal_Impact_ 

Assessment_White_Paper.pdf.
23 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
24 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
25 http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf.
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 40 of 46 

TPL‐007‐2 – Supplemental Material 

by  Hall effect  transducers  that  are  attached  to  the  neutral  of  the  wye‐grounded  transformer. 
Data from GIC monitors is useful for model validation and situational awareness. 
Responsible entities consider the following in  developing  a process for obtaining  GIC monitor 
data: 


Monitor  locations.  An  entity's  operating  process  may  be  constrained  by  location  of 
existing GIC monitors. However, when planning for additional GIC monitoring installations 
consider that data from monitors located in areas found to have high GIC based on system 
studies  may  provide  more  useful  information  for  validation  and  situational  awareness 
purposes.  Conversely,  data  from  GIC  monitors  that  are  located  in  the  vicinity  of 
transportation systems using direct current (e.g., subways or light rail) may be unreliable. 



Monitor  specifications.  Capabilities  of  Hall  effect  transducers,  existing  and  planned, 
should  be  considered  in  the  operating  process.  When  planning  new  GIC  monitor 
installations,  consider  monitor  data  range  (e.g.,  ‐500  A  through  +  500  A)  and  ambient 
temperature ratings consistent with temperatures in the region in which the monitor will 
be installed. 



Sampling  Interval.  An  entity's  operating  process  may  be  constrained  by  capabilities  of 
existing GIC monitors. However, when possible specify data sampling during periods of 
interest at a rate of 10 seconds or faster. 



Collection Periods. The process should specify when the entity expects GIC data to be 
collected. For example, collection could be required during periods where the Kp index is 
above  a  threshold,  or  when  GIC  values  are  above  a  threshold.  Determining  when  to 
discontinue collecting GIC data should also be specified to maintain consistency in data 
collection. 



Data format. Specify time and value formats. For example, Greenwich Mean Time (GMT) 
(MM/DD/YYYY  HH:MM:SS)  and  GIC  Value  (Ampere).  Positive  (+)  and  negative  (‐)  signs 
indicate direction of GIC flow. Positive reference is flow from ground  into transformer 
neutral. Time fields should indicate the sampled time rather than system or SCADA time 
if supported by the GIC monitor system. 



Data retention. The entity's process should specify data retention periods, for example 1 
year.  Data  retention  periods  should  be  adequately  long  to  support  availability  for  the 
entity's model validation process and external reporting requirements, if any. 



Additional  information.  The  entity's  process  should  specify  collection  of  other 
information necessary for making the data useful, for example monitor location and type 
of neutral connection (e.g., three‐phase or single‐phase). 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 41 of 46 

TPL‐007‐2 – Supplemental Material 
Requirement R12

Magnetometers measure changes in the earth's magnetic field. Entities should obtain data from 
the nearest accessible magnetometer. Sources of magnetometer data include: 


Observatories such as those operated by U.S. Geological Survey and Natural Resources 
Canada, see figure below for locations ()::26 




Research institutions and academic universities; 
Entities with installed magnetometers. 

 

Entities that choose to install magnetometers should consider equipment specifications and data 
format  protocols  contained  in  the  latest  version  of  the  IntermagnetINTERMAGNET  Technical 
Reference Manual, which is available at:Version 4.6, 2012.27 
 

Rationale
During development of TPL‐007‐1, text boxes were embedded within the standard to explain the 
rationale for various parts of the standard. The text from the rationale text boxes was moved to 
this section upon approval of TPL‐007‐1 by the NERC Board of Trustees. In developing TPL‐007‐2, 
the SDT has made changes to the sections below only when necessary for clarity. Changes are 
marked with brackets [ ].
Rationale for Applicability:

Instrumentation transformers and station service transformers do not have significant impact on 
geomagnetically‐induced current (GIC) flows; therefore, these transformers are not included in 
the applicability for this standard. 
Terminal voltage describes line‐to‐line voltage. 

26
27

http://www.intermagnet.org/index‐eng.php.
http://www.intermagnet.org/publications/intermag_4‐6.pdf.

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 42 of 46 

TPL‐007‐2 – Supplemental Material 
Rationale for R1:

In some areas, planning entities may determine that the most effective approach to conduct a 
GMD Vulnerability Assessment is through a regional planning organization. No requirement in 
the standard is intended to prohibit a collaborative approach where roles and responsibilities are 
determined by a planning organization made up of one or more Planning Coordinator(s). 
Rationale for R2:

A GMD Vulnerability Assessment requires a GIC System model to calculate GIC flow which is used 
to  determine  transformer  Reactive  Power  absorption  and  transformer  thermal  response. 
Guidance  for  developing  the  GIC  System  model  is  provided  in  the  GIC  Application  Guide 
Computing  Geomagnetically‐Induced  Current  in  the  Bulk‐Power  System,28  December  2013, 
developed by the NERC GMD Task Force and available at:   . 
The System model specified in Requirement R2 is used in conducting steady state power flow 
analysis that accounts for the Reactive Power absorption of power transformer(s) due to GIC in 
the System. 
The GIC System model includes all power transformer(s) with a high side, wye‐grounded winding 
with terminal voltage greater than 200 kV. The model is used to calculate GIC flow in the network. 
The projected System condition for GMD planning may include adjustments to the System that 
are executable in response to space weather information. These adjustments could include, for 
example, recalling or postponing maintenance outages. 
The Violation Risk Factor (VRF) for Requirement R2 is changed from Medium to High. This change 
is  for  consistency  with  the  VRF  for  approved  standard  TPL‐001‐4  Requirement  R1,  which  is 
proposed for revision in the NERC filing dated August 29, 2014 (Docket No. RM12‐1‐000). NERC 
guidelines require consistency among Reliability Standards. 
Rationale for R3:

Requirement R3 allows a responsible entity the flexibility to determine the System steady state 
voltage criteria for System steady state performance in Table 1. Steady state voltage limits are 
an example of System steady state performance criteria. 
Rationale for R4:

The GMD Vulnerability Assessment includes steady state power flow analysis and the supporting 
study or studies using the models specified in Requirement R2 that account for the effects of GIC. 
Performance criteria are specified in Table 1. 
At least one System On‐Peak Load and at least one System Off‐Peak Load must be examined in 
the analysis. 

28

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GIC%20Application 
%20Guide%202013_approved.pdf.
Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 43 of 46 

TPL‐007‐2 – Supplemental Material 

Distribution  of  GMD  Vulnerability  Assessment  results  provides  a  means  for  sharing  relevant 
information with other entities responsible for planning reliability. Results of GIC studies may 
affect neighboring systems and should be taken into account by planners. 
The GMDGeomagnetic Disturbance Planning Guide,29 December 2013 developed by the NERC 
GMD Task Force provides technical information on GMD‐specific considerations for planning 
studies. It is available at: 
The  provision  of  information  in  Requirement  R4,  Part  4.3,  shall  be  subject  to  the  legal  and 
regulatory obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R5:

This GIC information is necessary for determining the thermal impact of GIC on transformers in 
the planning area and must be provided to entities responsible for performing the thermal impact 
assessment  so  that  they  can  accurately  perform  the  assessment.  GIC  information  should  be 
provided  in  accordance  with  Requirement  R5  as  part  of  the  GMD  Vulnerability  Assessment 
process since, by definition, the GMD Vulnerability Assessment includes documented evaluation 
of susceptibility to localized equipment damage due to GMD. 
The maximum effective GIC value provided in Part 5.1 is used for transformer thermal impact 
assessment. 
GIC(t) provided in Part 5.2 can alternatively be used to convert the steady state GIC flows to time‐
series GIC data for transformer thermal impact assessment. This information may be needed by 
one or more of the methods for performing a thermal impact assessment. Additional guidance is 
available in the Transformer Thermal Impact Assessment white paper: White Paper,30 October 
2017. 
[http://www.nerc.com/pa/comp/guidance/Pages/default.aspx] 
A Transmission Owner or Generator Owner that desires GIC(t) may request it from the planning 
entity. The planning entity shall provide GIC(t) upon request once GIC has been calculated, but 
no later than 90 calendar days after receipt of a request from the owner and after completion of 
Requirement R5, Part 5.1. 
The  provision  of  information  in  Requirement  R5  shall  be  subject  to  the  legal  and  regulatory 
obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R6:

The transformer thermal impact screening criterion has been revised from 15 A per phase to 75 
A  per  phase  [for  the  benchmark  GMD  event].  Only  those  transformers  that  experience  an 
effective  GIC  value  of  75  A  per  phase  or  greater  require  evaluation  in  Requirement  R6.  The 
29

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
30 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 44 of 46 

TPL‐007‐2 – Supplemental Material 

justification is provided in the Thermal Screening Criterion white paperfor Transformer Thermal 
Impact Assessment White Paper,31 October 2017. 
The thermal impact assessment may be based on manufacturer‐provided GIC capability curves, 
thermal response simulation, thermal impact screening, or other technically justified means. The 
transformer thermal assessment will be repeated or reviewed using previous assessment results 
each  time  the  planning  entity  performs  a  GMD  Vulnerability  Assessment  and  provides  GIC 
information  as  specified  in  Requirement  R5.  Approaches  for  conducting  the  assessment  are 
presented  in  the  Transformer  Thermal  Impact  Assessment  white  paper  posted  on  the  project 
pageWhite Paper,32 October 2017. 
Thermal impact assessments are provided to the planning entity, as determined in Requirement 
R1, so that identified issues can be included in the GMD Vulnerability Assessment (R4), and the 
Corrective Action Plan (R7) as necessary. 
Thermal  impact  assessments  of  non‐BES  transformers  are  not  required  because  those 
transformers do not have a wide‐area effect on the reliability of the interconnected Transmission 
system. 
The  provision  of  information  in  Requirement  R6,  Part  6.4,  shall  be  subject  to  the  legal  and 
regulatory obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R7:

Corrective Action Plans are defined in the NERC Glossary of Terms: 
A  list  of  actions  and  an  associated  timetable  for  implementation  to  remedy  a  specific 
problem. 
Corrective Action Plans must, subject to the vulnerabilities identified in the assessments, contain 
strategies for protecting against the potential impact of the benchmark GMD event, based on 
factors such as the age, condition, technical specifications, system configuration, or location of 
specific  equipment.  Chapter  5  of  the  NERC  GMD  Task  Force  GMDGeomagnetic  Disturbance 
Planning Guide,33 December 2013 provides a list of mitigating measures that may be appropriate 
to address an identified performance issue. 
The provision of information in Requirement R7, Part 7.3 [Part 7.5 in TPL‐007‐2], shall be subject 
to  the  legal  and  regulatory  obligations  for  the  disclosure  of  confidential  and/or  sensitive 
information. 

31

http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
33 http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
32

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 45 of 46 

TPL‐007‐2 – Supplemental Material 
Rationale for Table 3:

Table 3 has been revised to use the same ground model designation, FL1, as is being used by 
USGS.  The  calculated  scaling  factor  for  FL1  is  0.74.  [The  scaling  factor  associated  with  the 
benchmark GMD event for the Florida earth model (FL1) has been updated to 0.76 in TPL‐007‐2 
based on the earth model published on the USGS public website.] 

Draft 12 of TPL‐007‐2 
June 2017 
 

PageOctober 2017 

Page 46 of 46 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Standard Development Timeline
This section is maintained by the drafting team during the development of the standard and will 
be removed when the standard is adopted by the NERC Board of Trustees (Board). 

Description of Current Draft
Completed Actions

Date

Standards Committee approved Standard Authorization Request 
(SAR) for posting 

December 14, 2016 

SAR posted for comment 

December 16, 2016 – 
January 20, 2017 

45‐day formal comment period with initial ballot 

June 28 – August 11, 
2017 

 
Anticipated Actions

Date

10‐day final ballot 

October 2017 

Board adoption 

November 2017 

 

Draft 2 of TPL‐007‐2 
October 2017 

Page 1 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

New or Modified Term(s) Used in NERC Reliability Standards
This section includes all new or modified terms used in the proposed standard that will be 
included in the Glossary of Terms Used in NERC Reliability Standards upon applicable regulatory 
approval. Terms used in the proposed standard that are already defined and are not being 
modified can be found in the Glossary of Terms Used in NERC Reliability Standards. The new or 
revised terms listed below will be presented for approval with the proposed standard. Upon 
Board adoption, this section will be removed. 
 
Term(s):

None 

Draft 2 of TPL‐007‐2 
October 2017 

Page 2 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Upon Board adoption, the rationale boxes will be moved to the Supplemental Material Section. 

A. Introduction
1.

Title:  
Events 

Transmission System Planned Performance for Geomagnetic Disturbance 

2.

Number: 

TPL‐007‐12 

3.

Purpose:  Establish requirements for Transmission system planned performance 
during geomagnetic disturbance (GMD) events. 

4.

Applicability: 
4.1. Functional Entities: 
4.1.1. Planning Coordinator with a planning area that includes a Facility or 
Facilities specified in 4.2; 
4.1.2. Transmission Planner with a planning area that includes a Facility or 
Facilities specified in 4.2; 
4.1.3. Transmission Owner who owns a Facility or Facilities specified in 4.2; and 
4.1.4. Generator Owner who owns a Facility or Facilities specified in 4.2. 
4.2. Facilities: 
4.2.1. Facilities that include power transformer(s) with a high side, wye‐
grounded winding with terminal voltage greater than 200 kV. 

5.

Effective Date: See Implementation Plan for TPL‐007‐2. 

5.6. Background: During a GMD event, geomagnetically‐induced currents (GIC) may cause 
transformer hot‐spot heating or damage, loss of Reactive Power sources, increased 
Reactive Power demand, and Misoperation(s), the combination of which may result in 
voltage collapse and blackout. 
6.

Effective Date: 
See Implementation Plan for TPL‐007‐1 

B. Requirements and Measures
R1. Each Planning Coordinator, in conjunction with its Transmission Planner(s), shall 
identify the individual and joint responsibilities of the Planning Coordinator and 
Transmission Planner(s) in the Planning Coordinator’s planning area for maintaining 
models and, performing the study or studies needed to complete benchmark and 
supplemental GMD Vulnerability Assessment(s).Assessments, and implementing 
process(es) to obtain GMD measurement data as specified in this standard. [Violation 
Risk Factor: Lower] [Time Horizon: Long‐term Planning] 

Draft 2 of TPL‐007‐2 
October 2017 

Page 3 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

M1. M1.  Each Planning Coordinator, in conjunction with its Transmission Planners, shall 
provide documentation on roles and responsibilities, such as meeting minutes, 
agreements, copies of procedures or protocols in effect between entities or between 
departments of a vertically integrated system, or email correspondence that identifies 
an agreement has been reached on individual and joint responsibilities for maintaining 
models and, performing the study or studies needed to complete benchmark and 
supplemental GMD Vulnerability Assessment(s),Assessments, and implementing 
process(es) to obtain GMD measurement data in accordance with Requirement R1. 
R2. Each responsible entity, as determined in Requirement R1, shall maintain System 
models and GIC System models of the responsible entity’s planning area for 
performing the study or studies needed to complete benchmark and supplemental 
GMD Vulnerability Assessment(s). Assessments. [Violation Risk Factor: High] [Time 
Horizon: Long‐term Planning] 
M2. M2.  Each responsible entity, as determined in Requirement R1, shall have evidence in 
either electronic or hard copy format that it is maintaining System models and GIC 
System models of the responsible entity’s planning area for performing the study or 
studies needed to complete benchmark and supplemental GMD Vulnerability 
Assessment(s).Assessments. 
R3. Each responsible entity, as determined in Requirement R1, shall have criteria for 
acceptable System steady state voltage performance for its System during the 
benchmark GMD eventevents described in Attachment 1. [Violation Risk Factor: 
Medium] [Time Horizon: Long‐term Planning] 
M3. M3.  Each responsible entity, as determined in Requirement R1, shall have evidence, 
such as electronic or hard copies of the criteria for acceptable System steady state 
voltage performance for its System in accordance with Requirement R3. 
Benchmark GMD Vulnerability Assessment(s)

R4. Each responsible entity, as determined in Requirement R1, shall complete a 
benchmark GMD Vulnerability Assessment of the Near‐Term Transmission Planning 
Horizon at least once every 60 calendar months. This benchmark GMD Vulnerability 
Assessment shall use a study or studies based on models identified in Requirement R2, 
document assumptions, and document summarized results of the steady state 
analysis. [Violation Risk Factor: High] [Time Horizon: Long‐term Planning] 
4.1. The study or studies shall include the following conditions: 
4.1.1. System On‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon; and 
4.1.2. System Off‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 4 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

4.2. The study or studies shall be conducted based on the benchmark GMD event 
described in Attachment 1 to determine whether the System meets the 
performance requirements for the steady state planning benchmark GMD event 
contained in Table 1. 
4.3. The benchmark GMD Vulnerability Assessment shall be provided within 90 
calendar days of completion: (i) to the responsible entity’s Reliability 
Coordinator, adjacent Planning Coordinators, and adjacent Transmission 
Planners, and within 90 calendar days of completion, and (ii) to any functional 
entity that submits a written request and has a reliability‐related need within 90 
calendar days of receipt of such request or within 90 calendar days of 
completion of the benchmark GMD Vulnerability Assessment, whichever is later. 
4.3.1. 4.3.1.   If a recipient of the benchmark GMD Vulnerability Assessment 
provides documented comments on the results, the responsible entity 
shall provide a documented response to that recipient within 90 calendar 
days of receipt of those comments. 
M4. M4.  Each responsible entity, as determined in Requirement R1, shall have dated 
evidence such as electronic or hard copies of its benchmark GMD Vulnerability 
Assessment meeting all of the requirements in Requirement R4. Each responsible 
entity, as determined in Requirement R1, shall also provide evidence, such as email 
records, web postings with an electronic notice of posting, or postal receipts showing 
recipient and date, that it has distributed its benchmark GMD Vulnerability 
Assessment within 90 calendar days of completion: (i) to itsthe responsible entity’s 
Reliability Coordinator, adjacent Planning Coordinator(s), Coordinators, and adjacent 
Transmission Planner(s), and Planners within 90 calendar days of completion, and (ii) 
to any functional entity who has submittedthat submits a written request and has a 
reliability‐related need within 90 calendar days of receipt of such request or within 90 
calendar days of completion of the benchmark GMD Vulnerability Assessment, 
whichever is later, as specified in Requirement R4. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email notices or 
postal receipts showing recipient and date, that it has provided a documented 
response to comments received on its benchmark GMD Vulnerability Assessment 
within 90 calendar days of receipt of those comments in accordance with 
Requirement R4. 
R5. Each responsible entity, as determined in Requirement R1, shall provide GIC flow 
information to be used for the transformerbenchmark thermal impact assessment of 
transformers specified in Requirement R6 to each Transmission Owner and Generator 
Owner that owns an applicable Bulk Electric System (BES) power transformer in the 
planning area. The GIC flow information shall include: [Violation Risk Factor: Medium] 
[Time Horizon: Long‐term Planning] 

Draft 2 of TPL‐007‐2 
October 2017 

Page 5 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

5.1. The maximum effective GIC value for the worst case geoelectric field orientation 
for the benchmark GMD event described in Attachment 1. This value shall be 
provided to the Transmission Owner or Generator Owner that owns each 
applicable BES power transformer in the planning area. 
5.2. The effective GIC time series, GIC(t), calculated using the benchmark GMD event 
described in Attachment 1 in response to a written request from the 
Transmission Owner or Generator Owner that owns an applicable BES power 
transformer in the planning area. GIC(t) shall be provided within 90 calendar 
days of receipt of the written request and after determination of the maximum 
effective GIC value in Part 5.1. 
M5. M5.  Each responsible entity, as determined in Requirement R1, shall provide 
evidence, such as email records, web postings with an electronic notice of posting, or 
postal receipts showing recipient and date, that it has provided the maximum 
effective GIC valuevalues to the Transmission Owner and Generator Owner that owns 
each applicable BES power transformer in the planning area as specified in 
Requirement R5, Part 5.1. Each responsible entity, as determined in Requirement R1, 
shall also provide evidence, such as email records, web postings with an electronic 
notice of posting, or postal receipts showing recipient and date, that it has provided 
GIC(t) in response to a written request from the Transmission Owner or Generator 
Owner that owns an applicable BES power transformer in the planning area. 
R6. Each Transmission Owner and Generator Owner shall conduct a benchmark thermal 
impact assessment for its solely and jointly owned applicable BES power transformers 
where the maximum effective GIC value provided in Requirement R5, Part 5.1, is 75 A 
per phase or greater. The benchmark thermal impact assessment shall: [Violation Risk 
Factor: Medium] [Time Horizon: Long‐term Planning] 
6.1. Be based on the effective GIC flow information provided in Requirement R5; 
6.2. Document assumptions used in the analysis; 
6.3. Describe suggested actions and supporting analysis to mitigate the impact of 
GICs, if any; and  
6.4. Be performed and provided to the responsible entities, as determined in 
Requirement R1, within 24 calendar months of receiving GIC flow information 
specified in Requirement R5, Part 5.1. 
M6. M6.  Each Transmission Owner and Generator Owner shall have evidence such as 
electronic or hard copies of its benchmark thermal impact assessment for all of its 
solely and jointly owned applicable BES power transformers where the maximum 
effective GIC value provided in Requirement R5, Part 5.1, is 75 A per phase or greater, 
and shall have evidence such as email records, web postings with an electronic notice 
of posting, or postal receipts showing recipient and date, that it has provided its 
thermal impact assessment to the responsible entities as specified in Requirement R6. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 6 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Rationale for Requirement R7: The proposed requirement addresses directives in Order 
No. 830 for establishing Corrective Action Plan (CAP) deadlines associated with GMD 
Vulnerability Assessments. In Order No. 830, FERC directed revisions to TPL‐007 such that 
CAPs are developed within one year from the completion of GMD Vulnerability 
Assessments (P 101). Furthermore, FERC directed establishment of implementation 
deadlines after the completion of the CAP as follows (P 102): 


Two years for non‐hardware mitigation; and 



Four years for hardware mitigation. 

The objective of Part 7.4 is to provide awareness to potentially impacted entities when 
implementation of planned mitigation is not achievable within the deadlines established 
in Part 7.3. Examples of situations beyond the control of the of the responsible entity (see 
Section 7.4) include, but are not limited to: 


Delays resulting from regulatory/legal processes, such as permitting; 



Delays resulting from stakeholder processes required by tariff; 



Delays resulting from equipment lead times; or 



Delays resulting from the inability to acquire necessary Right‐of‐Way. 

R7. Each responsible entity, as determined in Requirement R1, that concludes, through 
the benchmark GMD Vulnerability Assessment conducted in Requirement R4, that 
their System does not meet the performance requirements offor the steady state 
planning benchmark GMD event contained in Table 1, shall develop a Corrective 
Action Plan (CAP) addressing how the performance requirements will be met. The 
Corrective Action PlanCAP shall: [Violation Risk Factor: High] [Time Horizon: Long‐term 
Planning] 
7.1. List System deficiencies and the associated actions needed to achieve required 
System performance. Examples of such actions include: 


Installation, modification, retirement, or removal of Transmission and 
generation Facilities and any associated equipment. 



Installation, modification, or removal of Protection Systems or Special 
Protection Systems. Remedial Action Schemes. 



Use of Operating Procedures, specifying how long they will be needed as 
part of the Corrective Action Plan. CAP. 



Use of Demand‐Side Management, new technologies, or other initiatives. 

7.2. Be reviewed in subsequentdeveloped within one year of completion of the 
benchmark GMD Vulnerability Assessments until it isAssessment.
7.3. Include a timetable, subject to revision by the responsible entity in Part 7.4, for 
implementing the selected actions from Part 7.1. The timetable shall: 
Draft 2 of TPL‐007‐2 
October 2017 

Page 7 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

7.3.1. Specify implementation of non‐hardware mitigation, if any, within two 
years of development of the CAP; and 
7.3.2. Specify implementation of hardware mitigation, if any, within four years 
of development of the CAP.
7.2.7.4.
Be revised if situations beyond the control of the responsible entity 
determined that the System meets the performance requirements contained in 
Table 1.Requirement R1 prevent implementation of the CAP within the timetable 
for implementation provided in Part 7.3. The revised CAP shall document the 
following, and be updated at least once every 12 calendar months until 
implemented:  
7.4.1. Circumstances causing the delay for fully or partially implementing the 
selected actions in Part 7.1;  
7.4.2. Description of the original CAP, and any previous changes to the CAP, 
with the associated timetable(s) for implementing the selected actions in 
Part 7.1; and 
7.4.3. Revisions to the selected actions in Part 7.1, if any, including utilization of 
Operating Procedures if applicable, and the updated timetable for 
implementing the selected actions. 
7.3.7.5.
Be provided within 90 calendar days of completion: (i) to the responsible 
entity’s Reliability Coordinator, adjacent Planning Coordinator(s), adjacent 
Transmission Planner(s), and functional entities referenced in the Corrective 
Action Plan, andCAP within 90 calendar days of development or revision, and (ii) 
to any functional entity that submits a written request and has a reliability‐
related need within 90 calendar days of receipt of such request or within 90 
calendar days of development or revision, whichever is later. 
7.3.1.7.5.1. If a recipient of the Corrective Action PlanCAP provides 
documented comments on the results, the responsible entity shall 
provide a documented response to that recipient within 90 calendar days 
of receipt of those comments.
M7. M7.  Each responsible entity, as determined in Requirement R1, that concludes, 
through the benchmark GMD Vulnerability Assessment conducted in Requirement R4, 
that the responsible entity’s System does not meet the performance requirements of 
for the steady state planning benchmark GMD event contained in Table 1 shall have 
evidence such as dated electronic or hard copies of its Corrective Action PlanCAP 
including timetable for implementing selected actions, as specified in Requirement R7. 
Each responsible entity, as determined in Requirement R1, shall also provide 
evidence, such as email records or postal receipts showing recipient and date, that it 
has revised its CAP if situations beyond the responsible entity's control prevent 
implementation of the CAP within the timetable specified. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email records, 

Draft 2 of TPL‐007‐2 
October 2017 

Page 8 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

web postings with an electronic notice of posting, or postal receipts showing recipient 
and date, that it has distributed its Corrective Action PlanCAP or relevant information, 
if any, within 90 calendar days of its completion(i) to itsthe responsible entity’s 
Reliability Coordinator, adjacent Planning Coordinator(s), adjacent Transmission 
Planner(s), aand functional entityentities referenced in the Corrective Action Plan, 
andCAP within 90 calendar days of development or revision, and (ii) to any functional 
entity that submits a written request and has a reliability‐related need, within 90 
calendar days of receipt of such request or within 90 calendar days of development or 
revision, whichever is later as specified in Requirement R7. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email notices or 
postal receipts showing recipient and date, that it has provided a documented 
response to comments received on its Corrective Action PlanCAP within 90 calendar 
days of receipt of those comments, in accordance with Requirement R7. 
Supplemental GMD Vulnerability Assessment(s)
Table 1 –Steady State Planning Events
Steady State:

a. Voltage collapse, Cascading and uncontrolled islanding shall not occur.  
b. Generation loss is acceptable as a consequence of the planning event.    
c. Planned System adjustments such as Transmission configuration changes and re‐dispatch of generation are allowed if
are executable within the time duration applicable to the Facility Ratings.

Category 

GMD 
GMD Event  
with Outages 
 

 

Initial Condition 

1. System as may be 
postured in response to 
space weather 
information1, and then 
2. GMD event2 
 

Event  

Interruption of 
Firm Transmission 
Service Allowed  

Reactive Power compensation devices and 
other Transmission Facilities removed as a 
result of Protection System operation or 
Misoperation due to harmonics during the 
GMD event 

Yes3 

 
 

Table 1 – Steady State Performance Footnotes
1.

The System condition for GMD planning may include adjustments to posture the System that are 
executable in response to space weather information.  

2.

The GMD conditions for the planning event are described in Attachment 1 (Benchmark GMD Event).   

Draft 2 of TPL‐007‐2 
October 2017 

Page 9 of 58 

Loa

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Load loss as a result of manual or automatic Load shedding (e.g. UVLS) and/or curtailment 
of Firm Transmission Service may be used to meet BES performance requirements during 
studied GMD conditions. The likelihood and magnitude of Load loss or curtailment of Firm 
Transmission Service should be minimized. Rationale for Requirements R8 – R10: The 
proposed requirements address directives in Order No. 830 for revising the benchmark 
GMD event used in GMD Vulnerability Assessments (P 44, P 47‐49). The requirements add 
a supplemental GMD Vulnerability Assessment based on the supplemental GMD event 
that accounts for localized peak geoelectric fields. 
R8.

Each responsible entity, as determined in Requirement R1, shall complete a 
supplemental GMD Vulnerability Assessment of the Near‐Term Transmission Planning 
Horizon at least once every 60 calendar months. This supplemental GMD Vulnerability 
Assessment shall use a study or studies based on models identified in Requirement 
R2, document assumptions, and document summarized results of the steady state 
analysis. [Violation Risk Factor: High] [Time Horizon: Long‐term Planning]
8.1. The study or studies shall include the following conditions: 
8.1.1. System On‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon; and  
8.1.2. System Off‐Peak Load for at least one year within the Near‐Term 
Transmission Planning Horizon.
8.2. The study or studies shall be conducted based on the supplemental GMD event 
described in Attachment 1 to determine whether the System meets the 
performance requirements for the steady state planning supplemental GMD 
event contained in Table 1.
8.3. If the analysis concludes there is Cascading caused by the supplemental GMD 
event described in Attachment 1, an evaluation of possible actions designed to 
reduce the likelihood or mitigate the consequences and adverse impacts of the 
event(s) shall be conducted.
8.4. The supplemental GMD Vulnerability Assessment shall be provided: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, 
adjacent Transmission Planners within 90 calendar days of completion, and (ii) to 
any functional entity that submits a written request and has a reliability‐related 
need within 90 calendar days of receipt of such request or within 90 calendar 
days of completion of the supplemental GMD Vulnerability Assessment, 
whichever is later. 
8.4.1. If a recipient of the supplemental GMD Vulnerability Assessment 
provides documented comments on the results, the responsible entity 
shall provide a documented response to that recipient within 90 calendar 
days of receipt of those comments.

Draft 2 of TPL‐007‐2 
October 2017 

Page 10 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

M8. Each responsible entity, as determined in Requirement R1, shall have dated evidence 
such as electronic or hard copies of its supplemental GMD Vulnerability Assessment 
meeting all of the requirements in Requirement R8. Each responsible entity, as 
determined in Requirement R1, shall also provide evidence, such as email records, 
web postings with an electronic notice of posting, or postal receipts showing recipient 
and date, that it has distributed its supplemental GMD Vulnerability: (i) to the 
responsible entity’s Reliability Coordinator, adjacent Planning Coordinators, adjacent 
Transmission Planners within 90 calendar days of completion, and (ii) to any 
functional entity that submits a written request and has a reliability‐related need 
within 90 calendar days of receipt of such request or within 90 calendar days of 
completion of the supplemental GMD Vulnerability Assessment, whichever is later, as 
specified in Requirement R8. Each responsible entity, as determined in Requirement 
R1, shall also provide evidence, such as email notices or postal receipts showing 
recipient and date, that it has provided a documented response to comments 
received on its supplemental GMD Vulnerability Assessment within 90 calendar days 
of receipt of those comments in accordance with Requirement R8.
R9.

Each responsible entity, as determined in Requirement R1, shall provide GIC flow 
information to be used for the supplemental thermal impact assessment of 
transformers specified in Requirement R10 to each Transmission Owner and 
Generator Owner that owns an applicable Bulk Electric System (BES) power 
transformer in the planning area. The GIC flow information shall include: [Violation 
Risk Factor: Medium] [Time Horizon: Long‐term Planning]
9.1. The maximum effective GIC value for the worst case geoelectric field orientation 
for the supplemental GMD event described in Attachment 1. This value shall be 
provided to the Transmission Owner or Generator Owner that owns each 
applicable BES power transformer in the planning area.  
9.2. The effective GIC time series, GIC(t), calculated using the supplemental GMD 
event described in Attachment 1 in response to a written request from the 
Transmission Owner or Generator Owner that owns an applicable BES power 
transformer in the planning area. GIC(t) shall be provided within 90 calendar 
days of receipt of the written request and after determination of the maximum 
effective GIC value in Part 9.1.

M9. Each responsible entity, as determined in Requirement R1, shall provide evidence, 
such as email records, web postings with an electronic notice of posting, or postal 
receipts showing recipient and date, that it has provided the maximum effective GIC 
values to the Transmission Owner and Generator Owner that owns each applicable 
BES power transformer in the planning area as specified in Requirement R9, Part 9.1. 
Each responsible entity, as determined in Requirement R1, shall also provide 
evidence, such as email records, web postings with an electronic notice of posting, or 
postal receipts showing recipient and date, that it has provided GIC(t) in response to a 
written request from the Transmission Owner or Generator Owner that owns an 
applicable BES power transformer in the planning area.
Draft 2 of TPL‐007‐2 
October 2017 

Page 11 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R10. Each Transmission Owner and Generator Owner shall conduct a supplemental 
thermal impact assessment for its solely and jointly owned applicable BES power 
transformers where the maximum effective GIC value provided in Requirement R9, 
Part 9.1, is 85 A per phase or greater. The supplemental thermal impact assessment 
shall: [Violation Risk Factor: Medium] [Time Horizon: Long‐term Planning]
10.1.  Be based on the effective GIC flow information provided in Requirement R9; 
10.2.  Document assumptions used in the analysis; 
10.3.  Describe suggested actions and supporting analysis to mitigate the impact of 
GICs, if any; and  
10.4.  Be performed and provided to the responsible entities, as determined in 
Requirement R1, within 24 calendar months of receiving GIC flow information 
specified in Requirement R9, Part 9.1.
M10. Each Transmission Owner and Generator Owner shall have evidence such as 
electronic or hard copies of its supplemental thermal impact assessment for all of its 
solely and jointly owned applicable BES power transformers where the maximum 
effective GIC value provided in Requirement R9, Part 9.1, is 85 A per phase or greater, 
and shall have evidence such as email records, web postings with an electronic notice 
of posting, or postal receipts showing recipient and date, that it has provided its 
supplemental thermal impact assessment to the responsible entities as specified in 
Requirement R10.
GMD Measurement Data Processes

Rationale for Requirements R11 and R12: The proposed requirements address directives 
in Order No. 830 for requiring responsible entities to collect GIC monitoring and 
magnetometer data as necessary to enable model validation and situational awareness (P 
88; P. 90‐92). GMD measurement data refers to GIC monitor data and geomagnetic field 
data in Requirements R11 and R12, respectively. See the Guidelines and Technical Basis 
section of this standard for technical information. 
The objective of Requirement R11 is for entities to obtain GIC data for the Planning 
Coordinator's planning area or other part of the system included in the Planning 
Coordinator's GIC System model to inform GMD Vulnerability Assessments. Technical 
considerations for GIC monitoring are contained in Chapter 9 of the 2012 Special 
Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐
Power System (NERC 2012 GMD Report). GIC monitoring is generally performed by Hall 
effect transducers that are attached to the neutral of the transformer and measure dc 
current flowing through the neutral. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 12 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

The objective of Requirement R12 is for entities to obtain geomagnetic field data for the 
Planning Coordinator's planning area to inform GMD Vulnerability Assessments. 
Magnetometers provide geomagnetic field data by measuring changes in the earth's 
magnetic field. Sources of geomagnetic field data include: 


Observatories such as those operated by U.S. Geological Survey, Natural 
Resources Canada, research organizations, or university research facilities; 



Installed magnetometers; and 



Commercial or third‐party sources of geomagnetic field data. 

Geomagnetic field data for a Planning Coordinator’s planning area is obtained from one 
or more of the above data sources located in the Planning Coordinator’s planning area, or 
by obtaining a geomagnetic field data product for the Planning Coordinator’s planning 
area from a government or research organization. The geomagnetic field data product 
does not need to be derived from a magnetometer or observatory within the Planning 
Coordinator’s planning area.
R11. Each responsible entity, as determined in Requirement R1, shall implement a process 
to obtain GIC monitor data from at least one GIC monitor located in the Planning 
Coordinator's planning area or other part of the system included in the Planning 
Coordinator's GIC System model. [Violation Risk Factor: Lower] [Time Horizon: Long‐
term Planning]
M11. Each responsible entity, as determined in Requirement R1, shall have evidence such 
as electronic or hard copies of its GIC monitor location(s) and documentation of its 
process to obtain GIC monitor data in accordance with Requirement R11.
R12. Each responsible entity, as determined in Requirement R1, shall implement a process 
to obtain geomagnetic field data for its Planning Coordinator’s planning area. 
[Violation Risk Factor: Lower] [Time Horizon: Long‐term Planning]
M12. Each responsible entity, as determined in Requirement R1, shall have evidence such 
as electronic or hard copies of its process to obtain geomagnetic field data for its 
Planning Coordinator’s planning area in accordance with Requirement R12.

C. Compliance
1.

Compliance Monitoring Process 
1.1. Compliance Enforcement Authority: “Compliance Enforcement Authority” 
means NERC or the Regional Entity, or any entity as otherwise designated by an 
Applicable Governmental Authority, in their respective roles of monitoring 
and/or enforcing compliance with mandatory and enforceable Reliability 
Standards in their respective jurisdictions. 
1.2. Evidence Retention: The following evidence retention period(s) identify the 
period of time an entity is required to retain specific evidence to demonstrate 
compliance. For instances where the evidence retention period specified below 

Draft 2 of TPL‐007‐2 
October 2017 

Page 13 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

is shorter than the time since the last audit, the Compliance Enforcement 
Authority may ask an entity to provide other evidence to show that it was 
compliant for the full‐time period since the last audit. 
The applicable entity shall keep data or evidence to show compliance as 
identified below unless directed by its Compliance Enforcement Authority to 
retain specific evidence for a longer period of time as part of an investigation. 


For Requirements R1, R2, R3, R5, R6, R9, and R10, each responsible entity 
shall retain documentation as evidence for five years. 



For Requirements R4 and R8, each responsible entity shall retain 
documentation of the current GMD Vulnerability Assessment and the 
preceding GMD Vulnerability Assessment. 



For Requirement R7, each responsible entity shall retain documentation as 
evidence for five years or until all actions in the Corrective Action Plan are 
completed, whichever is later. 



For Requirements R11 and R12, each responsible entity shall retain 
documentation as evidence for three years. 

1.3. Compliance Monitoring and Enforcement Program: As defined in the NERC 
Rules of Procedure, “Compliance Monitoring and Enforcement Program” refers 
to the identification of the processes that will be used to evaluate data or 
information for the purpose of assessing performance or outcomes with the 
associated Reliability Standard. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 14 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Table 1: Steady State Planning GMD Event

Steady State: 
a. Voltage collapse, Cascading and uncontrolled islanding shall not occur. 
b. Generation loss is acceptable as a consequence of the steady state planning GMD events.
c. Planned System adjustments such as Transmission configuration changes and re‐dispatch of generation are allowed if such 
adjustments are executable within the time duration applicable to the Facility Ratings.
Category

Initial Condition

Event

Interruption of
Firm
Transmission
Service Allowed

Load Loss
Allowed

1. System as may be 
Benchmark GMD 
postured in response 
Event ‐ GMD Event  to space weather 
with Outages 
information1, and then 
2. GMD event2 

Reactive Power compensation devices 
and other Transmission Facilities 
removed as a result of Protection 
System operation or Misoperation due 
to harmonics during the GMD event 

Yes3 

Yes3 

1. System as may be 
postured in response 
to space weather 
information1, and then 
2. GMD event2 

Reactive Power compensation devices 
and other Transmission Facilities 
removed as a result of Protection 
System operation or Misoperation due 
to harmonics during the GMD event 

Yes 

Yes 

Supplemental 
GMD Event ‐ GMD 
Event with 
Outages 

Table 1: Steady State Performance Footnotes

1. The System condition for GMD planning may include adjustments to posture the System that are executable in response to 
space weather information. 
2. The GMD conditions for the benchmark and supplemental planning events are described in Attachment 1. 
3. Load loss as a result of manual or automatic Load shedding (e.g., UVLS) and/or curtailment of Firm Transmission Service may 
be used to meet BES performance requirements during studied GMD conditions. The likelihood and magnitude of Load loss or 
curtailment of Firm Transmission Service should be minimized.
 

Draft 2 of TPL‐007‐2 
October 2017 

Page 15 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Violation Severity Levels
R#

R1. 

Draft 2 of TPL‐007‐2 
October 2017 

Violation Severity Levels
Lower VSL

N/A 

Moderate VSL

N/A 

High VSL

Severe VSL

N/A 

The Planning Coordinator, in 
conjunction with its 
Transmission Planner(s), 
failed to determine and 
identify individual or joint 
responsibilities of the 
Planning Coordinator and 
Transmission Planner(s) in 
the Planning Coordinator’s 
planning area for 
maintaining models, 
performing the study or 
studies needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments, 
and implementing 
process(es) to obtain GMD 
measurement data as 
specified in this standard. 

Page 16 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R#

R2. 

R3. 

Draft 2 of TPL‐007‐2 
October 2017 

Violation Severity Levels
Lower VSL

N/A 

N/A 

Moderate VSL

N/A 

N/A 

High VSL

The responsible entity did 
not maintain either System 
models or GIC System 
models of the responsible 
entity’s planning area for 
performing the studies 
needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments. 

N/A 

Severe VSL

The responsible entity did 
not maintain both System 
models and GIC System 
models of the responsible 
entity’s planning area for 
performing the studies 
needed to complete 
benchmark and 
supplemental GMD 
Vulnerability Assessments. 
The responsible entity did 
not have criteria for 
acceptable System steady 
state voltage performance 
for its System during the 
GMD events described in 
Attachment 1 as required. 

Page 17 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 60 calendar months 
and less than or equal to 64 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy one of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 64 calendar months 
and less than or equal to 68 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy two of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 68 calendar months 
and less than or equal to 72 
calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment 
failed to satisfy three of the 
elements listed in 
Requirement R4, Parts 4.1 
through 4.3; 
OR 
The responsible entity 
completed a benchmark 
GMD Vulnerability 
Assessment, but it was more 
than 72 calendar months 
since the last benchmark 
GMD Vulnerability 
Assessment; 
OR 
The responsible entity does 
not have a completed 
benchmark GMD 
Vulnerability Assessment. 

R4. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 18 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R5. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 90 
calendar days and less than 
or equal to 100 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 100 
calendar days and less than 
or equal to 110 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 110 
calendar days after receipt 
of a written request. 

The responsible entity did 
not provide the maximum 
effective GIC value to the 
Transmission Owner and 
Generator Owner that owns 
each applicable BES power 
transformer in the planning 
area; 
OR  
The responsible entity did 
not provide the effective GIC 
time series, GIC(t), upon 
written request. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 19 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R6. 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for 5% or less or one of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 24 
calendar months and less 
than or equal to 26 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1. 

Draft 2 of TPL‐007‐2 
October 2017 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 5% up to (and 
including) 10% or two of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase;  
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 26 
calendar months and less 
than or equal to 28 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 10% up to 
(and including) 15% or three 
of its solely owned and 
jointly owned applicable BES 
power transformers 
(whichever is greater) where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 28 
calendar months and less 
than or equal to 30 calendar 
months of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 

The responsible entity failed 
to conduct a benchmark 
thermal impact assessment 
for more than 15% or more 
than three of its solely 
owned and jointly owned 
applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R5, Part 5.1, is 
75 A or greater per phase 
but did so more than 30 
calendar months of receiving 
GIC flow information 
specified in Requirement R5, 
Part 5.1; 
OR 

Page 20 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

Lower VSL

The responsible entity's 
Corrective Action Plan failed 
to comply with one of the 
elements in Requirement 
R7, Parts 7.1 through 7.5. 
R7. 

Draft 2 of TPL‐007‐2 
October 2017 

Moderate VSL

High VSL

Severe VSL

OR 
The responsible entity failed 
to include one of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

OR 
The responsible entity failed 
to include two of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

The responsible entity failed 
to include three of the 
required elements as listed 
in Requirement R6, Parts 6.1 
through 6.3. 

The responsible entity's 
Corrective Action Plan failed 
to comply with two of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed 
to comply with three of the 
elements in Requirement 
R7, Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed 
to comply with four or more 
of the elements in 
Requirement R7, Parts 7.1 
through 7.5; 
OR 
The responsible entity did 
not have a Corrective Action 
Plan as required by 
Requirement R7. 

Page 21 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R8. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
one of elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 60 calendar months 
and less than or equal to 64 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
two of elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 64 calendar months 
and less than or equal to 68 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
three of the elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 68 calendar months 
and less than or equal to 72 
calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental 
GMD Vulnerability 
Assessment failed to satisfy 
four of the elements listed in 
Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental 
GMD Vulnerability 
Assessment, but it was more 
than 72 calendar months 
since the last supplemental 
GMD Vulnerability 
Assessment; 
OR 
The responsible entity does 
not have a completed 
supplemental GMD 
Vulnerability Assessment. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 22 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Violation Severity Levels

R#

R9. 

Lower VSL

Moderate VSL

High VSL

Severe VSL

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 90 
calendar days and less than 
or equal to 100 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 100 
calendar days and less than 
or equal to 110 calendar 
days after receipt of a 
written request. 

The responsible entity 
provided the effective GIC 
time series, GIC(t), in 
response to written request, 
but did so more than 110 
calendar days after receipt 
of a written request. 

The responsible entity did 
not provide the maximum 
effective GIC value to the 
Transmission Owner and 
Generator Owner that owns 
each applicable BES power 
transformer in the planning 
area; 
OR 
The responsible entity did 
not provide the effective GIC 
time series, GIC(t), upon 
written request. 

Draft 2 of TPL‐007‐2 
October 2017 

Page 23 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R10. 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for 5% or less or one of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 24 
calendar months and less 
than or equal to 26 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1. 

Draft 2 of TPL‐007‐2 
October 2017 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 5% up to (and 
including) 10% or two of its 
solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 26 
calendar months and less 
than or equal to 28 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 10% up to 
(and including) 15% or three 
of its solely owned and 
jointly owned applicable BES 
power transformers 
(whichever is greater) where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 28 
calendar months and less 
than or equal to 30 calendar 
months of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1; 

The responsible entity failed 
to conduct a supplemental 
thermal impact assessment 
for more than 15% or more 
than three of its solely 
owned and jointly owned 
applicable BES power 
transformers (whichever is 
greater) where the 
maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment 
for its solely owned and 
jointly owned applicable BES 
power transformers where 
the maximum effective GIC 
value provided in 
Requirement R9, Part 9.1, is 
85 A or greater per phase 
but did so more than 30 
calendar months of receiving 
GIC flow information 
specified in Requirement R9, 
Part 9.1; 
OR 

Page 24 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R#

Violation Severity Levels
Lower VSL

R11. 

R12. 

N/A 

N/A 

Moderate VSL

High VSL

Severe VSL

OR 
The responsible entity failed 
to include one of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

OR 
The responsible entity failed 
to include two of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

The responsible entity failed 
to include three of the 
required elements as listed 
in Requirement R10, Parts 
10.1 through 10.3. 

N/A 

N/A 

N/A 

The responsible entity did 
not implement a process to 
obtain GIC monitor data 
from at least one GIC 
monitor located in the 
Planning Coordinator’s 
planning area or other part 
of the system included in the 
Planning Coordinator’s GIC 
System Model. 

N/A 

The responsible entity did 
not implement a process to 
obtain geomagnetic field 
data for its Planning 
Coordinator’s planning area. 

D. Regional Variances
None. 

E. Associated Documents
Attachment 1 
Draft 2 of TPL‐007‐2 
October 2017 

Page 25 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Version History
Version

1 

2 

Draft 2 of TPL‐007‐2 
October 2017 

Date

Action

December 17, 
Adopted by the NERC Board of Trustees 
2014 
TBD 

Revised to respond to directives in FERC 
Order No. 830. 

Change
Tracking

New 

Revised 

Page 26 of 58 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Attachment 1
Calculating Geoelectric Fields for the Benchmark and Supplemental GMD
EventEvents

The benchmark GMD event1 defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  benchmark  GMD  Vulnerability  Assessment.  It  is  composed  of  the 
following  elements:  (1)  a  reference  peak  geoelectric  field  amplitude  of  8  V/km  derived  from 
statistical  analysis  of  historical  magnetometer  data;  (2)  scaling  factors  to  account  for  local 
geomagnetic  latitude;  (3)  scaling  factors  to  account  for  local  earth  conductivity;  and  (4)  a 
reference  geomagnetic  field  time  series  or  waveshapewaveform  to  facilitate  time‐domain 
analysis of GMD impact on equipment. 
The supplemental GMD event is composed of similar elements as described above, except (1) the 
reference  peak  geoelectric  field  amplitude  is  12  V/km  over  a  localized  area;  and  (2)  the 
geomagnetic field time series or waveform includes a local enhancement in the waveform.2 
The regional geoelectric field peak amplitude used in GMD Vulnerability Assessment, Epeak, can 
be obtained from the reference geoelectric field value of 8 V/km for the benchmark GMD event 
(1) or 12 V/km for the supplemental GMD event (2) using the following relationshiprelationships: 
 
Epeak   
(V/km) 
 
 
 

	  

8	 	 	
 
 
(1) 
12	

	 	

	 	

	 	 	

⁄

⁄

 

(2) 

where, α is the scaling factor to account for local geomagnetic latitude, and β is a scaling factor 
to account for the local earth conductivity structure. Subscripts b and s for the β scaling factor 
denote association with the benchmark or supplemental GMD events, respectively. 
Scaling the Geomagnetic Field

The benchmark and supplemental GMD event isevents are defined for geomagnetic latitude of 
60  and  it  must  be  scaled  to  account  for  regional  differences  based on  geomagnetic  latitude. 
Table  2  provides  a  scaling  factor  correlating  peak  geoelectric  field  to  geomagnetic  latitude. 
Alternatively, the scaling factor  is computed with the empirical expression: 
 

 

 

 

       

      (2) 

1 The benchmark GMD event description is available on the Project 2013‐03Benchmark Geomagnetic Disturbance Event 

Description, May 2016 is available on the Related Information webpage for TPL‐007‐1: 
http://www.nerc.com/pa/Stand/TPL0071RD/Benchmark_clean_May12_complete.pdfMitigation project page:. 
2 The extent of local enhancements is on the order of 100 km in North‐South (latitude) direction but longer in East‐West 
(longitude) direction. The local enhancement in the geomagnetic field occurs over the time period of 2‐5 minutes. Additional 
information is available in the Supplemental Geomagnetic Disturbance Event Description, October 2017 white paper on the 
Project 2013‐03 Geomagnetic Disturbance Mitigation project webpage: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐
03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 

Page 27 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

 

0.001

.

 

(3) 

where, L is the geomagnetic latitude in degrees and 0.1 ≤ α ≤ 1. 
For  large  planning  areas  that  cover  more  than  one  scaling  factor  from  Table  2,  the  GMD 
Vulnerability Assessment should be based on a peak geoelectric field that is: 


calculated by using the most conservative (largest) value for α; or 



calculated assuming a non‐uniform or piecewise uniform geomagnetic field. 
Table 2 :
Geomagnetic Field Scaling Factors for
the Benchmark and Supplemental GMD
Events
Geomagnetic Latitude
(Degrees)

Scaling Factor1
()

≤ 40 

0.10 

45 

0.2 

50 

0.3 

54 

0.5 

56 

0.6 

57 

0.7 

58 

0.8 

59 

0.9 

≥ 60 

1.0 

Scaling the Geoelectric Field

The benchmark GMD event is defined for the reference Quebec earth model described in Table 
4. The peak geoelectric field, Epeak, used in a GMD Vulnerability Assessment may be obtained by 
either: 


Calculating the geoelectric field for the ground conductivity in the planning area and the 
reference geomagnetic field time series scaled according to geomagnetic latitude, using 
a procedure such as the plane wave method described in the NERC GMD Task Force GIC 
Application Guide;3 or 



Using the earth conductivity scaling factor β from Table 3 that correlates to the ground 
conductivity map in Figure 1 or Figure 2. Along with the scaling factor  from equation 
(23) or Table 2, β is applied to the reference geoelectric field using equation (1 or 2, as 
applicable)  to  obtain  the  regional  geoelectric  field  peak  amplitude  Epeak  to  be  used  in 
GMD Vulnerability AssessmentAssessments. When a ground conductivity model is not 

3 Available at the NERC GMD Task Force project webpage: http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐

Task‐Force‐(GMDTF)‐2013.aspxpage: http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐Task‐Force‐(GMDTF)‐
2013.aspx. 

Page 28 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

available, the planning entity should use the largest β factor of adjacent physiographic 
regions or a technically justified value. 
The earth models used to calculate Table 3 for the United States were obtained from publicly 
available  information  published  on  the  U.  S.  Geological  Survey  website.4  The  models  used  to 
calculate Table 3 for Canada were obtained from Natural Resources Canada (NRCan) and reflect 
the  average  structure  for  large  regions.  A  planner  can  also  use  specific  earth  model(s)  with 
documented  justification  and  the  reference  geomagnetic  field  time  series  to  calculate  the  β 
factor(s) as follows: 
/8 

 

 

 

 

(3) 

 
 

⁄8 for	the	benchmark	GMD	event 

(4) 

 

⁄12 	for	the	supplemental	GMD		 

(5) 

where, E is the absolute value of peak geoelectric in V/km obtained from the technically justified 
earth model and the reference geomagnetic field time series. 
For large planning areas that span more than one β scaling factor, the most conservative (largest) 
value for β may be used in determining the peak geoelectric field to obtain conservative results. 
Alternatively,  a  planner  could  perform  analysis  using  a  non‐uniform  or  piecewise  uniform 
geoelectric field. 

4 Available at http://geomag.usgs.gov/conductivity/http://geomag.usgs.gov/conductivity/. 

Page 29 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

FL-1

Applying the Localized Peak Geoelectric Field in the Supplemental GMD Event

The peak geoelectric field of the supplemental GMD event occurs in a localized area.5 Planners 
have flexibility to determine how to apply the localized peak geoelectric field over the planning 
area in performing GIC calculations. Examples of approaches are: 


Apply the peak geoelectric field (12 V/km  scaled to the planning area) over the entire 
planning area; 



Apply a spatially limited (12 V/km scaled to the planning area) peak geoelectric field (e.g., 
100 km in North‐South latitude direction and 500 km in East‐West longitude direction) 
over a portion(s) of the system, and apply the benchmark GMD event over the rest of the 
system; or 



Other methods to adjust the benchmark GMD event analysis to account for the localized 
geoelectric field enhancement of the supplemental GMD event. 
Figure 1: Physiographic Regions of the Continental United States6 

5 See the Supplemental Geomagnetic Disturbance Description white paper located on the Project 2013‐03 Geomagnetic 

Disturbance Mitigation project webpage: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐
Mitigation.aspx. 
6 Additional map detail is available at the U.S. Geological Survey: http://geomag.usgs.gov/ (). 

Page 30 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 2: Physiographic Regions of Canada  

Table 3  Geoelectric Field Scaling Factors

USGS 
Scaling Factor
Earth model
() 
AK1A
AK1B
AP1

0.56
0.56
0.33

Page 31 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
AP2
BR1
CL1
CO1
CP1
CP2
FL1
CS1
IP1
IP2
IP3
IP4
NE1
PB1
PB2
PT1 

0.82
0.22
0.76
0.27
0.81
0.95
0.74
0.41
0.94
0.28
0.93
0.41
0.81
0.62
0.46

Figure 1: Physiographic Regions of the Continental United States71.17
SL1
SU1
BOU
FBK
PRU
BC
PRAIRIES
SHIELD
ATLANTIC

0.53
0.93
0.28
0.56
0.21
0.67
0.96
1.0
0.79

 

7 Additional map detail is available at the U.S. Geological Survey: http://geomag.usgs.gov/ (). 

Page 32 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Table 4  Reference Earth Model (Quebec)

 
Figure 2: Physiographic Regions of Canada

 
Table 3: Geoelectric Field Scaling Factors
Earth model

Scaling Factor
Benchmark Event
(b)

Scaling Factor
Supplemental
Event
(s)

AK1A 

0.56 

0.51 

AK1B 

0.56 

0.51 

AP1 

0.33 

0.30 

AP2 

0.82 

0.78 

BR1 

0.22 

0.22 

CL1 

0.76 

0.73 

CO1 

0.27 

0.25 

CP1 

0.81 

0.77 

CP2 

0.95 

0.86 

FL1 

0.76 

0.73 

CS1 

0.41 

0.37 

IP1 

0.94 

0.90 

Page 33 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Table 3: Geoelectric Field Scaling Factors
Earth model

Scaling Factor
Benchmark Event
(b)

Scaling Factor
Supplemental
Event
(s)

IP2 

0.28 

0.25 

IP3 

0.93 

0.90 

IP4 

0.41 

0.35 

NE1 

0.81 

0.77 

PB1 

0.62 

0.55 

PB2 

0.46 

0.39 

PT1 

1.17 

1.19 

SL1 

0.53 

0.49 

SU1 

0.93 

0.90 

BOU 

0.28 

0.24 

FBK 

0.56 

0.56 

PRU 

0.21 

0.22 

BC 

0.67 

0.62 

PRAIRIES 

0.96 

0.88 

SHIELD 

1.0 

1.0 

ATLANTIC 

0.79 

0.76 

 
Rationale:  Scaling  factors  in  Table  3  are  dependent  upon  the  frequency  content  of  the 
reference storm. Consequently, the benchmark GMD event and the supplemental GMD event 
may produce different scaling factors for a given earth model. 
The scaling factor associated with the benchmark GMD event for the Florida earth model (FL1) 
has been updated based on the earth model published on the USGS public website. 
 
Table 4: Reference Earth Model (Quebec)
Layer Thickness (km)

Resistivity (Ω-m)

15 

20,000 

10 

200 

125 

1,000 

200 

100 

Page 34 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

∞ 

3 

Reference Geomagnetic Field Time Series or Waveshape8 Waveform for the Benchmark
GMD Event9

The geomagnetic field measurement record of the March 13‐14 1989 GMD event, measured at 
NRCan’sthe NRCan Ottawa geomagnetic observatory, is the basis for the reference geomagnetic 
field  waveshapewaveform  to  be  used  to  calculate  the  GIC  time  series,  GIC(t),  required  for 
transformer thermal impact assessment. 
The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the 
amplitudeamplitudes  of  the  geomagnetic  field  measurement  data  were  scaled  up  to  the  60 
reference  geomagnetic  latitude  (see  Figure  3)  such  that  the  resulting  peak  geoelectric  field 
amplitude  computed  using  the  reference  earth  model  was  8  V/km  (see  Figures  4  and  5). 
SamplingThe sampling rate for the geomagnetic field waveshapewaveform is 10 seconds.10 To 
use  this  geoelectric  field  time  series  when  a  different  earth  model  is  applicable,  it  should  be 
scaled with the appropriate benchmark conductivity scaling factor .b. 

 Refer to the Benchmark GMD Event Description for details on the determination of the reference geomagnetic 
field waveshape: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐
Mitigation.aspx 
 
8

9 Refer to the Benchmark Geomagnetic Disturbance Event Description white paper for details on the determination of the 

reference geomagnetic field waveform: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx. 
10 The data file of the benchmark geomagnetic field waveshapewaveform is available on the NERC GMD Task Force project 
pageRelated Information webpage for TPL‐007‐1: http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx. 

Page 35 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 3: Benchmark Geomagnetic Field Waveshape. Red Bn (Northward), Blue Be (Eastward) 

Figure 4: Benchmark Geoelectric Field Waveshape ‐ EE  (Eastward) 

Page 36 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 5: Benchmark Geoelectric Field Waveshape – EN  (Northward) 

Page 37 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

C.A.
1.

Compliance
Compliance Monitoring Process 
1.1.

Compliance Enforcement Authority 
As defined in the NERC Rules of Procedure, “Compliance Enforcement Authority” 
means NERC or the Regional Entity in their respective roles of monitoring and 
enforcing compliance with the NERC Reliability Standards 

1.2.

Evidence Retention  
The following evidence retention periods identify the period of time an entity is 
required to retain specific evidence to demonstrate compliance. For instances 
where the evidence retention period specified below is shorter than the time 
since the last audit, the CEA may ask an entity to provide other evidence to show 
that it was compliant for the full time period since the last audit. 
The Planning Coordinator, Transmission Planner, Transmission Owner, and 
Generator Owner shall keep data or evidence to show compliance as identified 
below unless directed by its Compliance Enforcement Authority to retain specific 
evidence for a longer period of time as part of an investigation: 
For Requirements R1, R2, R3, R5, and R6, each responsible entity shall retain 
documentation as evidence for five years. 
For Requirement R4, each responsible entity shall retain documentation of the 
current GMD Vulnerability Assessment and the preceding GMD Vulnerability 
Assessment.  
For Requirement R7, each responsible entity shall retain documentation as 
evidence for five years or until all actions in the Corrective Action Plan are 
completed, whichever is later.  
If a Planning Coordinator, Transmission Planner, Transmission Owner, or 
Generator Owner is found non‐compliant it shall keep information related to the 
non‐compliance until mitigation is complete and approved or for the time 
specified above, whichever is longer.  
The Compliance Enforcement Authority shall keep the last audit records and all 
requested and submitted subsequent audit records. 

1.3.

Compliance Monitoring and Assessment Processes: 
Compliance Audits 
Self‐Certifications 
Spot Checking 
Compliance Investigations 
Self‐Reporting 
Complaints  
 

Page 38 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

1.4.

Additional Compliance Information 

None 

Page 39 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Table of Compliance Elements
R#

Time
Horizon

VRF

Violation Severity Levels
Lower VSL

Moderate VSL

High VSL

Severe VSL

R1 

Long‐term 
Planning 

Lower 

N/A 

N/A 

N/A 

The Planning 
Coordinator, in 
conjunction with its 
Transmission 
Planner(s), failed to 
determine and 
identify individual or 
joint responsibilities of 
the Planning 
Coordinator and 
Transmission 
Planner(s) in the 
Planning 
Coordinator’s 
planning area for 
maintaining models 
and performing the 
study or studies 
needed to complete 
GMD Vulnerability 
Assessment(s).  

R2 

Long‐term 
Planning 

High 

N/A 

N/A 

The responsible entity 
did not maintain 
either System models 
or GIC System models 
of the responsible 

The responsible entity 
did not maintain both 
System models and 
GIC System models of 
the responsible 

Page 40 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

entity’s planning area 
for performing the 
study or studies 
needed to complete 
GMD Vulnerability 
Assessment(s). 
R3 

Long‐term 
Planning 

Medium  N/A 

N/A 

R4 

Long‐term 
Planning 

High 

The responsible 
entity's completed 
GMD Vulnerability 
Assessment failed to 
satisfy one of 
elements listed in 
Requirement R4, Parts 
4.1 through 4.3; 

The responsible entity 
completed a GMD 
Vulnerability 
Assessment, but it 
was more than 60 
calendar months and 
less than or equal to 
64 calendar months 
since the last GMD 
Vulnerability 
Assessment. 

N/A 

The responsible 
entity's completed 
GMD Vulnerability 
Assessment failed to 
satisfy two of the 
elements listed in 
Requirement R4, Parts 
4.1 through 4.3; 
OR 
OR 
The responsible entity 
The responsible entity  completed a GMD 
completed a GMD 
Vulnerability 
Vulnerability 
Assessment, but it 
Assessment, but it 

entity’s planning area 
for performing the 
study or studies 
needed to complete 
GMD Vulnerability 
Assessment(s). 
 
The responsible entity 
did not have criteria 
for acceptable System 
steady state voltage 
performance for its 
System during the 
benchmark GMD 
event described in 
Attachment 1 as 
required.  
The responsible 
entity's completed 
GMD Vulnerability 
Assessment failed to 
satisfy three of the 
elements listed in 
Requirement R4, Parts 
4.1 through 4.3; 
OR 
The responsible entity 
completed a GMD 
Vulnerability 
Assessment, but it 

Page 41 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

was more than 64 
calendar months and 
less than or equal to 
68 calendar months 
since the last GMD 
Vulnerability 
Assessment. 

was more than 68 
calendar months and 
less than or equal to 
72 calendar months 
since the last GMD 
Vulnerability 
Assessment.  

was more than 72 
calendar months since 
the last GMD 
Vulnerability 
Assessment; 

The responsible entity 
provided the effective 
GIC time series, GIC(t), 
in response to written 
request, but did so 
more than 110 
calendar days after 
receipt of a written 
request. 

The responsible entity 
did not provide the 
maximum effective 
GIC value to the 
Transmission Owner 
and Generator Owner 
that owns each 
applicable BES power 
transformer in the 
planning area; 
OR  
The responsible entity 
did not provide the 
effective GIC time 
series, GIC(t), upon 
written request. 
 

 
 

R5 

Long‐term 
Planning 

Medium  The responsible entity 
provided the effective 
GIC time series, GIC(t), 
in response to written 
request, but did so 
more than 90 calendar 
days and less than or 
equal to 100 calendar 
days after receipt of a 
written request.  

The responsible entity 
provided the effective 
GIC time series, GIC(t), 
in response to written 
request, but did so 
more than 100 
calendar days and less 
than or equal to 110 
calendar days after 
receipt of a written 
request. 

OR 
The responsible entity 
does not have a 
completed GMD 
Vulnerability 
Assessment.  

Page 42 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R6 

Long‐term 
Planning 

Medium  The responsible entity 
failed to conduct a 
thermal impact 
assessment for 5% or 
less or one of its solely 
owned and jointly 
owned applicable BES 
power transformers 
(whichever is greater) 
where the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase; 
OR 
The responsible entity 
conducted a thermal 
impact assessment for 
its solely owned and 
jointly owned 
applicable BES power 
transformers where 
the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase but did so 
more than 24 calendar 
months and less than 

The responsible entity 
failed to conduct a 
thermal impact 
assessment for more 
than 5% up to (and 
including) 10% or two 
of its solely owned 
and jointly owned 
applicable BES power 
transformers 
(whichever is greater) 
where the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase;  
OR 
The responsible entity 
conducted a thermal 
impact assessment for 
its solely owned and 
jointly owned 
applicable BES power 
transformers where 
the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase but did so 

The responsible entity 
failed to conduct a 
thermal impact 
assessment for more 
than 10% up to (and 
including) 15% or 
three of its solely 
owned and jointly 
owned applicable BES 
power transformers 
(whichever is greater) 
where the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase; 
OR 
The responsible entity 
conducted a thermal 
impact assessment for 
its solely owned and 
jointly owned 
applicable BES power 
transformers where 
the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase but did so 

The responsible entity 
failed to conduct a 
thermal impact 
assessment for more 
than 15% or more 
than three of its solely 
owned and jointly 
owned applicable BES 
power transformers 
(whichever is greater) 
where the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase; 
OR 
The responsible entity 
conducted a thermal 
impact assessment for 
its solely owned and 
jointly owned 
applicable BES power 
transformers where 
the maximum 
effective GIC value 
provided in 
Requirement R5, Part 
5.1, is 75 A or greater 
per phase but did so 
more than 30 calendar 

Page 43 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

R7 

Long‐term 
Planning 

High 

or equal to 26 
calendar months of 
receiving GIC flow 
information specified 
in Requirement R5, 
Part 5.1. 
 

more than 26 calendar 
months and less than 
or equal to 28 
calendar months of 
receiving GIC flow 
information specified 
in Requirement R5, 
Part 5.1; 
OR 
The responsible entity 
failed to include one 
of the required 
elements as listed in 
Requirement R6, Parts 
6.1 through 6.3. 

more than 28 calendar 
months and less than 
or equal to 30 
calendar months of 
receiving GIC flow 
information specified 
in Requirement R5, 
Part 5.1; 
OR 
The responsible entity 
failed to include two 
of the required 
elements as listed in 
Requirement R6, Parts 
6.1 through 6.3. 

months of receiving 
GIC flow information 
specified in 
Requirement R5, Part 
5.1; 
OR 
The responsible entity 
failed to include three 
of the required 
elements as listed in 
Requirement R6, Parts 
6.1 through 6.3. 

N/A 

The responsible 
entity's Corrective 
Action Plan failed to 
comply with one of 
the elements in 
Requirement R7, Parts 
7.1 through 7.3. 

The responsible 
entity's Corrective 
Action Plan failed to 
comply with two of 
the elements in 
Requirement R7, Parts 
7.1 through 7.3. 

The responsible 
entity's Corrective 
Action Plan failed to 
comply with all three 
of the elements in 
Requirement R7, Parts 
7.1 through 7.3; 
OR 
The responsible entity 
did not have a 
Corrective Action Plan 
as required by 
Requirement R7. 

Page 44 of 58

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

D.A.

Regional Variances

None. 

E. Interpretations
None. 

F.A.

Associated Documents

None. 

Version History
Version 

Date 

1 

December 17, 2014 

Action 
Adopted by the NERC Board of Trustees 

Figure 3: Benchmark Geomagnetic Field Waveform
Red Bn (Northward), Blue Be (Eastward)

 

Page of

Change Tracking 
 

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

Figure 4: Benchmark Geoelectric Field Waveform
EE (Eastward)

 

Figure 5: Benchmark Geoelectric Field Waveform
EN (Northward)

Page of

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 
Reference Geomagnetic Field Time Series or Waveform for the Supplemental GMD
Event11

The geomagnetic field measurement record of the March 13‐14, 1989 GMD event, measured at 
the  NRCan  Ottawa  geomagnetic  observatory,  is  the  basis  for  the  reference  geomagnetic  field 
waveform to be used to calculate the GIC time series, GIC(t), required for transformer thermal 
impact assessment for the supplemental GMD event. The supplemental GMD event waveform 
differs  from  the  benchmark  GMD  event  waveform  in  that  the  supplemental  GMD  event 
waveform has a local enhancement. 
The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the 
amplitudes  of  the  geomagnetic  field  measurement  data  were  scaled  up  to  the  60  reference 
geomagnetic  latitude  (see  Figure  6)  such  that  the  resulting  peak  geoelectric  field  amplitude 
computed using the reference earth model was 12 V/km (see Figure7). The sampling rate for the 
geomagnetic  field  waveform  is  10  seconds.12  To  use  this  geoelectric  field  time  series  when  a 
different  earth  model  is  applicable,  it  should  be  scaled  with  the  appropriate  supplemental 
conductivity scaling factor s. 

4000

2000

Time (min)
200

400

600

800

1000

1200

1400

1600

1800

2000

Bx, By (nT)

0

-2000

-4000

-6000

-8000

-10000

Figure 6: Supplemental Geomagnetic Field Waveform
Red BN (Northward), Blue BE (Eastward)

 

11 Refer to the Supplemental Geomagnetic Disturbance Event Description white paper for details on the determination of the 

reference geomagnetic field waveform: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐
Mitigation.aspx. 
12 The data file of the benchmark geomagnetic field waveform is available on the NERC GMD Task Force project webpage: 
http://www.nerc.com/comm/PC/Pages/Geomagnetic‐Disturbance‐Task‐Force‐(GMDTF)‐2013.aspx.
Page of

TPL‐007‐1 —2 – Transmission System Planned Performance for Geomagnetic Disturbance Events 

12 V/km

Figure 7: Supplemental Geoelectric Field Waveform
Blue EN (Northward), Red EE (Eastward)

Page of

TPL‐007‐2 – Supplemental Material 

Guidelines and Technical Basis
The diagram below provides an overall view of the GMD Vulnerability Assessment process: 

 
The requirements in this standard cover various aspects of the GMD Vulnerability Assessment 
process. 
Benchmark GMD Event (Attachment 1)

The benchmark GMD event defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  benchmark  GMD  Vulnerability  Assessment.  AThe  Benchmark 
Geomagnetic  Disturbance  Event  Description,  May  201613  white  paper  that  includes  the  event 
description, analysis, and example calculations is available on the Project 2013‐03 Geomagnetic 
Disturbance Mitigation project page:. 
Supplemental GMD Event (Attachment 1)

The supplemental GMD event defines the geoelectric field values used to compute GIC flows that 
are  needed  to  conduct  a  supplemental  GMD  Vulnerability  Assessment.  The  Supplemental 
Geomagnetic  Disturbance  Event  Description,  October  201714  white  paper  includes  the  event 
description and analysis.
Requirement R2

A GMD Vulnerability Assessment requires a GIC System model, which is a dc representation of 
the System, to calculate GIC flow. In a GMD Vulnerability Assessment, GIC simulations are used 
to determine transformer Reactive Power absorption and transformer thermal response. Details 
for  developing  the  GIC  System  model  are  provided  in  the  NERC  GMD  Task  Force  guide: 
Application Guide for Computing Geomagnetically‐Induced Current in the Bulk Power System. The 
guide is available at:   , December 2013.15 
Underground pipe‐type cables present a special modeling situation in that the steel pipe that 
encloses  the  power  conductors  significantly  reduces  the  geoelectric  field  induced  into  the 
conductors  themselves,  while  they  remain  a  path  for  GIC.  Solid  dielectric  cables  that  are  not 
13 http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx.
14

http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GIC%20Application 
%20Guide%202013_approved.pdf.
15

Page of

TPL‐007‐2 – Supplemental Material 

enclosed  by  a  steel  pipe  will  not  experience  a  reduction  in  the  induced  geoelectric  field.  A 
planning  entity  should  account  for  special  modeling  situations  in  the  GIC  system  model,  if 
applicable. 
Requirement R4

The  GMDGeomagnetic  Disturbance  Planning  Guide,16  December  2013  developed  by  the  NERC 
GMD  Task  Force  provides  technical  information  on  GMD‐specific  considerations  for  planning 
studies. It is available at: 
The diagram below provides an overall view of the GMD Vulnerability Assessment process: 

 
Requirement R5

The  transformerbenchmark  thermal  impact  assessment  of  transformers  specified  in 
Requirement R6 is based on GIC information for the Benchmarkbenchmark GMD Event. This GIC 
information is determined by the planning entity through simulation of the GIC System model 
and must be provided to the entity responsible for conducting the thermal impact assessment. 
GIC  information  should  be  provided  in  accordance  with  Requirement  R5  each  time  the  GMD 
Vulnerability Assessment is performed since, by definition, the GMD Vulnerability Assessment 
includes a documented evaluation of susceptibility to localized equipment damage due to GMD. 
The  maximum  effective  GIC  value  provided  in  Part  5.1  is  used  for  transformerthe  benchmark 
thermal impact assessment. Only those transformers that experience an effective GIC value of 
75 A or greater per phase require evaluation in Requirement R6. 
GIC(t) provided in Part 5.2 is used to convert the steady ‐state GIC flows to time‐series GIC data 
for  transformerthe  benchmark  thermal  impact  assessment.  of  transformers.  This  information 
may  be  needed  by  one  or  more  of  the  methods  for  performing  a  benchmark  thermal  impact 
assessment.  Additional  information  is  in  the  following  section  and  the  thermal  impact 
assessment white paperTransformer Thermal Impact Assessment White Paper,17 October 2017. 

16

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
17 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
Page of

TPL‐007‐2 – Supplemental Material 

The peak GIC value of 75 Amps per phase has been shown through thermal modeling to be a 
conservative threshold below which the risk of exceeding known temperature limits established 
by technical organizations is low. 
Requirement R6

The  benchmark  thermal  impact  assessment  of  a  power  transformer  may  be  based  on 
manufacturer‐provided  GIC  capability  curves,  thermal  response  simulation,  thermal  impact 
screening, or other technically justified means. Approaches for conducting the assessment are 
presented  in  the  Transformer  Thermal  Impact  Assessment  white  paper  posted  on  the  project 
pageWhite Paper ERO Enterprise‐Endorsed Implementation Guidance18 for this requirement. This 
ERO‐Endorsed document is posted on the NERC Compliance Guidance19 webpage. 
Transformers are exempt from the benchmark thermal impact assessment requirement if the 
effective GIC value for the transformer is less than 75 A per phase, as determined by a GIC analysis 
of the System. Justification for this criterion is provided in the Screening Criterion for Transformer 
Thermal  Impact  Assessment  white  paper  posted  on  the  project  page.White  Paper,20  October 
2017.  A  documented  design  specification  exceeding  this  value  is  also  a  justifiable  threshold 
criterion that exempts a transformer from Requirement R6. 
The  benchmark  threshold  criteria  and  its  associated  transformer  thermal  impact  must  be 
evaluated on the basis of effective GIC. Refer to the white papers for additional information. 
Requirement R7

Technical  considerations  for  GMD  mitigation  planning,  including  operating  and  equipment 
strategies,  are  available  in  Chapter  5  of  the  GMDGeomagnetic  Disturbance  Planning  Guide,21 
December 2013. Additional information is available in the 2012 Special  Reliability Assessment 
Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐Power System:, 22 February 2012. 
Requirement R8

The Geomagnetic Disturbance Planning Guide,23 December 2013 developed by the NERC GMD 
Task Force provides technical information on GMD‐specific considerations for planning studies. 
The  supplemental  GMD  Vulnerability  Assessment  process  is  similar  to  the  benchmark  GMD 
Vulnerability Assessment process described under Requirement R4. 

18 http://www.nerc.com/pa/comp/guidance/EROEndorsedImplementationGuidance/TPL‐007‐1_Transformer_Thermal_Impact_ 

Assessment_White_Paper.pdf.
19 http://www.nerc.com/pa/comp/guidance/Pages/default.aspx.
20 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
21 http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
22 http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf.
23 http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
Page of

TPL‐007‐2 – Supplemental Material 
Requirement R9

The supplemental thermal impact assessment specified of transformers in Requirement R10 is 
based on GIC information for the supplemental GMD Event. This GIC information is determined 
by the planning entity through simulation of the GIC System model and must be provided to the 
entity  responsible  for  conducting  the  thermal  impact  assessment.  GIC  information  should  be 
provided  in  accordance with  Requirement R9  each  time  the  GMD  Vulnerability  Assessment  is 
performed  since,  by  definition,  the  GMD  Vulnerability  Assessment  includes  a  documented 
evaluation of susceptibility to localized equipment damage due to GMD. 
The  maximum  effective  GIC  value  provided  in  Part  9.1  is  used  for  the  supplemental  thermal 
impact assessment. Only those transformers that experience an effective GIC value of 85 A or 
greater per phase require evaluation in Requirement R10. 
GIC(t) provided in Part 9.2 is used to convert the steady state GIC flows to time‐series GIC data 
for  the  supplemental  thermal  impact  assessment  of  transformers.  This  information  may  be 
needed  by  one  or  more  of  the  methods  for  performing  a  supplemental  thermal  impact 
assessment. Additional information is in the following section. 
The peak GIC value of 85 Amps per phase has been shown through thermal modeling to be a 
conservative threshold below which the risk of exceeding known temperature limits established 
by technical organizations is low. 
Requirement R10

The  supplemental  thermal  impact  assessment  of  a  power  transformer  may  be  based  on 
manufacturer‐provided  GIC  capability  curves,  thermal  response  simulation,  thermal  impact 
screening, or other technically justified means. Approaches for conducting the assessment are 
presented in the Transformer Thermal Impact Assessment White Paper ERO Enterprise‐Endorsed 
Implementation Guidance24 discussed in the Requirement R6 section above. A later version of the 
Transformer Thermal Impact Assessment White Paper,25 October 2017, has been developed to 
include  updated  information  pertinent  to  the  supplemental  GMD  event  and  supplemental 
thermal impact assessment. 
Transformers are exempt from the supplemental thermal impact assessment requirement if the 
effective GIC value for the transformer is less than 85 A per phase, as determined by a GIC analysis 
of  the  System.  Justification  for  this  criterion  is  provided  in  the  revised  Screening  Criterion  for 
Transformer  Thermal  Impact  Assessment  White  Paper,26  October  2017.  A  documented  design 
specification  exceeding  this  value  is  also  a  justifiable  threshold  criterion  that  exempts  a 
transformer from Requirement R10. 
The  supplemental  threshold  criteria  and  its  associated  transformer  thermal  impact  must  be 
evaluated on the basis of effective GIC. Refer to the white papers for additional information. 
24 http://www.nerc.com/pa/comp/guidance/EROEndorsedImplementationGuidance/TPL‐007‐1_Transformer_Thermal_Impact_ 

Assessment_White_Paper.pdf.
25 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
26 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
Page of

TPL‐007‐2 – Supplemental Material 
Requirement R11

Technical  considerations  for  GIC  monitoring  are  contained  in  Chapter  6  of  the  2012  Special 
Reliability Assessment Interim Report: Effects of Geomagnetic Disturbances on the Bulk‐Power 
System, 27 February 2012. GIC monitoring is generally performed by Hall effect transducers that 
are attached to the neutral of the wye‐grounded transformer. Data from GIC monitors is useful 
for model validation and situational awareness. 
Responsible entities consider the following in  developing  a process for obtaining  GIC monitor 
data: 


Monitor  locations.  An  entity's  operating  process  may  be  constrained  by  location  of 
existing GIC monitors. However, when planning for additional GIC monitoring installations 
consider that data from monitors located in areas found to have high GIC based on system 
studies  may  provide  more  useful  information  for  validation  and  situational  awareness 
purposes.  Conversely,  data  from  GIC  monitors  that  are  located  in  the  vicinity  of 
transportation systems using direct current (e.g., subways or light rail) may be unreliable. 



Monitor  specifications.  Capabilities  of  Hall  effect  transducers,  existing  and  planned, 
should  be  considered  in  the  operating  process.  When  planning  new  GIC  monitor 
installations,  consider  monitor  data  range  (e.g.,  ‐500  A  through  +  500  A)  and  ambient 
temperature ratings consistent with temperatures in the region in which the monitor will 
be installed. 



Sampling  Interval.  An  entity's  operating  process  may  be  constrained  by  capabilities  of 
existing GIC monitors. However, when possible specify data sampling during periods of 
interest at a rate of 10 seconds or faster. 



Collection Periods. The process should specify when the entity expects GIC data to be 
collected. For example, collection could be required during periods where the Kp index is 
above  a  threshold,  or  when  GIC  values  are  above  a  threshold.  Determining  when  to 
discontinue collecting GIC data should also be specified to maintain consistency in data 
collection. 



Data format. Specify time and value formats. For example, Greenwich Mean Time (GMT) 
(MM/DD/YYYY  HH:MM:SS)  and  GIC  Value  (Ampere).  Positive  (+)  and  negative  (‐)  signs 
indicate direction of GIC flow. Positive reference is flow from ground  into transformer 
neutral. Time fields should indicate the sampled time rather than system or SCADA time 
if supported by the GIC monitor system. 



Data retention. The entity's process should specify data retention periods, for example 1 
year.  Data  retention  periods  should  be  adequately  long  to  support  availability  for  the 
entity's model validation process and external reporting requirements, if any. 

27 http://www.nerc.com/pa/RAPA/ra/Reliability%20Assessments%20DL/2012GMD.pdf.

Page of

TPL‐007‐2 – Supplemental Material 



Additional  information.  The  entity's  process  should  specify  collection  of  other 
information necessary for making the data useful, for example monitor location and type 
of neutral connection (e.g., three‐phase or single‐phase). 

Requirement R12

Magnetometers measure changes in the earth's magnetic field. Entities should obtain data from 
the nearest accessible magnetometer. Sources of magnetometer data include: 


Observatories such as those operated by U.S. Geological Survey and Natural Resources 
Canada, see figure below for locations:28 

 



Research institutions and academic universities; 
Entities with installed magnetometers. 

Entities that choose to install magnetometers should consider equipment specifications and data 
format  protocols  contained  in  the  latest  version  of  the  INTERMAGNET  Technical  Reference 
Manual, Version 4.6, 2012.29 
 

Rationale:
During development of this standardTPL‐007‐1, text boxes were embedded within the standard 
to explain the rationale for various parts of the standard.  Upon BOT approval, theThe text from 
the  rationale  text  boxes  was  moved  to  this  section.  upon  approval  of  TPL‐007‐1  by  the  NERC 
Board of Trustees. In developing TPL‐007‐2, the SDT has made changes to the sections below only 
when necessary for clarity. Changes are marked with brackets [ ].
Rationale for Applicability:

Instrumentation transformers and station service transformers do not have significant impact on 
geomagnetically‐induced current (GIC) flows; therefore, these transformers are not included in 
the applicability for this standard. 

28
29

http://www.intermagnet.org/index‐eng.php.
http://www.intermagnet.org/publications/intermag_4‐6.pdf.
Page of

TPL‐007‐2 – Supplemental Material 

Terminal voltage describes line‐to‐line voltage. 
Rationale for R1:

In some areas, planning entities may determine that the most effective approach to conduct a 
GMD Vulnerability Assessment is through a regional planning organization. No requirement in 
the standard is intended to prohibit a collaborative approach where roles and responsibilities are 
determined by a planning organization made up of one or more Planning Coordinator(s). 
Rationale for R2:

A GMD Vulnerability Assessment requires a GIC System model to calculate GIC flow which is used 
to  determine  transformer  Reactive  Power  absorption  and  transformer  thermal  response. 
Guidance  for  developing  the  GIC  System  model  is  provided  in  the  GIC  Application  Guide 
Computing  Geomagnetically‐Induced  Current  in  the  Bulk‐Power  System,30  December  2013, 
developed by the NERC GMD Task Force and available at:   . 
The System model specified in Requirement R2 is used in conducting steady state power flow 
analysis that accounts for the Reactive Power absorption of power transformer(s) due to GIC in 
the System. 
The GIC System model includes all power transformer(s) with a high side, wye‐grounded winding 
with terminal voltage greater than 200 kV. The model is used to calculate GIC flow in the network. 
The projected System condition for GMD planning may include adjustments to the System that 
are executable in response to space weather information. These adjustments could include, for 
example, recalling or postponing maintenance outages. 
The Violation Risk Factor (VRF) for Requirement R2 is changed from Medium to High. This change 
is  for  consistency  with  the  VRF  for  approved  standard  TPL‐001‐4  Requirement  R1,  which  is 
proposed for revision in the NERC filing dated August 29, 2014 (Docket No. RM12‐1‐000). NERC 
guidelines require consistency among Reliability Standards. 
Rationale for R3:

Requirement R3 allows a responsible entity the flexibility to determine the System steady state 
voltage criteria for System steady state performance in Table 1. Steady state voltage limits are 
an example of System steady state performance criteria. 
Rationale for R4:

The GMD Vulnerability Assessment includes steady state power flow analysis and the supporting 
study or studies using the models specified in Requirement R2 that account for the effects of GIC. 
Performance criteria are specified in Table 1. 

30

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GIC%20Application 
%20Guide%202013_approved.pdf.
Page of

TPL‐007‐2 – Supplemental Material 

At least one System On‐Peak Load and at least one System Off‐Peak Load must be examined in 
the analysis. 
Distribution  of  GMD  Vulnerability  Assessment  results  provides  a  means  for  sharing  relevant 
information with other entities responsible for planning reliability. Results of GIC studies may 
affect neighboring systems and should be taken into account by planners. 
The GMDGeomagnetic Disturbance Planning Guide,31 December 2013 developed by the NERC 
GMD Task Force provides technical information on GMD‐specific considerations for planning 
studies. It is available at: 
The  provision  of  information  in  Requirement  R4,  Part  4.3,  shall  be  subject  to  the  legal  and 
regulatory obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R5:

This GIC information is necessary for determining the thermal impact of GIC on transformers in 
the planning area and must be provided to entities responsible for performing the thermal impact 
assessment  so  that  they  can  accurately  perform  the  assessment.  GIC  information  should  be 
provided  in  accordance  with  Requirement  R5  as  part  of  the  GMD  Vulnerability  Assessment 
process since, by definition, the GMD Vulnerability Assessment includes documented evaluation 
of susceptibility to localized equipment damage due to GMD. 
The maximum effective GIC value provided in Part 5.1 is used for transformer thermal impact 
assessment. 
GIC(t) provided in Part 5.2 can alternatively be used to convert the steady ‐state GIC flows to 
time‐series  GIC  data  for  transformer  thermal  impact  assessment.  This  information  may  be 
needed by one or more of the methods for performing a thermal impact assessment. Additional 
guidance is available in the Transformer Thermal Impact Assessment white paper: White Paper,32 
October 2017. 
A Transmission Owner or Generator Owner that desires GIC(t) may request it from the planning 
entity. The planning entity shall provide GIC(t) upon request once GIC has been calculated, but 
no later than 90 calendar days after receipt of a request from the owner and after completion of 
Requirement R5, Part 5.1. 
The  provision  of  information  in  Requirement  R5  shall  be  subject  to  the  legal  and  regulatory 
obligations for the disclosure of confidential and/or sensitive information. 

31

http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
32 http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.

Page of

TPL‐007‐2 – Supplemental Material 
Rationale for R6:

The transformer thermal impact screening criterion has been revised from 15 A per phase to 75 
A  per  phase.  [for  the  benchmark  GMD  event].  Only  those  transformers  that  experience  an 
effective  GIC  value  of  75  A  per  phase  or  greater  require  evaluation  in  Requirement  R6.  The 
justification is provided in the Thermal Screening Criterion white paperfor Transformer Thermal 
Impact Assessment White Paper,33 October 2017. 
The thermal impact assessment may be based on manufacturer‐provided GIC capability curves, 
thermal response simulation, thermal impact screening, or other technically justified means. The 
transformer thermal assessment will be repeated or reviewed using previous assessment results 
each  time  the  planning  entity  performs  a  GMD  Vulnerability  Assessment  and  provides  GIC 
information  as  specified  in  Requirement  R5.  Approaches  for  conducting  the  assessment  are 
presented  in  the  Transformer  Thermal  Impact  Assessment  white  paper  posted  on  the  project 
pageWhite Paper,34 October 2017. 
Thermal impact assessments are provided to the planning entity, as determined in Requirement 
R1, so that identified issues can be included in the GMD Vulnerability Assessment (R4), and the 
Corrective Action Plan (R7) as necessary. 
Thermal  impact  assessments  of  non‐BES  transformers  are  not  required  because  those 
transformers do not have a wide‐area effect on the reliability of the interconnected Transmission 
system. 
The  provision  of  information  in  Requirement  R6,  Part  6.4,  shall  be  subject  to  the  legal  and 
regulatory obligations for the disclosure of confidential and/or sensitive information. 
Rationale for R7:

Corrective Action Plans are defined in the NERC Glossary of Terms: 
A  list  of  actions  and  an  associated  timetable  for  implementation  to  remedy  a  specific 
problem. 
Corrective Action Plans must, subject to the vulnerabilities identified in the assessments, contain 
strategies for protecting against the potential impact of the Benchmarkbenchmark GMD event, 
based  on  factors  such  as  the  age,  condition,  technical  specifications,  system  configuration,  or 
location  of  specific  equipment.  Chapter  5  of  the  NERC  GMD  Task  Force  GMDGeomagnetic 
Disturbance Planning Guide,35 December 2013 provides a list of mitigating measures that may be 
appropriate to address an identified performance issue. 

33

http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx.
35 http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force%20GMDTF%202013/GMD%20Planning 
%20Guide_approved.pdf.
34

Page of

TPL‐007‐2 – Supplemental Material 

The provision of information in Requirement R7, Part 7.3, [Part 7.5 in TPL‐007‐2], shall be subject 
to  the  legal  and  regulatory  obligations  for  the  disclosure  of  confidential  and/or  sensitive 
information. 
Rationale for Table 3:

Table 3 has been revised to use the same ground model designation, FL1, as is being used by 
USGS.  The  calculated  scaling  factor  for  FL1  is  0.74.  [The  scaling  factor  associated  with  the 
benchmark GMD event for the Florida earth model (FL1) has been updated to 0.76 in TPL‐007‐2 
based on the earth model published on the USGS public website.] 

Page of

 
 

Implementation Plan

Project 2013-03 Geomagnetic Disturbance Mitigation
Reliability Standard TPL-007-2
Applicable Standard


TPL‐007‐2 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Requested Retirement


TPL‐007‐1 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Prerequisite Standard
None 
Applicable Entities





Planning Coordinator with a planning area that includes a Facility or Facilities specified in Section 
4.2 of the standard; 
Transmission Planner with a planning area that includes a Facility or Facilities specified in Section 
4.2 of the standard; 
Transmission Owner who owns a Facility or Facilities specified in Section 4.2 of the standard; and 
Generator Owner who owns a Facility or Facilities specified in Section 4.2 of the standard. 

Section 4.2 states that the standard applies to facilities that include power transformer(s) with a 
high‐side, wye‐grounded winding with terminal voltage greater than 200 kV. 
 
Terms in the NERC Glossary of Terms
There are no new, modified, or retired terms. 
 
Background
On September 22, 2016, the Federal Energy Regulatory Commission (FERC) issued Order No. 830 
approving Reliability Standard TPL‐007‐1 and its associated five‐year Implementation Plan. In the 
Order, FERC also directed NERC to develop certain modifications to the standard. FERC established a 
deadline of 18 months from the effective date of Order No. 830 for completing the revisions, which 
is May 2018. 
 
General Considerations
This Implementation Plan is intended to integrate the new requirements in TPL‐007‐2 with the GMD 
Vulnerability Assessment process that is being implemented through approved TPL‐007‐1. At the 
time of the May 2018 filing deadline, many requirements in approved standard TPL‐007‐1 that lead 
to completion of the geomagnetic disturbance (GMD) Vulnerability Assessment will be in effect. 
Furthermore, many entities may be taking steps to complete studies or assessments that are 

 

 

required by future enforceable requirements in TPL‐007‐1. The Implementation Plan phases in the 
requirements in TPL‐007‐2 based on the effective date of TPL‐007‐2, as follows: 
 
 Effective Date before January 1, 2021. Implementation timeline supports applicable entities 
completing new requirements for supplemental GMD Vulnerability Assessments 
concurrently with requirements for the benchmark GMD Vulnerability Assessment 
(concurrent effective dates). 
 
 Effective Date on or after January 1, 2021. Implementation timeline supports applicable 
entities completing the benchmark GMD Vulnerability Assessments before new 
requirements for supplemental GMD Vulnerability Assessments become effective.  
  
Effective Date
The effective date for the proposed Reliability Standard is provided below. Where the standard 
drafting team identified the need for a longer implementation period for compliance with a 
particular section of the proposed Reliability Standard (e.g., an entire Requirement or a portion 
thereof), the additional time for compliance with that section is specified below. These phased‐in 
compliance dates represent the dates that entities must begin to comply with that particular section 
of the Reliability Standard, even where the Reliability Standard goes into effect at an earlier date. 
 
Standard TPL‐007‐2 
Where approval by an applicable governmental authority is required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the effective date 
of the applicable governmental authority’s order approving the standard, or as otherwise provided 
for by the applicable governmental authority. 
 
Where approval by an applicable governmental authority is not required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the date the 
standard is adopted by the NERC Board of Trustees, or as otherwise provided for in that jurisdiction. 
 
Phased-In Compliance Dates
If TPL-007-2 becomes effective before January 1, 2021
Implementation timeline supports applicable entities completing new requirements for 
supplemental GMD Vulnerability Assessments concurrently with requirements for the benchmark 
GMD Vulnerability Assessment (concurrent effective dates). 
 
Compliance Date for TPL‐007‐2 Requirements R1 and R2 
Entities shall be required to comply with Requirements R1 and R2 upon the effective date of 
Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R5 
Entities shall not be required to comply with Requirements R5 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2.

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

2 

 

Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R11 and R12 
Entities shall not be required to comply with Requirements R11 and R12 until 24 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R6 and R10 
Entities shall not be required to comply with Requirements R6 and R10 until 30 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R3, R4, and R8 
Entities shall not be required to comply with Requirements R3, R4, and R8 until 42 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R7 
Entities shall not be required to comply with Requirement R7 until 54 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
If TPL-007-2 becomes effective on or after January 1, 2021
Implementation timeline supports applicable entities completing the benchmark GMD Vulnerability 
Assessments before new requirements for supplemental GMD Vulnerability Assessments become 
effective. 
 
Compliance Date for TPL‐007‐2 Requirements R1, R2, R5, and R6 
Entities shall be required to comply with Requirements R1, R2, R5, and R6 upon the effective date of 
Reliability Standard TPL‐007‐2.
Compliance Date for TPL‐007‐2 Requirements R3 and R4 
Entities shall not be required to comply with Requirements R3 and R4 until 12 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R7, R11, and R12 
Entities shall not be required to comply with Requirements R7, R11, and R12 until 24 months after 
the effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until 36 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

3 

 

Compliance Date for TPL‐007‐2 Requirement R10 
Entities shall not be required to comply with Requirement R10 until 60 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R8 
Entities shall not be required to comply with Requirement R8 until 72 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Retirement Date
Standard TPL‐007‐1 
Reliability Standard TPL‐007‐1 shall be retired immediately prior to the effective date of TPL‐007‐2 in 
the particular jurisdiction in which the revised standard is becoming effective, provided that the TPL‐
007‐1 Implementation Plan shall remain in effect to the extent necessary until the phased‐in 
compliance dates above are implemented for TPL‐007‐2. 
Initial Performance of Periodic Requirements
Transmission Owners and Generator Owners are not required to comply with Requirement R6 prior 
to the compliance date for Requirement R6, regardless of when geomagnetically‐induced current 
(GIC) flow information specified in Requirement R5, Part 5.1 is received. 
 
Transmission Owners and Generator Owners are not required to comply with Requirement R10 
prior to the compliance date for Requirement R10, regardless of when GIC flow information 
specified in Requirement R9, Part 9.1 is received.

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

4 

 
 
 

Implementation Plan

Project 2013-03 Geomagnetic Disturbance Mitigation
Reliability Standard TPL-007-2
Applicable Standard(s)


TPL‐007‐2 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Requested Retirement(s)


TPL‐007‐1 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Prerequisite Standard(s)
None 
Applicable Entities





Planning Coordinator with a planning area that includes a Facility or Facilities specified in Section 
4.2 of the standard; 
Transmission Planner with a planning area that includes a Facility or Facilities specified in Section 
4.2 of the standard; 
Transmission Owner who owns a Facility or Facilities specified in Section 4.2 of the standard; and 
Generator Owner who owns a Facility or Facilities specified in Section 4.2 of the standard. 

Section 4.2 states that the standard applies to facilities that include power transformer(s) with a 
high‐side, wye‐grounded winding with terminal voltage greater than 200 kV. 
 
Terms in the NERC Glossary of Terms
There are no new, modified, or retired terms. 
 
Background
On September 22, 2016, the Federal Energy Regulatory Commission (FERC) issued Order No. 830 
approving Reliability Standard TPL‐007‐1 and its associated five‐year Implementation Plan. In the 
Order, FERC also directed NERC to develop certain modifications to the standard. FERC established a 
deadline of 18 months from the effective date of Order No. 830 for completing the revisions, which 
is May 2018. 
 
General Considerations
This Implementation Plan is intended to integrate the new requirements in TPL‐007‐2 with the GMD 
Vulnerability Assessment process that is being implemented through approved TPL‐007‐1. At the 
time of the May 2018 filing deadline, many requirements in approved standard TPL‐007‐1 that lead 
to completion of the GMDgeomagnetic disturbance (GMD) Vulnerability Assessment will be in 
effect. Furthermore, many entities may be taking steps to complete studies or assessments that are 

 

 

required by future enforceable requirements in TPL‐007‐1. The Implementation Plan phases in the 
requirements in TPL‐007‐2 based on the effective date of TPL‐007‐2, as follows: 
 
 Effective Date before January 1, 2021. Implementation timeline supports applicable entities 
completing new requirements for supplemental GMD Vulnerability Assessments 
concurrently with requirements for the benchmark GMD Vulnerability Assessment 
(concurrent effective dates). 
 
 Effective Date on or after January 1, 2021. Implementation timeline supports applicable 
entities completing the benchmark GMD Vulnerability Assessments before new 
requirements for supplemental GMD Vulnerability Assessments become effective.  
  
Effective Date and Phased-In Compliance Dates
The effective date for the proposed Reliability Standard is provided below. Where the standard 
drafting team identified the need for a longer implementation period for compliance with a 
particular section of athe proposed Reliability Standard (e.g., an entire Requirement or a portion 
thereof), the additional time for compliance with that section is specified below. TheThese phased‐
in compliance date for those particular sections representsdates represent the datedates that 
entities must begin to comply with that particular section of the Reliability Standard, even where 
the Reliability Standard goes into effect at an earlier date. 
 
Standard TPL‐007‐2 
Where approval by an applicable governmental authority is required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the effective date 
of the applicable governmental authority’s order approving the standard, or as otherwise provided 
for by the applicable governmental authority. 
 
Where approval by an applicable governmental authority is not required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the date the 
standard is adopted by the NERC Board of Trustees, or as otherwise provided for in that jurisdiction. 
 
Phased-In Compliance Dates
If TPL-007-2 becomes effective before January 1, 2021
Implementation timeline supports applicable entities completing new requirements for 
supplemental GMD Vulnerability Assessments concurrently with requirements for the benchmark 
GMD Vulnerability Assessment (concurrent effective dates). 
 
Compliance Date for TPL‐007‐2 Requirements R1 and R2 
Entities shall be required to comply with Requirements R1 and R2 upon the effective date of 
Reliability Standard TPL‐007‐2. 
 

Implementation Plan 
Project 2013‐03 GMDGeomagnetic Disturbance Mitigation | JuneOctober 2017 

2 

 

Compliance Date for TPL‐007‐2 Requirement R5 
Entities shall not be required to comply with Requirements R5 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2.
Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R11 and R12 
Entities shall not be required to comply with Requirements R11 and R12 until 24 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R6 and R10 
Entities shall not be required to comply with Requirements R6 and R10 until 30 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R3, R4, and R8 
Entities shall not be required to comply with Requirements R3, R4, and R8 until 42 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R7 
Entities shall not be required to comply with Requirement R7 until 54 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
If TPL-007-2 becomes effective on or after January 1, 2021
Implementation timeline supports applicable entities completing the benchmark GMD Vulnerability 
Assessments before new requirements for supplemental GMD Vulnerability Assessments become 
effective. 
 
Compliance Date for TPL‐007‐2 Requirements R1, R2, R5, and R6 
Entities shall be required to comply with Requirements R1, R2, R5, and R6 upon the effective date of 
Reliability Standard TPL‐007‐2.
Compliance Date for TPL‐007‐2 Requirements R3 and R4 
Entities shall not be required to comply with Requirements R3 and R4 until 12 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R7, R11, and R12 
Entities shall not be required to comply with Requirements R7, R11, and R12 until 24 months after 
the effective date of Reliability Standard TPL‐007‐2. 
 

Implementation Plan 
Project 2013‐03 GMDGeomagnetic Disturbance Mitigation | JuneOctober 2017 

3 

 

Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until 36 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R10 
Entities shall not be required to comply with Requirement R10 until 60 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R8 
Entities shall not be required to comply with Requirement R8 until 72 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Retirement Date
Standard TPL‐007‐1 
Reliability Standard TPL‐007‐1 shall be retired immediately prior to the effective date of TPL‐007‐2 in 
the particular jurisdiction in which the revised standard is becoming effective, provided that the TPL‐
007‐1 Implementation Plan shall remain in effect to the extent necessary until the phased‐in 
compliance dates above are implemented for TPL‐007‐2. 
Initial Performance of Periodic Requirements
Transmission Owners and Generator Owners are not required to comply with Requirement R6 prior 
to the compliance date for Requirement R6, regardless of when geomagnetically‐induced current 
(GIC) flow information specified in Requirement R5, Part 5.1 is received. 
 
Transmission Owners and Generator Owners are not required to comply with Requirement R10 
prior to the compliance date for Requirement R10, regardless of when GIC flow information 
specified in Requirement R9, Part 9.1 is received.

Implementation Plan 
Project 2013‐03 GMDGeomagnetic Disturbance Mitigation | JuneOctober 2017 

4 

 
 

 
 
 
 
 
 
 
 
 
 
 

Supplemental
Geomagnetic
Disturbance Event
Description
Project 2013-03 GMD Mitigation
October 2017 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
NERC | Report Title | Report Date 
I 

 

Table of Contents
Preface ....................................................................................................................................................................... iii 
Introduction ............................................................................................................................................................... iv 
Background ............................................................................................................................................................ iv 
General Characteristics .......................................................................................................................................... iv 
Supplemental GMD Event Description ...................................................................................................................... 1 
Supplemental GMD Event Geoelectric Field Amplitude ........................................................................................ 1 
Supplemental Geomagnetic Field Waveform ........................................................................................................ 1 
Appendix I – Technical Considerations ...................................................................................................................... 3 
Statistical Considerations ....................................................................................................................................... 3 
Extreme Value Analysis ...................................................................................................................................... 3 
Spatial Considerations ........................................................................................................................................... 7 
Local Enhancement Waveform ............................................................................................................................ 13 
Transformer Thermal Assessment ....................................................................................................................... 15 
Appendix II – Scaling the Supplemental GMD Event ............................................................................................... 16 
Scaling the Geomagnetic Field ............................................................................................................................. 16 
Scaling the Geoelectric Field ................................................................................................................................ 17 
References ............................................................................................................................................................... 21 
 
 
 

NERC | Supplemental GMD Event Description | October 2017 
ii 

 

Preface
The North American Electric Reliability Corporation (NERC) is a not‐for‐profit international regulatory authority 
whose mission is to assure the reliability and security of the bulk power system (BPS) in North America. NERC 
develops and enforces Reliability Standards; annually assesses seasonal and long‐term reliability; monitors the 
BPS  through  system  awareness;  and  educates,  trains,  and  certifies  industry  personnel.  NERC’s  area  of 
responsibility spans the continental United States, Canada, and the northern portion of Baja California, Mexico. 
NERC is the Electric Reliability Organization (ERO) for North America, subject to oversight by the Federal Energy 
Regulatory  Commission  (FERC)  and  governmental  authorities  in  Canada.  NERC’s  jurisdiction  includes  users, 
owners, and operators of the BPS, which serves more than 334 million people. 
The  North  American  BPS  is  divided  into  eight  Regional  Entity  (RE)  boundaries  as  shown  in  the  map  and 
corresponding table below. 

 

The North American BPS is divided into eight RE boundaries. The highlighted areas denote overlap as some load‐serving 
entities participate in one Region while associated transmission owners/operators participate in another. 

FRCC 

Florida Reliability Coordinating Council 

MRO 

Midwest Reliability Organization 

NPCC 

Northeast Power Coordinating Council 

RF 

ReliabilityFirst 

SERC 

SERC Reliability Corporation 

SPP RE 

Southwest Power Pool Regional Entity 

Texas RE  Texas Reliability Entity 
WECC 

Western Electricity Coordinating Council 

 
NERC | Supplemental GMD Event Description | October 2017 
iii 

 

Introduction
Background
Proposed TPL‐007‐2 includes requirements for entities to perform two types of geomagnetic disturbance (GMD) 
Vulnerability Assessments to evaluate the potential impacts of GMD events on the Bulk Electric System (BES): 


The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated with 
TPL‐007‐1,  which  was  approved  by  the  FERC  Order  No.  830  in  September  2016.  The  benchmark  GMD 
event is derived from spatially‐averaged geoelectric field values to address potential wide‐area effects 
that could be caused by a severe 1‐in‐100 year GMD event.1 



The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event described in 
this white paper, is used by entities to evaluate localized enhancements of geomagnetic field during a 
severe  GMD  event  that  "could  potentially  affect  the  reliable  operation  of  the  Bulk‐Power  System."2 
Localized enhancements of geomagnetic field can result in geoelectric field values above the spatially‐
averaged benchmark in a local area. 

The  purpose  of  the  supplemental  GMD  event  description  is  to  provide  a  defined  event  for  assessing  system 
performance for a GMD event which includes a local enhancement of the geomagnetic field. In addition to varying 
with time, geomagnetic fields can be spatially non‐uniform with higher and lower strengths across a region. This 
spatial non‐uniformity has been observed in a number of GMD events, so localized enhancement of field strength 
above the average value is considered. The supplemental GMD event defines the geomagnetic and geoelectric 
field values used to compute geomagnetically‐induced current (GIC) flows for a supplemental GMD Vulnerability 
Assessment. 

General Characteristics
The  supplemental  GMD  event  described  herein  takes  into  consideration  observed  characteristics  of  a  local 
geomagnetic  field  enhancement,  recognizing  that  the  science  and  understanding  of  these  events  is  evolving. 
Based on observations and initial assessments, the characteristics of local enhancements include: 


Geographic area – The extent of local enhancements is on the order of 100km in North‐South (latitude) 
direction  but  longer  in  East‐West  (longitude)  direction.  Further  description  of  the  geographic  area  is 
provided later in the white paper. 



Amplitude – The amplitude of the resulting geoelectric field is significantly higher than the geoelectric 
field that is calculated in the spatially‐averaged Benchmark GMD event. 



Duration  –  The  local  enhancement  in  the  geomagnetic  field  occurs  over  a  time  period  of  two  to  five 
minutes. 



Geoelectric  field  waveform  –  The  supplemental  GMD  event  waveform  is  the  benchmark  GMD  event 
waveform with the addition of a local enhancement. The added local enhancement has amplitude and 
duration characteristics described above. The geoelectric field waveform has a strong influence on the 
hot  spot  heating  of  transformer  windings  and  structural  parts  since  thermal  time  constants  of  the 
transformer and time to peak of storm maxima are both on the order of minutes. The frequency content 
of the rate of change of the magnetic field (dB/dt) is a function of the waveform, which in turn has a direct 
effect  on  the  geoelectric  field  since  the  earth  response  to  dB/dt  is  frequency‐dependent.  As  with  the 
                                                            

1 See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM 15‐11 on June 28, 2016. 

2 See FERC Order No. 830, P. 47. In Order 830, FERC directed NERC to develop modifications to the benchmark GMD event, included in TPL‐

007‐1, such that assessments would not be based solely on spatially averaged data. 

NERC | Supplemental GMD Event Description | October 2017 
iv 

Introduction 
 

benchmark GMD event, the supplemental GMD event waveform is based on magnetic field data recorded 
by the Natural Resources Canada (NRCan) Ottawa (OTT) geomagnetic observatory during the March 13‐
14, 1989 event. This GMD event data was selected because analysis of recorded events indicates that the 
OTT observatory data for this period provides conservative results when performing thermal assessments 
of power transformers.3 

                                                            
3
 See Benchmark Geomagnetic Disturbance Event Description white paper, page 5 and Appendix I. 
NERC | Supplemental GMD Event Description| October 2017 
v 

 

Supplemental GMD Event Description
Severe GMD events are high‐impact, low‐frequency (HILF) events [1]; thus, GMD events used in system planning 
should consider the probability that the event will occur, as well as the impact or consequences of such an event. 
The  supplemental  GMD  event  is  composed  of  the  following  elements:  1)  a  reference  peak  geoelectric  field 
amplitude (V/km) derived from statistical analysis of historical magnetometer data; 2) scaling factors to account 
for  local  geomagnetic  latitude;  3)  scaling  factors  to  account  for  local  earth  conductivity;  and  4)  a  reference 
geomagnetic field time series or waveform to facilitate time‐domain analysis of GMD impact on equipment. 

Supplemental GMD Event Geoelectric Field Amplitude
The supplemental GMD event field amplitude was determined through statistical analysis using the plane wave 
method [2]‐[9] of geomagnetic field measurements from geomagnetic observatories in northern Europe [10] and 
the  North  American  (i.e.,  Québec)  reference  earth  model  shown  in  Table  1  [11],  supplemented  by  data  from 
Greenland, Denmark and United States (i.e., Alaska). For details of the statistical considerations, see Appendix I. 
The Québec earth model is generally resistive and the geological structure is relatively well understood. 
Table 1: Reference Earth Model (Québec)
Thickness (km) 

Resistivity (Ω‐m) 

15 

20,000 

10 

200 

125 

1,000 

200 

100 

∞ 

3 

The statistical analysis (see Appendix I) resulted in conservative peak geoelectric field amplitude of approximately 
12 V/km. For steady‐state GIC and load flow analysis, the direction of the geoelectric field is assumed to be variable 
meaning that it can be in any direction (Eastward, Northward, or a vectorial combination thereof). 
The regional geoelectric field peak amplitude, Epeak, to be used in calculating GIC in the GIC system model can be 
obtained from the reference value of 12 V/km using the following relationship 
12	

	 	

	 	 	

⁄

(1) 

where  α  is  the  scaling  factor  to  account  for  local  geomagnetic  latitude,  and  βS  is  a  scaling  factor  for  the 
supplemental GMD event to account for the local earth conductivity structure (see Appendix II). 

Supplemental Geomagnetic Field Waveform
The supplemental geomagnetic field waveform is the benchmark geomagnetic field waveform with the addition 
of  a  local  enhancement.  Both  the  benchmark  and  supplemental  geomagnetic  field  waveforms  are  used  to 
calculate  the  GIC  time  series,  GIC(t),  required  for  transformer  thermal  impact  assessments.  The  supplemental 
waveform  includes  a  local  enhancement,  inserted  at  UT  1:18  March  14,  1989  in  Figure  1  below.  This  time 
corresponds to the largest calculated geoelectric fields during the benchmark GMD event. The amplitude of the 
local enhancement is based on a statistical analysis of a number of GMD events, discussed in Appendix I. The 
duration of the enhancement is based on the characteristics of observed localized enhancements as discussed in 
Appendix I. 

NERC | Supplemental GMD Event Description | October 2017 
1 

Supplemental GMD Event Description 
 

The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the  amplitude  of  the 
geomagnetic field measurement data with a local enhancement was scaled up to the 60 reference geomagnetic 
latitude (see Figure 1) such that the resulting peak geoelectric field amplitude computed using the reference earth 
model was 12 V/km (see Figure 2). Sampling rate for the geomagnetic field waveform is 10 seconds. 

Eastward By

Northward Bx

Figure 1: Supplemental Geomagnetic Field Waveform
Red Bx (Northward), Blue By (Eastward), Referenced to pre-event quiet conditions
 

Figure 2: Supplemental Geoelectric Field Waveform
Red Ey (Eastward) and Blue Ex (Northward)

NERC | Supplemental GMD Event Description| October 2017 
2 

 

Appendix I – Technical Considerations
The following sections describe the technical justification of the assumptions that were made in the development 
of the supplemental GMD event. 

Statistical Considerations
The peak geoelectric field amplitude of the supplemental GMD event was determined through statistical analysis 
of  modern  10‐second  geomagnetic  field  data  and  corresponding  calculated  geoelectric  field  amplitudes.  The 
objective of the analysis was to estimate the geoelectric field amplitude that is associated with a 1 in 100 year 
frequency of occurrence. The same data set and similar statistical techniques were used in determining the peak 
geoelectric  field  amplitude  of  the  benchmark  GMD  event,  including  extreme  value  analysis  discussed  in  the 
following section.4 The fundamental difference in the supplemental GMD event amplitude is that it is based on 
observations taken at each individual station (i.e., localized measurements), in contrast with the spatially averaged 
geoelectric fields used in the Benchmark Geomagnetic Disturbance Event Description white paper.5 
Extreme Value Analysis
The objective of extreme value analysis is to describe the behavior of a stochastic process at extreme deviations 
from the median. In general, the intent is to quantify the probability of an event more extreme than any previously 
observed.  In  particular,  we  are  concerned  with  estimating  the  95%  confidence  interval  of  the  maximum 
geoelectric field amplitude to be expected within a 100‐year return period.6 
The data set consists of 23 years of daily maximum geoelectric field amplitudes derived from individual stations7 
in the IMAGE magnetometer chain, using the Québec earth model as a reference. Figure I‐1 shows a scatter plot 
of geoelectric field amplitudes that  exceed 2 V/km across the IMAGE stations. The plot indicates that there is 
seasonality in extreme observations associated with the 11‐year solar cycle. 

                                                            

4 See Benchmark Geomagnetic Disturbance Event Description white paper, Appendix I, pages 8‐13. 

5 Averaging the geoelectric field values of stations in geographic groups is referred to as spatial averaging in the Benchmark Geomagnetic 

Disturbance  Event  Description.  Spatial  averaging  was  used  to  characterize  GMD  events  over  a  geographic  area  relevant  to  the 
interconnected transmission system for purposes of assessing area effects such as voltage collapse and widespread equipment risk. See 
Benchmark Geomagnetic Disturbance Event Description white paper, Appendix I, pages 9‐10. 
6 A 95 percent confidence interval means that, if repeated samples were obtained, the return level would lie within the confidence interval 
for 95 percent of the samples. 
7 US – https://geomag.usgs.gov/; Canada – http://geomag.nrcan.gc.ca/lab/default‐en.php. 
NERC | Supplemental GMD Event Description | October 2017 
3 

Appendix I – Technical Considerations 
 

Figure I-1: Scatter Plot of Geoelectric Fields that Exceed a 2 V/km Threshold
Data source [11]: IMAGE magnetometer chain from 1993-2015.
Several statistical methods can be used to conduct extreme value analysis. The most commonly applied include: 
Generalized Extreme Value (GEV), Point Over Threshold (POT), R‐Largest, and Point Process (PP). In general, all 
methods assume independent and identically distributed (iid) data [12]. 
Table  I‐1  shows  a  summary  of  the  estimated  parameters  and  return  levels  obtained  from  different  statistical 
methods. The parameters were estimated using the Maximum Likelihood Estimator (MLE). Since the distribution 
parameters do not have an intuitive interpretation, the expected geoelectric field amplitude for a 100‐year return 
period is also included in Table I‐1. The 95% confidence interval of the 100‐year return level was calculated using 
the  delta  method  and  the  profile  likelihood.  The  delta  method  relies  on  the  Gaussian  approximation  to  the 
distribution of the MLE; this approximation can be poor for long return periods. In general, the profile likelihood 
provides a better description of the return level. 

NERC | Supplemental GMD Event Description| October 2017 
4 

Appendix I – Technical Considerations 
 

Table I-1: Extreme Value Analysis
100 Year Return Level
Mean
[V/km]

95% CI
Delta
[V/km]

95% CI
PLikelihood
[V/km]

H0: ξ=0 
p = 0.66 

6.9 

[4.3, 8.2] 

[5.2, 11.4] 

β0= 2.964 
(0.151) 
 
β1=0.582 
(0.155) 
 
σ=0.627 
(0.114) 
 
ξ=0.09 
(0.183) 

H0: β1=0 
p = 0.00 
 
H0: ξ=0 
p = 0.6 

7.1 

[4, 10.2] 

[5.5, 18] 

σ=0.592 
(0.074) 
 
ξ=0.077 
(0.093) 

 

6.9 

[4.5, 9.4] 

[5.4, 11.9] 

β0=0.58 
(0.073) 
 
β1=0.107 
(0.082) 
 
ξ=0.037 
(0.097) 

H0: B1=0 
p = 0.2 

7 

[4.6, 9.3] 

[5.5, 11.7] 

Statistical Model

Estimated
Parameters

Hypothesis
Testing

(1) GEV 

µ=2.976 
(0.193) 
 
σ=0.829 
(0.1357) 
 
ξ=‐0.0655 
(0.1446) 

(2) GEV, 
reparametrization 
sin

 

(3) POT, threshold=2 
V/km 
3 day decluster. 
143 observations > 
2V/km. 

(4) POT, threshold=2V/km 
reparametrization, 
sin

 

Statistical model (1) in Table I‐1 is the traditional GEV estimation using blocks of one year maxima; i.e., only 23 
data points are used in the estimation. The mean expected amplitude of the geoelectric field for a 100‐year return 
level  is  approximately  7  V/km.  Since  GEV  works  with  blocks  of  maxima,  it  is  typically  regarded  as  a  wasteful 
approach. 

NERC | Supplemental GMD Event Description| October 2017 
5 

Appendix I – Technical Considerations 
 

As discussed previously, GEV assumes that the data is iid. Based on the scatter plot shown in Figure I‐1, the iid 
statistical assumption is not warranted by the data. Statistical model (2) in Table I‐1 is a reparametrization of the 
GEV distribution contemplating the 11‐year seasonality in the mean, 
1

 

sin

where β0 represents the offset in the mean, β1 describes the 11‐year seasonality, T is the period (11 years), and φ 
is a constant phase shift. 
A likelihood ratio test is used to test the hypothesis that β1 is zero. The null hypothesis, H0: β1=0, is rejected with 
a p‐value of 0.0032; as expected, the 11‐year seasonality has explanatory power. The blocks of maxima during the 
solar minimum are better represented in the reparametrized GEV. The mean return level is still 7 V/km, but the 
confidence interval is wider, [5.5, 18] V/km for the profile likelihood (calculated at solar maximum). 
Statistical model (3) in Table I‐1 is the traditional POT estimation using a threshold u of 2 V/km; the data was 
declustered using a 1‐day run. The data set consists of normalized excesses over a threshold, and therefore, the 
sample size for POT is increased if more than one extreme observation per year is available (in the GEV approach, 
only  the  maximum  observation  over  the  year  was  taken;  in  the  POT  method,  a  single  year  can  have  multiple 
observations over the threshold). The selection of the threshold u is a compromise between bias and variance. 
The asymptotic basis of the model relies on a high threshold; too low a threshold will likely lead to bias. On the 
other hand, too high a threshold will reduce the sample size and result in high variance. A threshold of 2V/km was 
determined to be a good choice, giving rise to 143 observations above the threshold. 
The mean return level for statistical model (3), ~7 V/km, is consistent with the GEV estimates. However, due to 
the larger sample size the POT method is more efficient rendering a confidence interval of [5.4, 11.9] V/km for the 
profile likelihood method. 
In an attempt to cope with potential heteroskedasticity in the data, a reparametrization of POT is proposed in 
statistical model (4) in Table I‐1, 
sin

 

where α0 represents the offset in the standard deviation, α1 describes the 11‐year seasonality, T is the period 
(365.25 ∙ 11), and φ is a constant phase shift. 
The parameter α1 is not statistically significant; the null hypothesis, H0: α1=0, is not rejected with a p‐value of 0.2. 
The proposed reparametrization does not have explanatory power, and consequently, the mean return level 7 
V/km and confidence intervals remain virtually unchanged [5.5, 11.7]. As a final remark, it is emphasized that the 
confidence interval obtained using the profile likelihood is preferred over the delta method. 
Figure I‐2 shows the profile likelihood of the 100‐year return level of statistical model (3). Note that the profile 
likelihood is highly asymmetric with a positive skew, rendering a larger upper limit for the confidence interval. 
Recall that the delta method assumes a normal distribution for the MLEs, and therefore, the confidence interval 
is symmetric around the mean. 

NERC | Supplemental GMD Event Description| October 2017 
6 

Profile Likelihood

Appendix I – Technical Considerations 
 

Figure I-2: Profile Likelihood for 100-year Return Level for Statistical Model (3)
To conclude, the traditional GEV (1) is misspecified; the statistical assumptions (i.e., iid) are not warranted by the 
data. The model was reparametrized to cope with seasonality in the data. Statistical models (3) and (4) better 
utilize  the  available  extreme  measurements  and  they  are  therefore  preferred  over  statistical  model  (2).  A 
geoelectric field amplitude of 12 V/km is selected for the supplemental GMD event to represent the upper limit 
of the 95 percent confidence interval for a 100‐year return interval. 

Spatial Considerations
The spatial structure of high‐latitude geomagnetic fields can be very complex during strong geomagnetic storm 
events  [13]‐[14].  One  reflection  of  this  spatial  complexity  is  localized  geomagnetic  field  enhancements  (local 
enhancements) that result in high amplitude geoelectric fields in regions of a few hundred kilometers. Figure I‐3 
illustrates this spatial complexity of the storm‐time geoelectric fields.8 In areas indicated by the bright red location, 
the geoelectric field can be substantially larger than at neighboring locations. These enhancements are primarily 
the result of external (geomagnetic field) conditions, and not local geological factors such as coastal effects.9 

                                                            

8 Figure I‐3 is for illustration purposes only, and is not meant to suggest that a particular area is more likely to experience a localized 

enhanced geoelectric field. The depiction is not to scale. 
9  Localized  externally‐driven  geomagnetic  phenomena  should  not  be  confused  with  localized  geoelectric  field  enhancements  due  to 

complex electromagnetic response of the ground to external excitation. Complex 3D geological conditions such as those at coastal regions 
can lead to localized geoelectric field enhancements but those are not considered here. 
NERC | Supplemental GMD Event Description| October 2017 
7 

Appendix I – Technical Considerations 
 

 
Figure I-3: Illustration of the Spatial Scale between Localized Enhancements and Larger
Spatial Scale Amplitudes of Geoelectric Field during a Strong Geomagnetic Storm
In this figure, the red rectangle illustrates a spatially localized field enhancement.
The supplemental GMD event is designed to address local effects caused by a severe GMD event, such as increased 
var absorption and voltage depressions. 
A number of GMD events were analyzed to identify the basic characteristics of local enhancements. Three (3) 
solar storms studied and described below are: 
•
•
•

March 13, 1989 
October 29‐30, 2003 
March 17, 2015 

Four  localized  events  within  those  storms  were  identified  and  analyzed.  Geomagnetic  field  recordings  were 
collected  for  these  storms  and  the  geoelectric  field  was  computed  using  the  1D  plane  wave  method  and  the 
reference Québec ground model. In each case, a local enhancement was correlated, generally oriented parallel to 
the westward ionospheric electrojet associated with ongoing larger scale geomagnetic activity. (See Figures I‐4 – 
I‐7 below). 

NERC | Supplemental GMD Event Description| October 2017 
8 

Appendix I – Technical Considerations 
 

Figure I-4: March 13, 1989, at 21:44 UT, Brorfelde (BFE), Denmark

Figure I-5: October 29, 2003, at 06:47 UT, Narsarsuaq (NAQ), Greenland

NERC | Supplemental GMD Event Description| October 2017 
9 

 

Appendix I – Technical Considerations 
 

Figure I-6: October 30, 2003, at 16:49UT, Hopen Island (HOP), Svalbard, Norway
 

Figure I-7: March 17, 2015, at 13:33 UT, Deadhorse, Alaska, USA

NERC | Supplemental GMD Event Description| October 2017 
10 

 

Appendix I – Technical Considerations 
 

All of the above events were analyzed by reviewing the time series magnetic field data and transforming it to an 
electric field and focusing on the time period of the spatially correlated local enhancement. There were apparent 
similarities in the character of the local enhancements. The local enhancements occurred during peak periods of 
geomagnetic activity and were distinguished by relatively brief excursions of rapid magnetic field variation. With 
respect to time duration, the local enhancements generally occurred over a period of 2‐5 minutes. (See Figures I‐
8 – I‐11) 

Figure I-8: Geoelectric field March 13, 1989, at 21:44 UT, Brorfelde (BFE), Denmark
 

Figure I-9: Geoelectric field October 29, 2003, at 06:47 UT,
Narsarsuaq (NAQ), Greenland
 
NERC | Supplemental GMD Event Description| October 2017 
11 

Appendix I – Technical Considerations 
 

Figure I-10: Geoelectric field October 30, 2003, at 16:49 UT,
Hopen Island (HOP), Norway
 

Figure I-11 – Geoelectric field March 17, 2015, at 13:33 UT, Deadhorse, Alaska, USA
Based on the above analysis and the previous work associated with the benchmark GMD event, it is reasonable 
to incorporate a second (or supplemental) assessment into TPL‐007‐2 to account for the potential impact of a 
local enhancement in both the network analysis and the transformer thermal assessment(s). 
With respect to geographic area of the localized enhancement, the historical geomagnetic field data analyzed so 
far  provides  some  insight.  Analysis  suggests  that  the  enhancements  will  occur  in  a  relatively  narrow  band  of 
geomagnetic  latitude  (on  the  order  of  100  km)  and  wider  longitudinal  width  (on  the  order  of  500  km)  as  a 
consequence of the westward‐oriented structure of the source in the ionosphere.
NERC | Supplemental GMD Event Description| October 2017 
12 

Appendix I – Technical Considerations 
 

Proposed TPL‐007‐2 provides flexibility for planners to determine how to apply the supplemental GMD event to 
the planning area. Acceptable approaches include, but are not limited to: 




Applying the peak geoelectric field for the supplemental GMD event (12 V/km scaled to the planning area) 
over the entire planning area; 
Applying  a  spatially  limited  (e.g.,  100  km  in  North‐South  direction  and  500  km  in  East‐West  direction) 
geoelectric field enhancement (12 V/km scaled to the planning area) over a portion(s) of the system, and 
applying the benchmark GMD event over the rest of the system. 
Other methods to adjust the benchmark GMD event analysis for localized geoelectric field enhancement. 

Given the current state of knowledge regarding the spatial extent of a local geomagnetic field enhancements, 
upper  geographic  boundaries,  such  as  the  values  used  in  the  approaches  above,  are  reasonable  but  are  not 
definitive. 

Local Enhancement Waveform
The supplemental geomagnetic field waveform was derived by modifying the benchmark GMD event waveform 
to emulate the observed events described above. The temporal location of the enhancement corresponds to the 
time of the benchmark event with the highest geoelectric field. The local enhancement was constructed by scaling 
linearly a 5‐minute portion of the benchmark geomagnetic field so that the peak geoelectric field is 12 V/km at a 
geomagnetic latitude of 60° and reference earth model. Figure I‐12 shows the benchmark geomagnetic field and 
Figure  I‐13  shows  the  supplemental  event  geomagnetic  field.  Figure  I‐14  expands  the  view  into  Bx,  with  and 
without the local enhancement. Figure I‐15 is the corresponding expanded view of the geoelectric field magnitude 
with and without the local enhancement. 

Figure I-12: Benchmark Geomagnetic Field
Red Bx (Northward), Blue By (Eastward)
 

NERC | Supplemental GMD Event Description| October 2017 
13 

Appendix I – Technical Considerations 
 

Figure I-13: Supplemental Geomagnetic Field Waveform
Red Bx (Northward), Blue By (Eastward)
 

Figure I-14: Red Benchmark Bx and Blue Supplemental Bx (Northward) – Expanded View
 

NERC | Supplemental GMD Event Description| October 2017 
14 

Appendix I – Technical Considerations 
 

Figure I-15: Magnitude of the Geoelectric Field
Benchmark Blue and Supplemental Red – Expanded View

Transformer Thermal Assessment
The local enhancement of the supplemental GMD event waveform can have a material impact on the temperature 
rise (hot‐spot heating or metallic parts) even though the duration of the local enhancement is approximately five 
minutes. Thermal assessments based on the supplemental GMD event can be performed using the same methods 
employed for benchmark thermal assessments.10 
 

                                                            

10 See Transformer Thermal Impact Assessment white paper: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐

Disturbance‐Mitigation.aspx. 
NERC | Supplemental GMD Event Description| October 2017 
15 

 

Appendix II – Scaling the Supplemental GMD Event
The intensity of a GMD event depends on geographical considerations such as geomagnetic latitude and local 
earth conductivity [2].11 Scaling factors for geomagnetic latitude take into consideration that the intensity of a 
GMD event varies according to latitude‐based geographical location. Scaling factors for earth conductivity take 
into  account  that  the  induced  geoelectric  field  depends  on  earth  conductivity,  and  that  different  parts  of  the 
continent have different earth conductivity and deep earth structure. 
Scaling the supplemental GMD event differs from the benchmark GMD event in two ways: 


Epeak is 12 V/km instead of 8 V/km 



Beta factors for scaling the geoelectric field based on earth conductivity are different (see Table II‐2) 

More  discussion, including example  calculations, is  contained in  the Benchmark  GMD  Event Description white 
paper. 

Scaling the Geomagnetic Field
The supplemental GMD event is defined for geomagnetic latitude of 60 and it must be scaled to account for 
regional  differences  based  on  geomagnetic  latitude.  To  allow  usage  of  the  supplemental  geomagnetic  field 
waveform  in  other  locations,  Table  II‐1  summarizes  the  scaling  factor  α  correlating  peak  geoelectric  field  to 
geomagnetic latitude as illustrated in Figure II‐1 [3]. This scaling factor  has been obtained from a large number 
of global geomagnetic field observations of all major geomagnetic storms since the late 1980s [15]‐[17], and can 
be approximated with the empirical expression in (II.1): 
 

0.001

.

 

(II.1) 

where L is the geomagnetic latitude in degrees and 0.1    1.0. 

Figure II-1: Geomagnetic Latitude Lines in North America
                                                            

11 Geomagnetic latitude is analogous to geographic latitude, except that bearing is in relation to the magnetic poles, as opposed to the 

geographic poles. Geomagnetic phenomena are often best organized as a function of geomagnetic coordinates. Local earth conductivity 
refers to the electrical characteristics to depths of hundreds of km down to the earth’s mantle. In general terms, lower ground conductivity 
results in higher geoelectric field amplitudes. 
NERC | Supplemental GMD Event Description | October 2017 
16 

 

Appendix II – Scaling the Supplemental GMD Event 
 

Table II-1: Geomagnetic Field Scaling Factors
Geomagnetic Latitude 
(Degrees) 

Scaling Factor1 
() 

≤ 40

0.10

45

0.2

50

0.3

54

0.5

56

0.6

57

0.7

58

0.8

59

0.9

≥ 60

1.0

 

Scaling the Geoelectric Field
The supplemental GMD event is defined for the reference Québec earth model provided in Table 1. This earth 
model has been used in many peer‐reviewed technical articles [11, 15]. The peak geoelectric field depends on the 
geomagnetic field waveform and the local earth conductivity. Ideally, the peak geoelectric field, Epeak, is obtained 
by calculating the geoelectric field from the scaled geomagnetic field waveform using the plane wave method and 
taking the maximum value of the resulting waveforms: 
∗

⁄
⁄

 
	

|

 

∗

 
,

(II.2) 

| 

where, 
*denotes convolution in the time domain, 
z(t) is the impulse response for the earth surface impedance calculated from the laterally uniform or 1D 
earth model, 
BE(t), BN(t) are the scaled Eastward and Northward geomagnetic field waveforms, and 
|EE(t), EN(t)| are the magnitudes of the calculated Eastward and Northward geoelectric field EE(t) and EN(t). 
As noted previously, the response of the earth to B(t) (and dB/dt) is frequency dependent. Figure II‐2 shows the 
magnitude of Z(ω) for the reference earth model. 

NERC | Supplemental GMD Event Description| October 2017 
17 

Appendix II – Scaling the Supplemental GMD Event 
 

Figure II-2: Magnitude of the Earth Surface Impedance for the Reference Earth Model
If a utility does not have the capability of calculating the waveform or time series for the geoelectric field, an earth 
conductivity scaling factor βS can be obtained from Table II‐2. Using α and β, the peak geoelectric field Epeak for a 
specific service territory shown in Figure II‐3 can be obtained using (II.3). 
12	

	 	

	 	

⁄

(II.3) 

It should be noted that (II.3) is an approximation based on the following assumptions: 


The  earth  models  used  to  calculate  Table  II‐2  for  the  United  States  are  from  published  information 
available on the USGS website. These scaling factors are slightly lower than the ones in the benchmark 
because the supplemental benchmark waveform has a higher frequency content at the time of the local 
enhancement. 



The models used to calculate Table II‐2 for Canada were obtained from NRCan and reflect the average 
structure  for  large  regions.  When  models  are  developed  for  sub‐regions,  there  will  be  variance  (to  a 
greater or lesser degree) from the average model. For instance, detailed models for Ontario have been 
developed by NRCan and consist of seven major sub‐regions. 



The conductivity scaling factor βS is calculated as the quotient of the local geoelectric field peak amplitude 
in a physiographic region with respect to the reference peak amplitude value of 12 V/km. Both geoelectric 
field peak amplitudes are calculated using the supplemental geomagnetic field time series. If a different 
geomagnetic field time series were used, the calculated scaling factors (β) would be different than the 
values in Table II‐2 because the frequency content of storm maxima is, in principle, different for every 
storm. If a utility has technically‐sound earth models for its service territory and sub‐regions thereof, then 
the use of such earth models is preferable to estimate Epeak. 



When a ground conductivity model is not available the planning entity should use the largest βs factor of 
adjacent physiographic regions or a technically‐justified value. 
NERC | Supplemental GMD Event Description| October 2017 
18 

Appendix II – Scaling the Supplemental GMD Event 
 

Physiographic Regions of the Continental United States

Physiographic Regions of Canada

Figure II-3: Physiographic Regions of North America
 

NERC | Supplemental GMD Event Description| October 2017 
19 

Appendix II – Scaling the Supplemental GMD Event 
 

Table II-2 Supplemental Geoelectric Field Scaling Factors
Earth model

Scaling Factor ()

AK1A 

0.51 

AK1B 

0.51 

AP1 

0.30 

AP2 

0.78 

BR1 

0.22 

CL1 

0.73 

CO1 

0.25 

CP1 

0.77 

CP2 

0.86 

FL1 

0.73 

CS1 

0.37 

IP1 

0.90 

IP2 

0.25 

IP3 

0.90 

IP4 

0.35 

NE1 

0.77 

PB1 

0.55 

PB2 

0.39 

PT1 

1.19 

SL1 

0.49 

SU1 

0.90 

BOU 

0.24 

FBK 

0.56 

PRU 

0.22 

BC 

0.62 

PRAIRIES 

0.88 

SHIELD 

1.0 

ATLANTIC 

0.76 

 

NERC | Supplemental GMD Event Description| October 2017 
20 

 

References
[1]

High‐Impact, Low‐Frequency Event Risk to the North American Bulk Power System, A Jointly‐
Commissioned Summary Report of the North American Reliability Corporation and the U.S. 
Department of Energy’s November 2009 Workshop. 

[2]

Application Guide: Computing Geomagnetically‐Induced Current in the Bulk‐Power System, NERC. 
December 2013. http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20 
Force%20GMDTF%202013/GIC%20Application%20Guide%202013_approved.pdf 

[3]

Boteler, D. H.; Pirjola R. J.; Liu, L.; and Zheng, K.; “Geoelectric Fields Due to Small‐Scale and Large‐Scale 
Source Currents.” IEEE Transactions on Power Delivery, Vol. 28, No. 1, January 2013, pp. 442‐449. 

[4]

Boteler, D. H. “Geomagnetically Induced Currents: Present Knowledge and Future Research.” IEEE 
Transactions on Power Delivery, Vol. 9, No. 1, January 1994, pp. 50‐58. 

[5]

Boteler, D. H. “Modeling Geomagnetically Induced Currents Produced by Realistic and Uniform Electric 
Fields.” IEEE Transactions on Power Delivery, Vol. 13, No. 4, January 1998, pp. 1303‐1308. 

[6]

Gilbert, J. L.; Radasky, W. A.; and Savage, E. B. “A Technique for Calculating the Currents Induced by 
Geomagnetic Storms on Large High Voltage Power Grids.” Electromagnetic Compatibility (EMC). 2012 
IEEE International Symposium on. 

[7]

How to Calculate Electric Fields to Determine Geomagnetically‐Induced Currents. EPRI, Palo Alto, CA: 
2013. 3002002149. 

[8]

Pirjola, R.; Pulkkinen, A.; and Viljanen, V. Statistics of extreme geomagnetically induced current events, 
Space Weather, 6, S07001, doi:10.1029/2008SW000388, 2008. 

[9]

Boteler, D. H. Assessment of geomagnetic hazard to power systems in Canada, Nat. Hazards, 23, 101–
120. 2001. 

[10] Finnish Meteorological Institute’s IMAGE magnetometer chain data available at: 
http://image.gsfc.nasa.gov/ 
[11] Boteler, D. H. and Pirjola, R. J. The complex‐image method for calculating the magnetic and electric 
fields produced at the surface of the Earth by the auroral electrojet. Geophys. J. Int., 132(1), 31—40. 
1998. 
[12] Coles, S. An Introduction to Statistical Modelling of Extreme Values. Springer. 2001. 
[13] Clarke, E.; Mckay, A.; Pulkkinen, A.; and Thomson, A. April 2000 geomagnetic storm: ionospheric 
drivers of large geomagnetically induced currents. Annales Geophysicae, 21, 709‐717. 2003. 
[14] Lindahl, S.; Pirjola, R. J.; Pulkkinen, A.; and Viljanen, A. Geomagnetic storm of 29–31 October 2003: 
Geomagnetically induced currents and their relation to problems in the Swedish high‐voltage power 
transmission system. Space Weather, 3, S08C03, doi:10.1029/2004SW000123. 2005. 
[15] Beggan, C.; Bernabeu, E.; Eichner, J.; Pulkkinen, A.; and Thomson, A., Generation of 100‐year 
geomagnetically induced current scenarios, Space Weather, Vol. 10, S04003, 
doi:10.1029/2011SW000750. 2012. 
NERC | Supplemental GMD Event Description | October 2017 
21 

References 
 

[16] Crowley, G.; Ngwira, C.; Pulkkinen, A.; and Wilder, F. Extended study of extreme geoelectric field event 
scenarios for geomagnetically induced current applications. Space Weather, Vol. 11, 121–131, 
doi:10.1002/swe.20021. 2013. 
[17] Dawson, E.; Reay, S.; and Thomson, A. Quantifying extreme behavior in geomagnetic activity. Space 
Weather, 9, S10001, doi:10.1029/2011SW000696. 2011. 

NERC | Supplemental GMD Event Description| October 2017 
22 

 
 

 
 
 
 
 
 
 
 
 
 
 

Supplemental
Geomagnetic
Disturbance Event
Description
Project 2013-03 GMD Mitigation
JuneOctober 2017 
 
 
 
 
 
 
 
 
 
 
 
 
 
NERC | Report Title | Report Date 
I 

 

 

Table of Contents

Preface ....................................................................................................................................................................... iii 
Introduction ............................................................................................................................................................... iv 
Background ............................................................................................................................................................ iv 
General Characteristics .......................................................................................................................................... iv 
Supplemental GMD Event Description ...................................................................................................................... 1 
Supplemental GMD Event Geoelectric Field Amplitude ........................................................................................ 1 
Supplemental Geomagnetic Field Waveform ........................................................................................................ 1 
Appendix I – Technical Considerations ...................................................................................................................... 4 
Statistical Considerations ....................................................................................................................................... 4 
Extreme Value Analysis ...................................................................................................................................... 4 
Spatial Considerations ........................................................................................................................................... 8 
Local Enhancement Waveform ............................................................................................................................ 14 
Transformer Thermal Assessment ....................................................................................................................... 16 
Appendix II – Scaling the Supplemental GMD Event ............................................................................................... 17 
Scaling the Geomagnetic Field ............................................................................................................................. 17 
Scaling the Geoelectric Field ................................................................................................................................ 18 
References ............................................................................................................................................................... 22 
 
 
 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
ii 

 

Preface
The North American Electric Reliability Corporation (NERC) is a not‐for‐profit international regulatory authority 
whose mission is to assure the reliability and security of the bulk power system (BPS) in North America. NERC 
develops and enforces Reliability Standards; annually assesses seasonal and long‐term reliability; monitors the 
BPS  through  system  awareness;  and  educates,  trains,  and  certifies  industry  personnel.  NERC’s  area  of 
responsibility spans the continental United States, Canada, and the northern portion of Baja California, Mexico. 
NERC is the Electric Reliability Organization (ERO) for North America, subject to oversight by the Federal Energy 
Regulatory  Commission  (FERC)  and  governmental  authorities  in  Canada.  NERC’s  jurisdiction  includes  users, 
owners, and operators of the BPS, which serves more than 334 million people. 
The  North  American  BPS  is  divided  into  eight  Regional  Entity  (RE)  boundaries  as  shown  in  the  map  and 
corresponding table below. 

 

The North American BPS is divided into eight RE boundaries. The highlighted areas denote overlap as some load‐serving 
entities participate in one Region while associated transmission owners/operators participate in another. 

FRCC 

Florida Reliability Coordinating Council 

MRO 

Midwest Reliability Organization 

NPCC 

Northeast Power Coordinating Council 

RF 

ReliabilityFirst 

SERC 

SERC Reliability Corporation 

SPP RE 

Southwest Power Pool Regional Entity 

Texas RE  Texas Reliability Entity 
WECC 

Western Electricity Coordinating Council 

 
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
iii 

 

Introduction
Background
Proposed TPL‐007‐2 includes requirements for entities to perform two types of geomagnetic disturbance (GMD) 
Vulnerability Assessments to evaluate the potential impacts of GMD events on the Bulk Electric System (BES): 


The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated with 
TPL‐007‐1, which was approved by the Federal Energy Regulatory Commission (FERC) in Order No. 830 in 
September 2016. The benchmark GMD event is derived from spatially‐averaged geoelectric field values 
to address potential wide‐area effects that could be caused by a severe 1‐in‐100 year GMD event.1 



The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event described in 
this white paper, is used by entities to evaluate localized enhancements of geomagnetic field during a 
severe  GMD  event  that  "could  potentially  affect  the  reliable  operation  of  the  Bulk‐Power  System".."2 
Localized enhancements of geomagnetic field can result in geoelectric field values above the spatially‐
averaged benchmark in a local area. 

The purpose of the supplemental geomagnetic disturbance (GMD) event description is to provide a defined event 
for assessing system performance for a GMD event which includes a local enhancement of the geomagnetic field. 
In addition to varying with time, geomagnetic fields can be spatially non‐uniform with higher and lower strengths 
across  a  region.  This  spatial  non‐uniformity  has  been  observed  in  a  number  of  GMD  events,  so  localized 
enhancement of field strength above the average value is considered. The supplemental GMD event defines the 
geomagnetic  and  geoelectric  field  values  used  to  compute  geomagnetically‐induced  current  (GIC)  flows  for  a 
supplemental GMD Vulnerability Assessment. 

General Characteristics
The  supplemental  GMD  event  described  herein  takes  into  consideration  observed  characteristics  of  a  local 
geomagnetic  field  enhancement,  recognizing  that  the  science  and  understanding  of  these  events  is  evolving. 
Based on observations and initial assessments, the characteristics of local enhancements include: 


Geographic area – The extent of local enhancements is on the order of 100km in North‐South (latitude) 
direction  but  longer  in  East‐West  (longitude)  direction.  Further  description  of  the  geographic  area  is 
provided later in the white paper. 



Amplitude – The amplitude of the resulting geoelectric field is significantly higher than the geoelectric 
field that is calculated in the spatially‐averaged Benchmark GMD event. 



Duration – The local enhancement in the geomagnetic field occurs over a time period of 2‐5two to five 
minutes. 



Geoelectric  field  waveform  –  The  supplemental  GMD  event  waveform  is  the  benchmark  GMD  event 
waveform with the addition of a local enhancement. The added local enhancement has amplitude and 
duration characteristics described above. The geoelectric field waveform has a strong influence on the 
hot  spot  heating  of  transformer  windings  and  structural  parts  since  thermal  time  constants  of  the 
transformer and time to peak of storm maxima are both on the order of minutes. The frequency content 
of the rate of change of the magnetic field (dB/dt) is a function of the waveform, which in turn has a direct 

                                                            

1 See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM 15‐11 on June 28, 2016. 
2 See FERC Order No. 830, P. 47. 

On September 22, 2016In Order 830, FERC directed NERC to develop modifications to the benchmark 
GMD event, included in TPL‐007‐1, such that assessments would not be based solely on spatially averaged data. 
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
iv 

Introduction 
 

effect  on  the  geoelectric  field  since  the  earth  response  to  dB/dt  is  frequency‐dependent.  As  with  the 
benchmark GMD event, the supplemental GMD event waveform is based on magnetic field data recorded 
by the Natural Resources Canada (NRCan) Ottawa (OTT) geomagnetic observatory during the March 13‐
14, 1989 event. This GMD event data was selected because analysis of recorded events indicates that the 
OTT observatory data for this period provides conservative results when performing thermal assessments 
of power transformers.3 

                                                            
3
 See Benchmark Geomagnetic Disturbance Event Description white paper, page 5 and Appendix I. 
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
v 

 

Supplemental GMD Event Description
Severe geomagnetic disturbanceGMD events are high‐impact, low‐frequency (HILF) events [1]; thus, GMD events 
used  in  system  planning  should  consider  the  probability  that  the  event  will  occur,  as  well  as  the  impact  or 
consequences  of  such  an  event.  The  supplemental  GMD  event  is  composed  of  the  following  elements:  1)  a 
reference  peak  geoelectric  field  amplitude  (V/km)  derived  from  statistical  analysis  of  historical  magnetometer 
data;  2)  scaling  factors  to  account  for  local  geomagnetic  latitude;  3)  scaling  factors  to  account  for  local  earth 
conductivity; and 4) a reference geomagnetic field time series or waveform to facilitate time‐domain analysis of 
GMD impact on equipment. 

Supplemental GMD Event Geoelectric Field Amplitude
The supplemental GMD event field amplitude was determined through statistical analysis using the plane wave 
method [2]‐[9] of geomagnetic field measurements from geomagnetic observatories in northern Europe [10] and 
the North American (i.e., Québec) reference (Quebec) earth model shown in Table 1 [11], supplemented by data 
from  Greenland,  Denmark  and  United  States  (i.e.,  Alaska.).  For  details  of  the  statistical  considerations,  see 
Appendix I. The QuebecQuébec earth model is generally resistive and the geological structure is relatively well 
understood. 
Table 1: Reference Earth Model (QuebecQuébec)
Thickness (km) 

Resistivity (Ω‐m) 

15 

20,000 

10 

200 

125 

1,000 

200 

100 

∞ 

3 

The statistical analysis (see Appendix I) resulted in conservative peak geoelectric field amplitude of approximately 
12 V/km. For steady‐state GIC and load flow analysis, the direction of the geoelectric field is assumed to be variable 
meaning that it can be in any direction (Eastward, Northward, or a vectorial combination thereof). 
The regional geoelectric field peak amplitude, Epeak, to be used in calculating GIC in the GIC system model can be 
obtained from the reference value of 12 V/km using the following relationship 
 
Epeak

12	

	 	

	 	 (V/km)

	

⁄

(1) 

where  α  is  the  scaling  factor  to  account  for  local  geomagnetic  latitude,  and  βS  is  a  scaling  factor  for  the 
supplemental GMD event to account for the local earth conductivity structure (see Appendix II). 

Supplemental Geomagnetic Field Waveform
The supplemental geomagnetic field waveform is the benchmark geomagnetic field waveform with the addition 
of  a  local  enhancement.  Both  the  benchmark  and  supplemental  geomagnetic  field  waveforms  are  used  to 
calculate  the  GIC  time  series,  GIC(t),  required  for  transformer  thermal  impact  assessments.  The  supplemental 
waveform  includes  a  local  enhancement,  inserted  at  UT  1:18  March  14,  1989  in  Figure  1  below.  This  time 
corresponds to the largest calculated geoelectric fields during the benchmark GMD event. The amplitude of the 
local enhancement is based on a statistical analysis of a number of GMD events, discussed in Appendix I. The 
NERC | Supplemental GMD Event Description (DRAFT)| June 2017 
 

Supplemental GMD Event Description 
 

duration of the enhancement is based on the characteristics of observed localized enhancements as discussed in 
Appendix I. 
The  geomagnetic  latitude  of  the  Ottawa  geomagnetic  observatory  is  55;  therefore,  the  amplitude  of  the 
geomagnetic field measurement data with a local enhancement was scaled up to the 60 reference geomagnetic 
latitude (see Figure 1) such that the resulting peak geoelectric field amplitude computed using the reference earth 
model was 12 V/km (see Figure 2). Sampling rate for the geomagnetic field waveform is 10 seconds. 

Eastward By

Northward Bx

Figure 1: Supplemental Geomagnetic Field Waveform
Red Bx (Northward), Blue By (Eastward), Referenced to pre-event quiet conditions
 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
2 

Supplemental GMD Event Description 
 

Figure 2: Supplemental Geoelectric Field Waveform
Red Ey (Eastward) and Blue Ex (Northward)

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
3 

 

Appendix I – Technical Considerations
The following sections describe the technical justification of the assumptions that were made in the development 
of the supplemental GMD event. 

Statistical Considerations
The peak geoelectric field amplitude of the supplemental GMD event was determined through statistical analysis 
of  modern  10‐second  geomagnetic  field  data  and  corresponding  calculated  geoelectric  field  amplitudes.  The 
objective of the analysis was to estimate the geoelectric field amplitude that is associated with a 1 in 100 year 
frequency of occurrence. The same data set and similar statistical techniques were used in determining the peak 
geoelectric  field  amplitude  of  the  benchmark  GMD  event,  including  extreme  value  analysis  discussed  in  the 
following section.4 The fundamental difference in the supplemental GMD event amplitude is that it is based on 
observations taken at each individual station (i.e., localized measurements), in contrast with the spatially averaged 
geoelectric fields used in the Benchmark Geomagnetic Disturbance Event Description white paper.5 
Extreme Value Analysis
The objective of extreme value analysis is to describe the behavior of a stochastic process at extreme deviations 
from the median. In general, the intent is to quantify the probability of an event more extreme than any previously 
observed.  In  particular,  we  are  concerned  with  estimating  the  95%  confidence  interval  of  the  maximum 
geoelectric field amplitude to be expected within a 100‐year return period.6 
The data set consists of 23 years of daily maximum geoelectric field amplitudes derived from individual stations7 
in  the  IMAGE  magnetometer  chain,  using  the  QuebecQuébec  earth  model  as  a  reference.  Figure  I‐1  shows  a 
scatter plot of geoelectric field amplitudes that exceed 2 V/km across the IMAGE stations. The plot indicates that 
there is seasonality in extreme observations associated with the 11‐year solar cycle. 

                                                            

4 See Benchmark Geomagnetic Disturbance Event Description white paper, Appendix I, pages 8‐13. 

5 Averaging the geoelectric field values of stations in geographic groups is referred to as spatial averaging in the Benchmark Geomagnetic 

Disturbance  Event  Description.  Spatial  averaging  was  used  to  characterize  GMD  events  over  a  geographic  area  relevant  to  the 
interconnected transmission system for purposes of assessing area effects such as voltage collapse and widespread equipment risk. See 
Benchmark Geomagnetic Disturbance Event Description white paper, Appendix I, pages 9‐10. 
6 A 95 percent confidence interval means that, if repeated samples were obtained, the return level would lie within the confidence interval 
for 95 percent of the samples. 
7 US – https://geomag.usgs.gov/; Canada – http://geomag.nrcan.gc.ca/lab/default‐en.php. 
NERC | Supplemental GMD Event Description (DRAFT)| June 2017 
 

Appendix I – Technical Considerations 
 

Figure I-1: Scatter Plot of Geoelectric Fields that Exceed a 2 V/km Threshold
Data source [11]: IMAGE magnetometer chain from 1993-2015.
Several statistical methods can be used to conduct extreme value analysis. The most commonly applied include: 
Generalized Extreme Value (GEV), Point Over Threshold (POT), R‐Largest, and Point Process (PP). In general, all 
methods assume independent and identically distributed (iid) data [12]. 
Table  I‐1  shows  a  summary  of  the  estimated  parameters  and  return  levels  obtained  from  different  statistical 
methods. The parameters were estimated using the Maximum Likelihood Estimator (MLE). Since the distribution 
parameters do not have an intuitive interpretation, the expected geoelectric field amplitude for a 100‐year return 
period is also included in Table I‐1. The 95% confidence interval of the 100‐year return level was calculated using 
the  delta  method  and  the  profile  likelihood.  The  delta  method  relies  on  the  Gaussian  approximation  to  the 
distribution of the MLE; this approximation can be poor for long return periods. In general, the profile likelihood 
provides a better description of the return level. 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
5 




 01 

t
sin 
T 
Appendix I – Technical Considerations 
 

Table I-1: Extreme Value Analysis
100 Year Return Level
Mean
[V/km]

95% CI
Delta
[V/km]

95% CI
PLikelihood
[V/km]

H0: ξ=0 
p = 0.66 

6.9 

[4.3, 8.2] 

[5.2, 11.4] 

β0= 2.964 
(0.151) 
 
β1=0.582 
(0.155) 
 
σ=0.627 
(0.114) 
 
ξ=0.09 
(0.183) 

H0: β1=0 
p = 0.00 
 
H0: ξ=0 
p = 0.6 

7.1 

[4, 10.2] 

[5.5, 18] 

σ=0.592 
(0.074) 
 
ξ=0.077 
(0.093) 

 

6.9 

[4.5, 9.4] 

[5.4, 11.9] 

β0=0.58 
(0.073) 
 
β1=0.107 
(0.082) 
 
ξ=0.037 
(0.097) 

H0: B1=0 
p = 0.2 

7 

[4.6, 9.3] 

[5.5, 11.7] 

Statistical Model

Estimated
Parameters

Hypothesis
Testing

(1) GEV 

µ=2.976 
(0.193) 
 
σ=0.829 
(0.1357) 
 
ξ=‐0.0655 
(0.1446) 

(2) GEV, 
reparametrization 
 

sin

(3) POT, threshold=2 
V/km 
3 day decluster. 
143 observations > 
2V/km. 

(4) POT, threshold=2V/km 
reparametrization, 
sin

 

Statistical model (1) in Table I‐1 is the traditional GEV estimation using blocks of 1one year maxima; i.e., only 23 
data points are used in the estimation. The mean expected amplitude of the geoelectric field for a 100‐year return 
level  is  approximately  7  V/km.  Since  GEV  works  with  blocks  of  maxima,  it  is  typically  regarded  as  a  wasteful 
approach. 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
6 


01 

t 
sin  
T   
Appendix I – Technical Considerations 
 

As discussed previously, GEV assumes that the data is iid. Based on the scatter plot shown in Figure I‐1, the iid 
statistical assumption is not warranted by the data. Statistical model (2) in Table I‐1 is a reparametrization of the 
GEV distribution contemplating the 11‐year seasonality in the mean, 
1

 

sin

where β0 represents the offset in the mean, β1 describes the 11‐year seasonality, T is the period (11 years), and φ 
is a constant phase shift. 
A likelihood ratio test is used to test the hypothesis that β1 is zero. The null hypothesis, H0: β1=0, is rejected with 
a p‐value of 0.0032; as expected, the 11‐year seasonality has explanatory power. The blocks of maxima during the 
solar minimum are better represented in the reparametrized GEV. The mean return level is still 7 V/km, but the 
confidence interval is wider, [5.5, 18] V/km for the profile likelihood (calculated at solar maximum). 
Statistical model (3) in Table I‐1 is the traditional POT estimation using a threshold u of 2 V/km; the data was 
declustered using a 1‐day run. The data set consists of normalized excesses over a threshold, and therefore, the 
sample size for POT is increased if more than one extreme observation per year is available (in the GEV approach, 
only  the  maximum  observation  over  the  year  was  taken;  in  the  POT  method,  a  single  year  can  have  multiple 
observations over the threshold). The selection of the threshold u is a compromise between bias and variance. 
The asymptotic basis of the model relies on a high threshold; too low a threshold will likely lead to bias. On the 
other hand, too high a threshold will reduce the sample size and result in high variance. A threshold of 2V/km was 
determined to be a good choice, giving rise to 143 observations above the threshold. 
The mean return level for statistical model (3), ~7 V/km, is consistent with the GEV estimates. However, due to 
the larger sample size the POT method is more efficient rendering a confidence interval of [5.4, 11.9] V/km for the 
profile likelihood method. 
In an attempt to cope with potential heteroskedasticity in the data, a reparametrization of POT is proposed in 
statistical model (4) in Table I‐1, 
 
sin

 

where α0 represents the offset in the standard deviation, α1 describes the 11‐year seasonality, T is the period 
(365.25 ∙ 11), and φ is a constant phase shift. 
The parameter α1 is not statistically significant; the null hypothesis, H0: α1=0, is not rejected with a p‐value of 0.2. 
The proposed reparametrization does not have explanatory power, and consequently, the mean return level 7 
V/km and confidence intervals remain virtually unchanged [5.5, 11.7]. As a final remark, it is emphasized that the 
confidence interval obtained using the profile likelihood is preferred over the delta method. 
Figure I‐2 shows the profile likelihood of the 100‐year return level of statistical model (3). Note that the profile 
likelihood is highly asymmetric with a positive skew, rendering a larger upper limit for the confidence interval. 
Recall that the delta method assumes a normal distribution for the MLEs, and therefore, the confidence interval 
is symmetric around the mean. 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
7 

Profile Likelihood

Appendix I – Technical Considerations 
 

Figure I-2: Profile Likelihood for 100-year Return Level for Statistical Model (3)
To conclude, the traditional GEV (1) is misspecified; the statistical assumptions (i.e., iid) are not warranted by the 
data. The model was reparametrized to cope with seasonality in the data. Statistical models (3) and (4) better 
utilize  the  available  extreme  measurements  and  they  are  therefore  preferred  over  statistical  model  (2).  A 
geoelectric field amplitude of 12 V/km is selected for the supplemental GMD event to represent the upper limit 
of the 95 percent confidence interval for a 100‐year return interval. 

Spatial Considerations
The spatial structure of high‐latitude geomagnetic fields can be very complex during strong geomagnetic storm 
events  [13]‐[14].  One  reflection  of  this  spatial  complexity  is  localized  geomagnetic  field  enhancements  (local 
enhancements) that result in high amplitude geoelectric fields in regions of a few hundred kilometers. Figure I‐3 
illustrates this spatial complexity of the storm‐time geoelectric fields.8 In areas indicated by the bright red location, 
the geoelectric field can be substantially larger than at neighboring locations. These enhancements are primarily 
the result of external (geomagnetic field) conditions, and not local geological factors such as coastal effects.9 

                                                            

8 Figure I‐3 is for illustration purposes only, and is not meant to suggest that a particular area is more likely to experience a localized 

enhanced geoelectric field. The depiction is not to scale. 
9  Localized  externally‐driven  geomagnetic  phenomena  should  not  be  confused  with  localized  geoelectric  field  enhancements  due  to 

complex electromagnetic response of the ground to external excitation. Complex 3D geological conditions such as those at coastal regions 
can lead to localized geoelectric field enhancements but those are not considered here. 
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
8 

Appendix I – Technical Considerations 
 

 
Figure I-3: Illustration of the Spatial Scale between Localized Enhancements and Larger
Spatial Scale Amplitudes of Geoelectric Field during a Strong Geomagnetic Storm
In this figure, the red rectangle illustrates a spatially localized field enhancement.
The supplemental GMD event is designed to address local effects caused by a severe GMD event, such as increased 
var absorption and voltage depressions. 
A number of GMD events were analyzed to identify the basic characteristics of local enhancements. Three (3) 
solar storms studied and described below are: 
•
•
•

March 13, 1989 
•     October 29‐30, 2003 
•     March 17, 2015 

Four  localized  events  within  those  storms  were  identified  and  analyzed.  Geomagnetic  field  recordings  were 
collected  for  these  storms  and  the  geoelectric  field  was  computed  using  the  1D  plane  wave  method  and  the 
reference QuebecQuébec ground model. In each case, a local enhancement was correlated, generally oriented 
parallel to the westward ionospheric electrojet associated with ongoing larger scale geomagnetic activity. (See 
Figures I‐4  ̶ – I‐7 below)). 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
9 

Appendix I – Technical Considerations 
 

Figure I-4: March 13, 1989, at 21:44 UT, Brorfelde (BFE), Denmark

Figure I-5: October 29, 2003, at 06:47 UT, Narsarsuaq (NAQ), Greenland

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
10 

 

Appendix I – Technical Considerations 
 

Figure I-6: October 30, 2003, at 16:49UT, Hopen Island (HOP), Svalbard, Norway
 

Figure I-7: March 17, 2015, at 13:33 UT, Deadhorse, Alaska, USA

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
11 

 

Appendix I – Technical Considerations 
 

All of the above events were analyzed by reviewing the time series magnetic field data and transforming it to an 
electric field and focusing on the time period of the spatially correlated local enhancement. There were apparent 
similarities in the character of the local enhancements. The local enhancements occurred during peak periods of 
geomagnetic activity and were distinguished by relatively brief excursions of rapid magnetic field variation. With 
respect to time duration, the local enhancements generally occurred over a period of 2‐5 minutes. (See Figures I‐
8  ̶ – I‐11) 

Figure I-8: Geoelectric field March 13, 1989, at 21:44 UT, Brorfelde (BFE), Denmark
 

Figure I-9: Geoelectric field October 29, 2003, at 06:47 UT,
Narsarsuaq (NAQ), Greenland
 
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
12 

Appendix I – Technical Considerations 
 

Figure I-10: Geoelectric field October 30, 2003, at 16:49 UT,
Hopen Island (HOP), Norway
 

Figure I-11 – Geoelectric field March 17, 2015, at 13:33 UT, Deadhorse, Alaska, USA
Based on the above analysis and the previous work associated with the benchmark GMD event, it is reasonable 
to incorporate a second (or supplemental) assessment into TPL‐007‐2 to account for the potential impact of a 
local enhancement in both the network analysis and the transformer thermal assessment(s). 
With respect to geographic area of the localized enhancement, the historical geomagnetic field data analyzed so 
far  provides  some  insight.  Analysis  suggests  that  the  enhancements  will  occur  in  a  relatively  narrow  band  of 
geomagnetic  latitude  (on  the  order  of  100  km)  and  wider  longitudinal  width  (on  the  order  of  500  km)  as  a 
consequence of the westward‐oriented structure of the source in the ionosphere.
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
13 

Appendix I – Technical Considerations 
 

Proposed TPL‐007‐2 provides flexibility for planners to determine how to apply the supplemental GMD event to 
the planning area. Acceptable approaches include, but are not limited to: 




ApplyApplying the peak geoelectric field for the supplemental GMD event (12 V/km scaled to the planning 
area) over the entire planning area; 
ApplyApplying a spatially limited (e.g., 100 km in North‐South direction and 500 km in East‐West direction) 
geoelectric field enhancement (12 V/km scaled to the planning area) over a portion(s) of the system, and 
applyapplying the benchmark GMD event over the rest of the system. 
Other methods to adjust the benchmark GMD event analysis for localized geoelectric field enhancement. 

Given the current state of knowledge regarding the spatial extent of a local geomagnetic field enhancements, 
upper  geographic  boundaries,  such  as  the  values  used  in  the  approaches  above,  are  reasonable  but  are  not 
definitive. 

Local Enhancement Waveform
The supplemental geomagnetic field waveform was derived by modifying the benchmark GMD event waveform 
to emulate the observed events described above. The temporal location of the enhancement corresponds to the 
time of the benchmark event with the highest geoelectric field. The local enhancement was constructed by scaling 
linearly a 5‐minute portion of the benchmark geomagnetic field so that the peak geoelectric field is 12 V/km at a 
geomagnetic latitude of 60° and reference earth model. Figure I‐12 shows the benchmark geomagnetic field and 
Figure  I‐13  shows  the  supplemental  event  geomagnetic  field.  Figure  I‐14  expands  the  view  into  Bx,  with  and 
without the local enhancement. Figure I‐15 is the corresponding expanded view of the geoelectric field magnitude 
with and without the local enhancement. 

Figure I-12: Benchmark Geomagnetic Field
Red Bx (Northward), Blue By (Eastward)
 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
14 

Appendix I – Technical Considerations 
 

Figure I-13: Supplemental Geomagnetic Field Waveform
Red Bx (Northward), Blue By (Eastward)
 

Figure I-14: Red Benchmark Bx and Blue Supplemental Bx (Northward) – Expanded View
 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
15 

Appendix I – Technical Considerations 
 

Figure I-15: Magnitude of the Geoelectric Field
Benchmark Blue and Supplemental Red – Expanded View

Transformer Thermal Assessment
The local enhancement of the supplemental GMD event waveform can have a material impact on the temperature 
rise (hot‐spot heating or metallic parts) even though the duration of the local enhancement is approximately 5five 
minutes. Thermal assessments based on the supplemental GMD event can be performed using the same methods 
employed for benchmark thermal assessments.10 
 

                                                            

10 See Transformer Thermal Impact Assessment white paper: http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐

Disturbance‐Mitigation.aspx http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
16 

 

Appendix II – Scaling the Supplemental GMD Event
The intensity of a GMD event depends on geographical considerations such as geomagnetic latitude and local 
earth conductivity [2].11 Scaling factors for geomagnetic latitude take into consideration that the intensity of a 
GMD event varies according to latitude‐based geographical location. Scaling factors for earth conductivity take 
into  account  that  the  induced  geoelectric  field  depends  on  earth  conductivity,  and  that  different  parts  of  the 
continent have different earth conductivity and deep earth structure. 
Scaling the supplemental GMD event differs from the benchmark GMD event in two ways: 


Epeak is 12 V/km instead of 8 V/km 



Beta factors for scaling the geoelectric field based on earth conductivity are different (see Table II‐2) 

More  discussion, including example  calculations, is  contained in  the Benchmark  GMD  Event Description white 
paper. 

Scaling the Geomagnetic Field
The supplemental GMD event is defined for geomagnetic latitude of 60 and it must be scaled to account for 
regional  differences  based  on  geomagnetic  latitude.  To  allow  usage  of  the  supplemental  geomagnetic  field 
waveform  in  other  locations,  Table  II‐1  summarizes  the  scaling  factor  α  correlating  peak  geoelectric  field  to 
geomagnetic latitude as describedillustrated in Figure II‐1 [3]. This scaling factor  has been obtained from a large 
number of global geomagnetic field observations of all major geomagnetic storms since the late 1980s [15]‐[2717], 
and can be approximated with the empirical expression in (II.1)): 
 

0.001

.

 

(II.1) 

where L is the geomagnetic latitude in degrees and 0.1    1.0. 

Figure II-1: Geomagnetic Latitude Lines in North America
                                                            

11 Geomagnetic latitude is analogous to geographic latitude, except that bearing is in relation to the magnetic poles, as opposed to the 

geographic poles. Geomagnetic phenomena are often best organized as a function of geomagnetic coordinates. Local earth conductivity 
refers to the electrical characteristics to depths of hundreds of km down to the earth’s mantle. In general terms, lower ground conductivity 
results in higher geoelectric field amplitudes. 
NERC | Supplemental GMD Event Description (DRAFT)| June 2017 
 

 

Appendix II – Scaling the Supplemental GMD Event 
 

Table II-1: Geomagnetic Field Scaling Factors
Geomagnetic Latitude 
(Degrees) 

Scaling Factor1 
() 

≤ 40

0.10

45

0.2

50

0.3

54

0.5

56

0.6

57

0.7

58

0.8

59

0.9

≥ 60

1.0

 

Scaling the Geoelectric Field
The supplemental GMD event is defined for the reference QuebecQuébec earth model provided in Table 1. This 
earth model has been used in many peer‐reviewed technical articles [11, 15]. The peak geoelectric field depends 
on the geomagnetic field waveform and the local earth conductivity. Ideally, the peak geoelectric field, Epeak, is 
obtained by calculating the geoelectric field from the scaled geomagnetic field waveform using the plane wave 
method and taking the maximum value of the resulting waveforms: 
∗

⁄
⁄

 
	

|

 

∗

 
,

(II.2) 

| 

where, 
*denotes convolution in the time domain, 
z(t) is the impulse response for the earth surface impedance calculated from the laterally uniform or 1D 
earth model, 
BE(t), BN(t) are the scaled Eastward and Northward geomagnetic field waveforms, and 
|EE(t), EN(t)| are the magnitudes of the calculated Eastward and Northward geoelectric field EE(t) and EN(t). 
As noted previously, the response of the earth to B(t) (and dB/dt) is frequency dependent. Figure II‐2 shows the 
magnitude of Z(ω) for the reference earth model. 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
18 

Appendix II – Scaling the Supplemental GMD Event 
 

Figure II-2: Magnitude of the Earth Surface Impedance for the Reference Earth Model
If a utility does not have the capability of calculating the waveform or time series for the geoelectric field, an earth 
conductivity scaling factor βS can be obtained from Table II‐2. Using α and β, the peak geoelectric field Epeak for a 
specific service territory shown in Figure II‐3 can be obtained using (II.3). 
12	

	 	

	 	

⁄

(II.3) 

It should be noted that (II.3) is an approximation based on the following assumptions: 


The  earth  models  used  to  calculate  Table  II‐2  for  the  United  States  are  from  published  information 
available on the USGS website. These scaling factors are slightly lower than the ones in the benchmark 
because the supplemental benchmark waveform has a higher frequency content at the time of the local 
enhancement. 



The models used to calculate Table II‐2 for Canada were obtained from NRCan and reflect the average 
structure  for  large  regions.  When  models  are  developed  for  sub‐regions,  there  will  be  variance  (to  a 
greater or lesser degree) from the average model. For instance, detailed models for Ontario have been 
developed by NRCan and consist of seven major sub‐regions. 



The conductivity scaling factor βS is calculated as the quotient of the local geoelectric field peak amplitude 
in a physiographic region with respect to the reference peak amplitude value of 12 V/km. Both geoelectric 
field peak amplitudes are calculated using the supplemental geomagnetic field time series. If a different 
geomagnetic field time series were used, the calculated scaling factors (β) would be different than the 
values in Table II‐2 because the frequency content of storm maxima is, in principle, different for every 
storm. If a utility has technically‐sound earth models for its service territory and sub‐regions thereof, then 
the use of such earth models is preferable to estimate Epeak. 



When a ground conductivity model is not available the planning entity should use the largest βs factor of 
adjacent physiographic regions or a technically‐justified value. 
NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
19 

Appendix II – Scaling the Supplemental GMD Event 
 

Physiographic Regions of the Continental United States

Physiographic Regions of Canada

Figure II-3: Physiographic Regions of North America
 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
20 

Appendix II – Scaling the Supplemental GMD Event 
 

Table II-2 Supplemental Geoelectric Field Scaling Factors
Earth model

Scaling Factor ()

AK1A 

0.51 

AK1B 

0.51 

AP1 

0.30 

AP2 

0.78 

BR1 

0.22 

CL1 

0.73 

CO1 

0.25 

CP1 

0.77 

CP2 

0.86 

FL1 

0.73 

CS1 

0.37 

IP1 

0.90 

IP2 

0.25 

IP3 

0.90 

IP4 

0.35 

NE1 

0.77 

PB1 

0.55 

PB2 

0.39 

PT1 

1.19 

SL1 

0.49 

SU1 

0.90 

BOU 

0.24 

FBK 

0.56 

PRU 

0.22 

BC 

0.62 

PRAIRIES 

0.88 

SHIELD 

1.0 

ATLANTIC 

0.76 

 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
21 

 

References
[1]

High‐Impact, Low‐Frequency Event Risk to the North American Bulk Power System, A Jointly‐
Commissioned Summary Report of the North American Reliability Corporation and the U.S. 
Department of Energy’s November 2009 Workshop. 

[2]

Application Guide: Computing Geomagnetically‐Induced Current in the Bulk‐Power System, NERC. 
December 2013. http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20Task%20Force 
%20GMDTF%202013/GIC%20Application%20Guide%202013_approved.pdfNERC.  

 
[3]

Kuan Zheng, RistoBoteler, D. H.; Pirjola, David Boteler, Lian‐guang R. J.; Liu, L.; and Zheng, K.; 
“Geoelectric Fields Due to Small‐Scale and Large‐Scale Source Currents”,.” IEEE Transactions on Power 
Delivery, Vol. 28, No. 1, January 2013, pp. 442‐449. 

[4]

Boteler, D. H. “Geomagnetically Induced Currents: Present Knowledge and Future Research”,.” IEEE 
Transactions on Power Delivery, Vol. 9, No. 1, January 1994, pp. 50‐58. 

[5]

Boteler, D. H. “Modeling Geomagnetically Induced Currents Produced by Realistic and Uniform Electric 
Fields”,.” IEEE Transactions on Power Delivery, Vol. 13, No. 4, January 1998, pp. 1303‐1308. 

 
[6]

J. L. Gilbert, W. A.J. L.; Radasky, E. B.W. A.; and Savage, E. B. “A Technique for Calculating the Currents 
Induced by Geomagnetic Storms on Large High Voltage Power Grids”,.” Electromagnetic Compatibility 
(EMC),). 2012 IEEE International Symposium on. 

[7]

How to Calculate Electric Fields to Determine Geomagnetically‐Induced Currents. EPRI, Palo Alto, CA: 
2013. 3002002149. 

[8]

Pirjola, R.; Pulkkinen, A., R. Pirjola, .; and A. Viljanen, V. Statistics of extreme geomagnetically induced 
current events, Space Weather, 6, S07001, doi:10.1029/2008SW000388, 2008. 

[9]

Boteler, D. H.,. Assessment of geomagnetic hazard to power systems in Canada, Nat. Hazards, 23, 
101–120,. 2001. 

[10] Finnish Meteorological Institute’s IMAGE magnetometer chain data available at: 
http://image.gsfc.nasa.gov/ 
[11] Boteler, D. H.,. and R. J. Pirjola, R. J. The complex‐image method for calculating the magnetic and 
electric fields produced at the surface of the Earth by the auroral electrojet,. Geophys. J. Int., 132(1), 
31—40,. 1998. 
[12] Coles, Stuart (2001).S. An Introduction to Statistical Modelling of Extreme Values. Springer. 2001. 
[13] Clarke, E.; Mckay, A.; Pulkkinen, A., A..; and Thomson, E. Clarke, and A. Mckay,A. April 2000 
geomagnetic storm: ionospheric drivers of large geomagnetically induced currents,. Annales 
Geophysicae, 21, 709‐717,. 2003. 
[14] Lindahl, S.; Pirjola, R. J.; Pulkkinen, A., S. Lindahl, A. .; and Viljanen, and R. Pirjola,A. Geomagnetic 
storm of 29–31 October 2003: Geomagnetically induced currents and their relation to problems in the 

NERC | Supplemental GMD Event Description (DRAFT)| June 2017 
 

References 
 

Swedish high‐voltage power transmission system,. Space Weather, 3, S08C03, 
doi:10.1029/2004SW000123,. 2005. 
 
[15] Pulkkinen, A., E.Beggan, C.; Bernabeu, J.E.; Eichner, C. BegganJ.; Pulkkinen, A.; and A. Thomson, A., 
Generation of 100‐year geomagnetically induced current scenarios, Space Weather, Vol. 10, S04003, 
doi:10.1029/2011SW000750,. 2012. 
[16] Crowley, G.; Ngwira, C., A..; Pulkkinen, F.A.; and Wilder, and G. Crowley,F. Extended study of extreme 
geoelectric field event scenarios for geomagnetically induced current applications,. Space Weather, 
Vol. 11, 121–131, doi:10.1002/swe.20021,. 2013. 
 
[17] Thomson, A., S.Dawson, E.; Reay, S.; and E. DawsonThomson, A. Quantifying extreme behavior in 
geomagnetic activity,. Space Weather, 9, S10001, doi:10.1029/2011SW000696,. 2011. 

NERC | Supplemental GMD Event Description (DRAFT)| June| October 2017 
23 

 
 

Screening Criterion for Transformer Thermal
Impact Assessment White Paper
TPL-007-2 Transmission System Planned Performance for
Geomagnetic Disturbance Events
Summary
Proposed TPL‐007‐2 includes requirements for entities to perform two types of geomagnetic disturbance 
(GMD)  Vulnerability  Assessments  to  evaluate  the  potential  impacts  of  GMD  events  on  the  Bulk  Electric 
System (BES): 


The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated 
with TPL‐007‐1 which standard was approved by the Federal Energy Regulatory Commission (FERC) 
in Order No. 830 in September 2016. The benchmark GMD event is derived from spatially‐averaged 
geoelectric field values to address potential wide‐area effects that could be caused by a severe 1‐in‐
100 year GMD event.1 



The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used 
by entities to evaluate risks that localized peaks in geomagnetic field during a severe GMD event 
"could potentially affect the reliable operation of the Bulk‐Power System".2 Localized enhancements 
of geomagnetic field can result in geoelectric field values above the spatially‐averaged benchmark 
in a local area. 

The  standard  requires  transformer  thermal  impact  assessments  to  be  performed  on  BES  power 
transformers with high side, wye‐grounded windings with terminal voltage greater than 200 kV. Identified 
BES transformers must undergo a thermal impact assessment if the maximum effective geomagnetically‐
induced current (GIC) in the transformer is equal to or greater than: 


75 A per phase for the benchmark GMD event 



85 A per phase for the supplemental GMD event

Based on published power transformer measurement data as described below, the respective screening 
criteria are conservative and, although derived from measurements in single‐phase units, are applicable to 
transformers with all core types (e.g., three‐limb, three‐phase). 
                                                       

1 See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in Docket No. RM15‐11 on June 28, 

2016. 
2 See Order No. 830, P. 47. In Order No. 830, FERC directed NERC to develop modifications to the benchmark GMD event, included in TPL‐

007‐1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event for this assessment 
are in the Supplemental GMD Event Description white paper.  

 

 
 

Outside of the differing screening criteria, the only difference between the thermal impact assessment for 
the benchmark GMD event and the supplemental GMD event is that a different waveform is used, therefore 
peak metallic hot spot temperatures are slightly different for a given GIC in the transformer. 

Justification for the Benchmark Screening Criterion
Applicable  entities  are  required  to  carry  out  a  thermal  assessment  with  GIC(t)  calculated  using  the 
benchmark  GMD  event  geomagnetic  field  time  series  or  waveform  for  effective  GIC  values  above  a 
screening threshold. The calculated GIC(t) for every transformer will be different because the length and 
orientation of transmission circuits connected to each transformer will be different even if the geoelectric 
field is assumed to be uniform. However, for a given thermal model and maximum effective GIC there are 
upper  and  lower  bounds  for  the  peak  hot  spot  temperatures.  These  are  shown  in  Figure  1  using  three 
available thermal models based on direct temperature measurements. 
The results shown in Figure 1 summarize the peak metallic hot spot temperatures when GIC(t) is calculated 
using  (1),  and  systematically  varying  GICE  and  GICN  to  account  for  all  possible  orientation  of  circuits 
connected  to  a  transformer.  The  transformer  GIC  (in  A/phase)  for  any  value  of  EE(t)  and  EN(t)  can  be 
calculated using equation (1) from reference [1]. 
|

 

|

sin

cos

 

(1) 

where 
 
 

|

|

 
tan

 

(2) 

 

(3) 
 

(4) 

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to 
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase per V/km. 
It should be emphasized that with the thermal models used and the benchmark GMD event geomagnetic 
field waveform, peak metallic hot spot temperatures will lie below the envelope shown in black in Figure 1. 
The  x‐axis  in  Figure  1  corresponds  to  the  absolute  value  of  peak  GIC(t).  Effective  maximum  GIC  for  a 
transformer corresponds to a worst‐case geoelectric field orientation, which is network‐specific. Figure 1 
represents a possible range, not the specific thermal response for a given effective GIC and orientation. 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

2 

 
 

 
Figure 1: Metallic hot spot temperatures calculated using the benchmark GMD event
Red: SVC coupling transformer model [2] Blue: Fingrid model [3] Green: Autotransformer model [4]

Consequently, with the most conservative thermal models known at this point in time, the peak metallic 
hot  spot  temperature  obtained  with  the  benchmark  GMD  event  waveform  assuming  an  effective  GIC 
magnitude of 75 A per phase will result in a peak temperature between 160°C and 172°C when the bulk oil 
temperature is 80°C (full load bulk oil temperature). The upper boundary of 172°C remains well below the 
metallic hot spot 200°C threshold for short‐time emergency loading suggested in IEEE Std C57.91‐2011 – 
Guide for Loading Mineral‐Oil‐Immersed Transformers and Step‐Voltage Regulators [5]. 
The selection of the 75 A per phase screening threshold is based on the following considerations: 


A thermal assessment, which uses the most conservative thermal models known to date, indicates 
that a GIC of 75A will not result in peak metallic hot spot temperatures above 172°C. Transformer 
thermal assessments should not be required by Reliability Standards when results will fall well below 
IEEE Std C57.91‐2011 limits. 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

3 

 
 



Applicable entities may choose to carry out a thermal assessment when the effective GIC is below 
75 A per phase to take into account the age or condition of specific transformers where IEEE Std 
C57.91‐ 2011 limits could be assumed to be lower than 200°C. Refer to IEEE Standard C57.163‐2015 
Guide  for  Establishing  Power  Transformer  Capability  while  under  Geomagnetic  Disturbances  for 
additional information [6]. 



The models used to determine the 75 A per phase screening threshold are known to be conservative 
at higher values of effective GIC, especially the SVC coupling transformer model in [2]. 



Thermal models in peer‐reviewed technical literature, especially those calculated models without 
experimental  validation,  are  less  conservative  than  the  models  used  to  determine  the  screening 
threshold. Therefore, a technically‐justified thermal assessment for effective GIC below 75 A per 
phase using the benchmark GMD event geomagnetic field waveform will always result in a “pass” 
on the basis of the state of the knowledge at this point in time. 



Based  on  simulations,  the  75  A  per  phase  screening  threshold  will  result  in  a  maximum 
instantaneous peak hot spot temperature of 172°C. However, IEEE Std C57.91‐2011 limits assume 
short term emergency operation (typically 30 minutes). As illustrated in Figure 2, simulations of the 
75 A per phase screening threshold result in 30‐minute duration hot spot temperatures of about 
155°C. The threshold provides an added measure of conservatism in not taking into account the 
duration of hot spot temperatures. 



The models used in the determination of the threshold are conservative but technically justified. 



Winding  hot  spots  are  not  the  limiting  factor  in  terms  of  hot  spots  due  to  half‐cycle  saturation, 
therefore the screening criterion is focused on metallic part hot spots only. 

The  75  A  per  phase  screening  threshold  was  determined  using  single‐phase  transformers,  but  is  being 
applied  as  a  screening  criterion  for  all  types  of  transformer  construction.  While  it  is  known  that  some 
transformer types such as three‐limb, three‐phase transformers are intrinsically less susceptible to GIC, it 
is not known by how much, on the basis of experimentally‐supported models. 
 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

4 

 
 

Figure 2: Metallic hot spot temperatures calculated using the benchmark GMD event
Red: metallic hot spot temperature
Blue: GIC(t) that produces the maximum hot spot temperature with peak GIC(t) scaled to 75 A/phase

Justification for the Supplemental Screening Criterion
As in the case for the benchmark GMD event discussed above, applicable entities are required to carry out 
thermal assessments on their BES power transformers when the effective GIC values are above a screening 
threshold. GIC(t) for supplemental thermal assessments is calculated using the supplemental GMD event 
geomagnetic field time series or waveform. 
Using the supplemental GMD event waveform, a thermal analysis was completed for the two transformers 
that were limiting for the benchmark waveform. The results are shown in Figure 3. Peak metallic hot spot 
temperatures for the supplemental GMD event will lie below the envelope shown by the black line trace in 
Figure 3. Because the supplemental waveform has a sharper peak, the peak metallic hot spot temperatures 
are slightly lower than those associated with the benchmark waveform. Applying the most conservative 
thermal models  known  at  this  point  in  time,  the  peak  metallic  hot  spot  temperature  obtained  with  the 
supplemental GMD event waveform assuming an effective GIC magnitude of 85 A per phase will result in a 
peak temperature of 172°C when the bulk oil temperature is 80°C (full load bulk oil temperature).3 Thus, 85 
A per phase is the screening level for the supplemental waveform. 

                                                       

3 The temperature 172°C was selected as the screening criteria for the benchmark waveform as described in the preceding section.  

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

5 

 
 

 
Figure 3: Metallic hot spot temperatures calculated using the supplemental GMD event
Red: SVC coupling transformer model [2] Green: Autotransformer model [4]

 

 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

6 

 
 

Appendix I - Transformer Thermal Models Used in the Development of the
Screening Criteria
The envelope used for thermal screening (Figure 1) is derived from two thermal models. The first is based 
on laboratory measurements carried out on 500/16.5 kV 400 MVA single‐phase Static Var Compensator 
(SVC) coupling transformer [2]. Temperature measurements were carried out at relatively small values of 
GIC (see Figure I‐1). The asymptotic thermal response for this model is the linear extrapolation of the known 
measurement values. Although the near‐linear behavior of the asymptotic thermal response is consistent 
with the measurements made on a Fingrid 400 kV 400 MVA five‐leg core‐type fully‐wound transformer [3] 
(see Figures I‐2 and I‐3), the extrapolation from low values of GIC is very conservative, but reasonable for 
screening purposes. 
The second transformer model is based on a combination of measurements and modeling for a 400 kV 400 
MVA single‐phase core‐type autotransformer [4] (see Figures I‐4 and I‐5). The asymptotic thermal behavior 
of this transformer shows a “down‐turn” at high values of GIC as the tie plate increasingly saturates but 
relatively high temperatures for lower values of GIC. The hot spot temperatures are higher than for the two 
other models for GIC less than 125 A per phase. 

18

Temperature (deg. C)

16
14
12
10
8
6
4
2
0
0

5

10

15

20

25

30

Time (min)

Figure I-1: Thermal step response of the tie plate of a 500 kV 400 MVA single-phase SVC
coupling transformer to a 5 A per phase dc step

 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

7 

 
 

35

Temperature (deg. C)

30
25
20
15
10
5
0
0

5

10

15

20

25

30

35

40

45

Time (min)

Figure I-2: Step thermal response of the top yoke clamp of a 400 kV 400 MVA five-leg coretype fully-wound transformer to a 16.67 A per phase dc step 

 
200

Temperature (deg. C)

180
160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure I-3: Asymptotic thermal response of the top yoke clamp of a 400 kV 400 MVA fiveleg core-type fully-wound transformer

 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

8 

 
 

Figure I-4: Step thermal response of the tie plate of a 400 kV 400 MVA single-phase coretype autotransformer to a 10 A per phase dc step 

 
180

Temperature (deg. C)

160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure I-5: Asymptotic thermal response of the tie plate of a 400 kV 400 MVA single-phase
core-type autotransformer

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

9 

 
 

The  envelope  in  Figure  1  can  be  used  as  a  conservative  thermal  assessment  for  effective  GIC  values  of 
associated with the benchmark waveform and reference earth model (see Table 1). 
Table 1:  Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Benchmark GMD Event 
Effective GIC 
(A/phase) 
0 
10 
20 
30 
40 
50 
60 
70 
75 
80 
90 

Metallic hot spot 
Temperature (°C) 
80 
107 
128 
139 
148 
157 
169 
170 
172 
175 
179 

Effective GIC 
(A/phase) 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

Metallic hot spot 
Temperature (°C) 
182 
186 
190 
193 
204 
213 
221 
230 
234 
241 
247 

For instance, if effective GIC is 130 A per phase and oil temperature is assumed to be 80°C, peak hot spot 
temperature  is  193°C.  This  value  is  below  the  200°C  IEEE  Std  C57.91‐2011  threshold  for  short  time 
emergency loading and this transformer will have passed the thermal assessment. If the full heat run oil 
temperature is 67°C at maximum ambient temperature, then 150 A per phase of effective GIC translates 
into a peak hot spot temperature of 200°C and the transformer will have passed. If the limit is lowered to 
180°C to account for the condition of the transformer, then this would be an indication to “sharpen the 
pencil” and perform a detailed assessment. Some methods are described in Reference [1]. 
The temperature envelope in Figure 1 corresponds to the values of effective GIC that result in the highest 
temperature  for  the  benchmark  GMD  event.  Different  values  of  effective  GIC  could  result  in  lower 
temperatures  using  the  same  model.  For  instance,  the  difference  in  upper  and  lower  bounds  of  peak 
temperatures for the SVC coupling transformer model for 150 A per phase is approximately 30°C. In this 
case, GIC(t) should be generated to calculate the peak temperatures for the actual configuration of the 
transformer  within  the  system  as  described  in  Reference  [1].  Alternatively,  a  more  precise  thermal 
assessment could be carried out with a thermal model that more closely represents the thermal behavior 
of the transformer under consideration.  
Similar to the discussion above, the envelope in Figure 3 can be used as a conservative thermal assessment 
for effective GIC values of associated with the supplemental waveform (see Table 2). The supplemental 
waveform  has  a  sharper  peak;  therefore,  the  peak  metallic  hot  spot  temperatures  associated  with  the 
supplemental  waveform  for  the  same  peak  current  are  slightly  lower  than  those  associated  with  the 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

10 

 
 

benchmark waveform. In other words, for the same peak current value, the duration is relatively shorter 
with the supplemental waveform, and shorter duration means lower temperature. However, higher peak 
currents will occur with the supplemental benchmark, therefore, higher peak hot spot temperatures will 
occur. Comparing Tables 1 and 2 shows the magnitude of this difference. 
Table 2:  Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Supplemental GMD Event 
Effective GIC 
(A/phase) 
0 
10 
20 
30 
40 
50 
60 
70 
75 
80 
85 
90 
100 
110 

 

Metallic hot spot 
Temperature (°C ) 
80 
107 
124 
137 
147 
156 
161 
162 
165 
169 
172 
177 
181 
185 

Effective 
GIC(A/phase) 
120 
130 
140 
150 
160 
170 
180 
190 
200 
220 
230 
250 
275 
300 

Metallic hot spot 
Temperature (°C ) 
188 
191 
194 
198 
203 
209 
214 
229 
237 
248 
253 
276 
298 
316 

 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

11 

 
 

References
[1] Transformer Thermal Impact Assessment white paper. Developed by the Project 2013‐03 (Geomagnetic 
Disturbance) standard drafting team. October 2017. Available at: 
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx 
[2] Marti,  L;  Rezaei‐Zare,  A.;  and  Narang,  A.  "Simulation  of  Transformer  Hotspot  Heating  due  to 
Geomagnetically Induced Currents." IEEE Transactions on Power Delivery, vol.28, no.1, pp.320‐327, Jan. 
2013. 
[3] Lahtinen,  M.  and  Elovaara,  J.  “GIC  occurrences  and  GIC  test  for  400  kV  system  transformer”.  IEEE 
Transactions on Power Delivery, Vol. 17, No. 2. April 2002. 
[4] Raith,  J.  and  Ausserhofer,  S.  “GIC  Strength  verification  of  Power  Transformers  in  a  High  Voltage 
Laboratory”, GIC Workshop, Cape Town, April 2014 
[5]  "IEEE  Guide  for  Loading  Mineral‐Oil‐Immersed  Transformers  and  Step‐Voltage  Regulators."  IEEE  Std 
C57.91‐2011 (Revision of IEEE Std C57.91‐1995). 
[6] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances.” IEEE 
Std C57.163‐2015. 
 

Screening Criterion for Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation |October 2017 

12 

 
 

Screening Criterion for Transformer Thermal
Impact Assessment White Paper
Project 2013-03 (Geomagnetic Disturbance Mitigation)
TPL-007-2 Transmission System Planned Performance for
Geomagnetic Disturbance Events
Summary
Proposed TPL‐007‐2 includes requirements for entities to perform two types of geomagnetic disturbance 
(GMD)  Vulnerability  Assessments  to  evaluate  the  potential  impacts  of  GMD  events  on  the  Bulk  Electric 
System (BES): 


The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated 
with TPL‐007‐1 which standard was approved by the Federal Energy Regulatory Commission (FERC) 
in Order No. 830 in September 2016. The benchmark GMD event is derived from spatially‐averaged 
geoelectric field values to address potential wide‐area effects that could be caused by a severe 1‐in‐
100 year GMD event.1 



The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used 
by entities to evaluate risks that localized peaks in geomagnetic field during a severe GMD event 
"could potentially affect the reliable operation of the Bulk‐Power System".2 Localized enhancements 
of geomagnetic field can result in geoelectric field values above the spatially‐averaged benchmark 
in a local area. 

The  standard  requires  transformer  thermal  impact  assessments  to  be  performed  on  BES  power 
transformers with high side, wye‐grounded windings with terminal voltage greater than 200 kV. Identified 
BES transformers must undergo a thermal impact assessment if the maximum effective geomagnetically‐
induced current (GIC) in the transformer is equal to or greater than: 


75 A per phase for the benchmark GMD event 



85 A per phase for the supplemental GMD event

                                                       

1 See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in Docket No. RM15‐11 on June 28, 

2016. 
2 See Order No. 830, P. 47. On September 22, 2016In Order No. 830, FERC directed NERC to develop modifications to the benchmark GMD 
event, included in TPL‐007‐1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event 
for this assessment are in the Supplemental GMD Event Description white paper.  

 

 
 

Based on published power transformer measurement data as described below, the respective screening 
criteria are conservative and, although derived from measurements in single‐phase units, are applicable to 
transformers with all core types (e.g., three‐limb, three‐phase). 
Outside of the differing screening criteria, the only difference between the thermal impact assessment for 
the benchmark GMD event and the supplemental GMD event is that a different waveform is used, therefore 
peak metallic hot spot temperatures are slightly different for a given GIC in the transformer. 

Justification for the Benchmark Screening Criterion
Applicable  entities  are  required  to  carry  out  a  thermal  assessment  with  GIC(t)  calculated  using  the 
benchmark  GMD  event  geomagnetic  field  time  series  or  waveform  for  effective  GIC  values  above  a 
screening threshold. The calculated GIC(t) for every transformer will be different because the length and 
orientation of transmission circuits connected to each transformer will be different even if the geoelectric 
field is assumed to be uniform. However, for a given thermal model and maximum effective GIC there are 
upper  and  lower  bounds  for  the  peak  hot  spot  temperatures.  These  are  shown  in  Figure  1  using  three 
available thermal models based on direct temperature measurements. 
The results shown in Figure 1 summarize the peak metallic hot spot temperatures when GIC(t) is calculated 
using  (1),  and  systematically  varying  GICE  and  GICN  to  account  for  all  possible  orientation  of  circuits 
connected  to  a  transformer.  The  transformer  GIC  (in  A/phase)  for  any  value  of  EE(t)  and  EN(t)  can  be 
calculated using equation (1) from reference [1]. 
|

 

|

sin

cos

 

(1) 

where 
 
 

|

|

 
tan

 

(2) 

 

(3) 
 

(4) 

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to 
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase per V/km. 
It should be emphasized that with the thermal models used and the benchmark GMD event geomagnetic 
field waveform, peak metallic hot spot temperatures will lie below the envelope shown in black in Figure 1. 
The  x‐axis  in  Figure  1  corresponds  to  the  absolute  value  of  peak  GIC(t).  Effective  maximum  GIC  for  a 
transformer corresponds to a worst‐case geoelectric field orientation, which is network‐specific. Figure 1 
represents a possible range, not the specific thermal response for a given effective GIC and orientation. 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

2 

 
 

 
Figure 1: Metallic hot spot temperatures calculated using the benchmark GMD event
Red: SVC coupling transformer model [2] Blue: Fingrid model [3] Green: Autotransformer model [4]

Consequently, with the most conservative thermal models known at this point in time, the peak metallic 
hot  spot  temperature  obtained  with  the  benchmark  GMD  event  waveform  assuming  an  effective  GIC 
magnitude of 75 A per phase will result in a peak temperature between 160°C and 172°C when the bulk oil 
temperature is 80°C (full load bulk oil temperature). The upper boundary of 172°C remains well below the 
metallic hot spot 200°C threshold for short‐time emergency loading suggested in IEEE Std C57.91‐2011  ̶– 
Guide for Loading Mineral‐Oil‐Immersed Transformers and Step‐Voltage Regulators [5]. 
The selection of the 75 A per phase screening threshold is based on the following considerations: 


A thermal assessment, which uses the most conservative thermal models known to date, indicates 
that a GIC of 75A will not result in peak metallic hot spot temperatures above 172°C. Transformer 
thermal assessments should not be required by Reliability Standards when results will fall well below 
IEEE Std C57.91‐2011 limits. 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

3 

 
 



Applicable entities may choose to carry out a thermal assessment when the effective GIC is below 
75 A per phase to take into account the age or condition of specific transformers where IEEE Std 
C57.91‐ 2011 limits could be assumed to be lower than 200°C. Refer to IEEE Standard C57.163‐2015 
Guide  for  Establishing  Power  Transformer  Capability  while  under  Geomagnetic  Disturbances  for 
additional information [6]. 



The models used to determine the 75 A per phase screening threshold are known to be conservative 
at higher values of effective GIC, especially the SVC coupling transformer model in [2]. 



Thermal models in peer‐reviewed technical literature, especially those calculated models without 
experimental  validation,  are  less  conservative  than  the  models  used  to  determine  the  screening 
threshold. Therefore, a technically‐justified thermal assessment for effective GIC below 75 A per 
phase using the benchmark GMD event geomagnetic field waveform will always result in a “pass” 
on the basis of the state of the knowledge at this point in time. 



Based  on  simulations,  the  75  A  per  phase  screening  threshold  will  result  in  a  maximum 
instantaneous peak hot spot temperature of 172°C. However, IEEE Std C57.91‐2011 limits assume 
short term emergency operation (typically 30 minutes). As illustrated in Figure 2, simulations of the 
75 A per phase screening threshold result in 30‐minute duration hot spot temperatures of about 
155°C. The threshold provides an added measure of conservatism in not taking into account the 
duration of hot spot temperatures. 



The models used in the determination of the threshold are conservative but technically justified. 



Winding  hot  spots  are  not  the  limiting  factor  in  terms  of  hot  spots  due  to  half‐cycle  saturation, 
therefore the screening criterion is focused on metallic part hot spots only. 

The  75  A  per  phase  screening  threshold  was  determined  using  single‐phase  transformers,  but  is  being 
applied  as  a  screening  criterion  for  all  types  of  transformer  construction.  While  it  is  known  that  some 
transformer types such as three‐limb, three‐phase transformers are intrinsically less susceptible to GIC, it 
is not known by how much, on the basis of experimentally‐supported models. 
 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

4 

 
 

Figure 2: Metallic hot spot temperatures calculated using the benchmark GMD event
Red: metallic hot spot temperature
Blue: GIC(t) that produces the maximum hot spot temperature with peak GIC(t) scaled to 75 A/phase

Justification for the Supplemental Screening Criterion
As in the case for the benchmark GMD event discussed above, applicable entities are required to carry out 
thermal assessments on their BES power transformers when the effective GIC values are above a screening 
threshold. GIC(t) for supplemental thermal assessments is calculated using the supplemental GMD event 
geomagnetic field time series or waveform. 
Using the supplemental GMD event waveform, a thermal analysis was completed for the two transformers 
that were limiting for the benchmark waveform. The results are shown in Figure 3. Peak metallic hot spot 
temperatures for the supplemental GMD event will lie below the envelope shown by the black line trace in 
Figure 3. Because the supplemental waveform has a sharper peak, the peak metallic hot spot temperatures 
are slightly lower than those associated with the benchmark waveform. Applying the most conservative 
thermal models  known  at  this  point  in  time,  the  peak  metallic  hot  spot  temperature  obtained  with  the 
supplemental GMD event waveform assuming an effective GIC magnitude of 85 A per phase will result in a 
peak temperature of 172°C when the bulk oil temperature is 80°C (full load bulk oil temperature).3 Thus, 85 
A per phase is the screening level for the supplemental waveform. 

                                                       
3  

The temperature 172°C was selected as the screening criteria for the benchmark waveform as described in the preceding section.  

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

5 

 
 

 
Figure 3: Metallic hot spot temperatures calculated using the supplemental GMD event
Red: SVC coupling transformer model [2] Green: Autotransformer model [4]

 

 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

6 

 
 

Appendix I - Transformer Thermal Models Used in the Development of the
Screening Criteria
The envelope used for thermal screening (Figure 1) is derived from two thermal models. The first is based 
on laboratory measurements carried out on 500/16.5 kV 400 MVA single‐phase Static Var Compensator 
(SVC) coupling transformer [2]. Temperature measurements were carried out at relatively small values of 
GIC (see Figure I‐1). The asymptotic thermal response for this model is the linear extrapolation of the known 
measurement values. Although the near‐linear behavior of the asymptotic thermal response is consistent 
with the measurements made on a Fingrid 400 kV 400 MVA five‐leg core‐type fully‐wound transformer [3] 
(see Figures I‐2 and I‐3), the extrapolation from low values of GIC is very conservative, but reasonable for 
screening purposes. 
The second transformer model is based on a combination of measurements and modeling for a 400 kV 400 
MVA single‐phase core‐type autotransformer [4] (see Figures I‐4 and I‐5). The asymptotic thermal behavior 
of this transformer shows a “down‐turn” at high values of GIC as the tie plate increasingly saturates but 
relatively high temperatures for lower values of GIC. The hot spot temperatures are higher than for the two 
other models for GIC less than 125 A per phase. 

18

Temperature (deg. C)

16
14
12
10
8
6
4
2
0
0

5

10

15

20

25

30

Time (min)

Figure I-1: Thermal step response of the tie plate of a 500 kV 400 MVA single-phase SVC
coupling transformer to a 5 A per phase dc step

 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

7 

 
 

35

Temperature (deg. C)

30
25
20
15
10
5
0
0

5

10

15

20

25

30

35

40

45

Time (min)

Figure I-2: Step thermal response of the top yoke clamp of a 400 kV 400 MVA five-leg coretype fully-wound transformer to a 16.67 A per phase dc step 

 
200

Temperature (deg. C)

180
160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure I-3: Asymptotic thermal response of the top yoke clamp of a 400 kV 400 MVA fiveleg core-type fully-wound transformer

 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

8 

 
 

Figure I-4: Step thermal response of the tie plate of a 400 kV 400 MVA single-phase coretype autotransformer to a 10 A per phase dc step 

 
180

Temperature (deg. C)

160
140
120
100
80
60
40
20
0
0

10

20

30

40

50

60

70

80

90

100

GIC (A/phase)

Figure I-5: Asymptotic thermal response of the tie plate of a 400 kV 400 MVA single-phase
core-type autotransformer

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

9 

 
 

The  envelope  in  Figure  1  can  be  used  as  a  conservative  thermal  assessment  for  effective  GIC  values  of 
associated with the benchmark waveform and reference earth model (see Table 1). 
Table 1:  Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Benchmark GMD Event 
Effective GIC 
(A/phase) 
0 
10 
20 
30 
40 
50 
60 
70 
75 
80 
90 

Metallic hot spot 
Temperature (°C) 
80 
107 
128 
139 
148 
157 
169 
170 
172 
175 
179 

Effective GIC 
(A/phase) 
100 
110 
120 
130 
140 
150 
160 
170 
180 
190 
200 

Metallic hot spot 
Temperature (°C) 
182 
186 
190 
193 
204 
213 
221 
230 
234 
241 
247 

For instance, if effective GIC is 130 A per phase and oil temperature is assumed to be 80°C, peak hot spot 
temperature  is  193°C.  This  value  is  below  the  200°C  IEEE  Std  C57.91‐2011  threshold  for  short  time 
emergency loading and this transformer will have passed the thermal assessment. If the full heat run oil 
temperature is 67°C at maximum ambient temperature, then 150 A per phase of effective GIC translates 
into a peak hot spot temperature of 200°C and the transformer will have passed. If the limit is lowered to 
180°C to account for the condition of the transformer, then this would be an indication to “sharpen the 
pencil” and perform a detailed assessment. Some methods are described in Reference [1]. 
The temperature envelope in Figure 1 corresponds to the values of effective GIC that result in the highest 
temperature  for  the  benchmark  GMD  event.  Different  values  of  effective  GIC  could  result  in  lower 
temperatures  using  the  same  model.  For  instance,  the  difference  in  upper  and  lower  bounds  of  peak 
temperatures for the SVC coupling transformer model for 150 A per phase is approximately 30°C. In this 
case, GIC(t) should be generated to calculate the peak temperatures for the actual configuration of the 
transformer  within  the  system  as  described  in  Reference  [1].  Alternatively,  a  more  precise  thermal 
assessment could be carried out with a thermal model that more closely represents the thermal behavior 
of the transformer under consideration.  
Similar to the discussion above, the envelope in Figure 3 can be used as a conservative thermal assessment 
for  effective  GIC  values  of  associated  with  the  supplemental  waveform  (see  Table  2).  Because  theThe 
supplemental waveform has a sharper peak; therefore, the peak metallic hot spot temperatures associated 
with the supplemental waveform for the same peak current are slightly lower than those associated with 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

10 

 
 

the benchmark waveform. In other words, for the same peak current value, the duration is relatively shorter 
with the supplemental waveform, and shorter duration means lower temperature. However, higher peak 
currents will occur with the supplemental benchmark, therefore, higher peak hot spot temperatures will 
occur. Comparing Tables 1 and 2 shows the magnitude of this difference. 
Table 2:  Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Supplemental GMD Event 
Effective GIC 
(A/phase) 
0 
10 
20 
30 
40 
50 
60 
70 
75 
80 
85 
90 
100 
110 

 

Metallic hot spot 
Temperature (°C ) 
80 
107 
124 
137 
147 
156 
161 
162 
165 
169 
172 
177 
181 
185 

Effective 
GIC(A/phase) 
120 
130 
140 
150 
160 
170 
180 
190 
200 
220 
230 
250 
275 
300 

Metallic hot spot 
Temperature (°C ) 
188 
191 
194 
198 
203 
209 
214 
229 
237 
248 
253 
276 
298 
316 

 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

11 

 
 

References
[1] Transformer Thermal Impact Assessment white paper. Developed by the Project 2013‐03 (Geomagnetic 
Disturbance) standard drafting team. October 2017. Available at: 
http://www.nerc.com/pa/stand/Pages/TPL0071RI.aspx 
[2] Marti,  L.,;  Rezaei‐Zare,  A.,.;  and  Narang,  A.,.  "Simulation  of  Transformer  Hotspot  Heating  due  to 
Geomagnetically Induced Currents,"." IEEE Transactions on Power Delivery, vol.28, no.1, pp.320‐327, 
Jan. 2013. 
[3] Lahtinen, Matti. JarmoM. and Elovaara, J. “GIC occurrences and GIC test for 400 kV system transformer”. 
IEEE Transactions on Power Delivery, Vol. 17, No. 2. April 2002. 
[4] J. Raith, S.J. and Ausserhofer:, S. “GIC Strength verification of Power Transformers in a High Voltage 
Laboratory”, GIC Workshop, Cape Town, April 2014 
[5]  "IEEE  Guide  for  Loading  Mineral‐Oil‐Immersed  Transformers  and  Step‐Voltage  Regulators."  IEEE  Std 
C57.91‐2011 (Revision of IEEE Std C57.91‐1995). 
[6] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances.” IEEE 
Std C57.163‐2015. 
 

Screening Criterion for Transformer Thermal Impact Assessment:   White Paper 
Project 2013‐03 (Geomagnetic Disturbance Mitigation) | June |October 2017 

12 

 

Transformer Thermal Impact Assessment
White Paper
TPL-007-2 – Transmission System Planned Performance for
Geomagnetic Disturbance Events
Background
Proposed TPL‐007‐2 includes requirements for entities to perform two types of geomagnetic disturbance 
(GMD)  Vulnerability  Assessments  to  evaluate  the  potential  impacts  of  GMD  events  on  the  Bulk  Electric 
System (BES): 


The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated 
with TPL‐007‐1 which was approved by the Federal Energy Regulatory Commission (FERC) in Order 
No.  830  in  September  2016.  The  benchmark  GMD  event  is  derived  from  spatially‐averaged 
geoelectric field values to address potential wide‐area effects that could be caused by a severe 1‐in‐
100 year GMD event.1 



The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used 
by entities to evaluate localized peaks in geomagnetic field during a severe GMD event that "could 
potentially affect the reliable operation of the Bulk‐Power System."2 Localized enhancements of 
geomagnetic field can result in geoelectric field values above the spatially‐averaged benchmark in 
a local area. 

The  standard  requires  transformer  thermal  impact  assessments  to  be  performed  on  BES  power 
transformers  with  high  side,  wye‐grounded  windings  with  terminal  voltage  greater  than  200  kV.  Large 
power transformers connected to the extra‐high voltage (EHV) transmission system can experience both 
winding and structural hot spot heating as a result of GMD events. TPL‐007‐2 requires owners of such BES 
transformers to conduct thermal analyses to determine if the BES transformers will be able to withstand 
the thermal transient effects associated with the GMD events. BES transformers must undergo a thermal 
impact assessment if the maximum effective geomagnetically‐induced current (GIC) in the transformer is 
equal to or greater than:3 


75 A per phase for the benchmark GMD event 



85 A per phase for the supplemental GMD event 

This  white  paper  discusses  methods  that  can  be  employed  to  conduct  transformer  thermal  impact 
assessments, including example calculations. The first version of the white paper was developed by the 
Project  2013‐03  GMD  Standards  Drafting  Team  (SDT)  for  TPL‐007‐1  and  was  endorsed  by  the  Electric 
                                                       
1 See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM15‐11 on June 28, 2016. 

2 See Order No. 830 P. 47. On September 22, 2016, FERC directed NERC to develop modifications to the benchmark GMD event, included in 

TPL‐007‐1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event for this 
assessment are in the Supplemental GMD Event Description white paper. 
3 See Screening Criterion for Transformer Thermal Impact Assessment for technical justification. 

 

 

Reliability Organization (ERO) as implementation guidance in October 2016. The SDT has updated the white 
paper  to  include  the  supplemental GMD  event  that  is  added  in  TPL‐007‐2  to  address  directives  in  FERC 
Order No. 830. 
The primary impact of GMDs on large power transformers is a result of the quasi‐dc current that flows 
through wye‐grounded transformer windings. This GIC results in an offset of the ac sinusoidal flux resulting 
in asymmetric or half‐cycle saturation (see Figure 1). 
Half‐cycle saturation results in a number of known effects: 


Hot spot heating of transformer windings due to harmonics and stray flux; 



Hot spot heating of non‐current carrying transformer metallic members due to stray flux; 



Harmonics; 



Increase in reactive power absorption; and 



Increase in vibration and noise level. 
 

Figure 1: Mapping Magnetization Current to Flux through Core Excitation Characteristics 

This paper focuses on hot spot heating of transformer windings and non‐current‐carrying metallic parts. 
Effects such as the generation of harmonics, increase in reactive power absorption, vibration, and noise 
are not within the scope of this document. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

2 

 

Technical Considerations
The effects of half‐cycle saturation on high‐voltage (HV) and EHV transformers, namely localized “hot spot” 
heating, are relatively well understood, but are difficult to quantify. A transformer GMD impact assessment 
must  consider  GIC  amplitude,  duration,  and  transformer  physical  characteristics  such  as  design  and 
condition (e.g., age, gas content, and moisture in the oil). A single threshold value of GIC cannot be justified 
as a “pass or fail” screening criterion where “fail” means that the transformer will suffer damage. A single 
threshold value of GIC only makes sense in the context where “fail” means that a more detailed study is 
required. Such a threshold would have to be technically justifiable and sufficiently low to be considered a 
conservative value of GIC. 
The following considerations should be taken into account when assessing the thermal susceptibility of a 
transformer to half‐cycle saturation: 


In the absence of manufacturer specific information, use the temperature limits for safe transformer 
operation such as those suggested in the IEEE Std C57.91‐2011 (IEEE Guide for Loading Mineral‐oil‐
immersed  Transformers  and  Step‐voltage  Regulators)  for  hot  spot  heating  during  short‐term 
emergency operation [1]. This standard does not suggest that exceeding these limits will result in 
transformer  failure,  but  rather  that  it  will  result  in  additional  aging  of  cellulose  in  the  paper‐oil 
insulation and the potential for the generation of gas bubbles in the bulk oil. Thus, from the point 
of  view  of  evaluating  possible  transformer  damage  due  to  increased  hot  spot  heating,  these 
thresholds can be considered conservative for a transformer in good operational condition. 



The worst case temperature rise for winding and metallic part (e.g., tie plate) heating should be 
estimated  taking  into  consideration  the  construction  characteristics  of  the  transformer  as  they 
pertain to dc flux offset in the core (e.g., single‐phase, shell, 5 and 3‐leg three‐phase construction). 



Bulk oil temperature due to ambient temperature and transformer loading must be added to the 
incremental temperature rise caused by hot spot heating. For planning purposes, maximum ambient 
and  loading  temperature  should  be  used  unless  there  is  a  technically  justified  reason  to  do 
otherwise. 



The time series or “waveform” of the reference GMD event in terms of peak amplitude, duration, 
and frequency of the geoelectric field has an important effect on hot spot heating. Winding and 
metallic part hot spot heating have different thermal time constants, and their temperature rise will 
be different if the GIC currents are sustained for 2, 10, or 30 minutes for a given GIC peak amplitude. 



The “effective” GIC in autotransformers (reflecting the different GIC ampere‐turns in the common 
and  the  series  windings)  must  be  used  in  the  assessment.  The  effective  current  Idc,eq  in  an 
autotransformer is defined by [2]. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

3 

 

 

,

⁄3

⁄

 

(1) 

where 
IH is the dc current in the high voltage winding; 
IN is the neutral dc current; 
VH is the root mean square (rms) rated voltage at HV terminals; and 
VX is the rms rated voltage at the LV terminals. 

Transformer Thermal Impact Assessment Process
A simplified thermal assessment may be based on the appropriate tables from the “Screening Criterion for 
Transformer Thermal Impact Assessment” white paper [3].4 Each table below provides the peak metallic 
hot spot temperatures that can be reached for the given GMD event using conservative thermal models. 
To use each table, one must select the bulk oil temperature and the threshold for metallic hot spot heating, 
for instance, from reference [1] after allowing for possible de‐rating due to transformer condition. If the 
effective GIC results in higher than threshold temperatures, then the use of a detailed thermal assessment 
as described below should be carried out.5 
Table 1:  Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Benchmark GMD Event 
Effective GIC  Metallic hot spot 
Effective GIC 
Metallic hot spot 
(A/phase) 
(A/phase) 
Temperature (C ) 
Temperature (C ) 
0 
80 
100 
182 
10 
107 
110 
186 
20 
128 
120 
190 
30 
139 
130 
193 
40 
148 
140 
204 
50 
157 
150 
213 
60 
169 
160 
221 
70 
170 
170 
230 
75 
172 
180 
234 
80 
175 
190 
241 
90 
179 
200 
247 
 

                                                       

4 Table 1 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound temperatures for the 

benchmark GMD event. Table 2 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound 
temperatures for the supplemental GMD event. 
5 Effective GIC in the table is the peak GIC(t) for the GMD event being assessed. Peak GIC(t) is not steady‐state GIC. 
 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

4 

 

Table 2: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Supplemental GMD Event 
Effective GIC  Metallic hot spot
Effective GIC 
Metallic hot spot 
(A/phase) 
(A/phase) 
Temperature (C) 
Temperature (C) 
0 
80 
120 
188 
10 
107 
130 
191 
20 
124 
140 
194 
30 
137 
150 
198 
40 
147 
160 
203 
50 
156 
170 
209 
60 
161 
180 
214 
70 
162 
190 
229 
75 
165 
200 
237 
80 
169 
220 
248 
85 
172 
230 
253 
90 
177 
250 
276 
100 
181 
275 
298 
110 
185 
300 
316 
Two different ways to carry out a detailed thermal impact assessment are discussed below. In addition, 
other  approaches  and  models  approved  by  international  standard‐setting  organizations  such  as  the 
Institute  of  Electrical  and  Electronic  Engineers  (IEEE)  or  International  Council  on  Large  Electric  Systems 
(CIGRE) may also provide technically justified methods for performing thermal assessments.6 All thermal 
assessment  methods  should  be  demonstrably  equivalent  to  assessments  that  use  the  GMD  events 
associated with TPL‐007‐2. 
1. Transformer manufacturer GIC capability curves. These curves relate permissible peak GIC (obtained 
by the user from a steady‐state GIC calculation) and loading, for a specific transformer. An example 
of  manufacturer  capability  curves  is  provided  in  Figure  2.  Presentation  details  vary  between 
manufacturers,  and  limited  information  is  available  regarding  the  assumptions  used  to  generate 
these  curves,  in  particular,  the  assumed  waveshape  or  duration  of  the  effective  GIC.  Some 
manufacturers assume that the waveform of the GIC in the transformer windings is a square pulse 
of 2, 10, or 30 minutes in duration. In the case of the transformer capability curve shown in Figure 
2, a square pulse of 900 A/phase with a duration of 2 minutes would cause the Flitch plate hot spot 
to reach a temperature of 180C at full load [5]. While GIC capability curves are relatively simple to 
use, an amount of engineering judgment is necessary to ascertain which portion of a GIC waveform 
is equivalent to, for example, a 2 minute pulse. Also, manufacturers generally maintain that in the 
absence of transformer standards defining thermal duty due to GIC, such capability curves must be 
developed for every transformer design and vintage. 

                                                       

6 For example, C57.163‐2015 – IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances. [4] 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

5 

 

100
Flitch Plate Temp = 180 C for 2 Minutes

90

Flitch Plate Temp = 160 C for 30 Minutes

% MVA Rating

80

70

60

50

40

30
600

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

GIC, Amps/Phase

 

Figure 2: Sample GIC Manufacturer Capability Curve of a Large Single-Phase Transformer
Design using the Flitch Plate Temperature Criteria [5] 

2. Thermal response simulation.7 The input to this type of simulation is the time series or waveform of 
effective  GIC  flowing  through  a  transformer  (taking  into  account  the  actual  configuration  of  the 
system), and the result of the simulation is the hot spot temperature (winding or metallic part) time 
sequence for a given transformer. An example of GIC input and hotspot temperature time series 
values from [6] are shown in Figure 3. The hot spot thermal transfer functions can be obtained from 
measurements or calculations provided by transformer manufacturers. Conservative default values 
can be used (e.g., those provided in [6]) when specific data are not available. Hot spot temperature 
thresholds shown in Figure 3 are consistent with IEEE Std C57.91‐2011 emergency loading hot spot 
limits. Emergency loading time limit is usually 30 minutes. 

                                                       

7 Technical details of this methodology can be found in [6]. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

6 

 

 
Figure 3: Sample Tie Plate Temperature Calculation
Blue trace is incremental temperature and red trace is the magnitude of the GIC/phase [6] 

It is important to reiterate that the characteristics of the time sequence or “waveform” are very important 
in  the  assessment  of  the  thermal  impact  of  GIC  on  transformers.  Transformer  hot  spot  heating  is  not 
instantaneous. The thermal time constants of transformer windings and metallic parts are typically on the 
order of minutes to tens of minutes; therefore, hot spot temperatures are heavily dependent on GIC history 
and  rise  time,  amplitude  and  duration  of  GIC  in  the  transformer  windings,  bulk  oil  temperature  due  to 
loading, ambient temperature and cooling mode. 
Calculation of the GIC Waveform for a Transformer

The following procedure can be used to generate time series GIC data (i.e., GIC(t)) using a software program 
capable of computing GIC in the steady‐state. The steps are as follows: 
1. Calculate contribution of GIC due to eastward and northward geoelectric fields for the transformer 
under consideration; and 
2. Scale the GIC contribution according to the reference geoelectric field time series to produce the 
GIC time series for the transformer under consideration. 
Most available GIC–capable software packages can calculate GIC in steady‐state in a transformer assuming 
a uniform eastward geoelectric field of 1 V/km (GICE) while the northward geoelectric field is zero. Similarly, 
GICN can be obtained for a uniform northward geoelectric field of 1 V/km while the eastward geoelectric 
field is zero. GICE and GICN are the normalized GIC contributions for the transformer under consideration. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

7 

 

If  the  earth  conductivity  is  assumed  to  be  uniform  (or  laterally  uniform)  in  the  transmission  system  of 
interest, then the transformer GIC (in A/phase) for any value of EE(t) and EN(t) can be calculated using (2) 
[2]. 
|

 

|

sin

cos

 

(2) 

where, 
 
 

|

|

 
tan

(3) 

 

 

(4) 
 

(5) 

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to 
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase per V/km). 
The geoelectric field time series EN(t) and EE(t) is obtained, for instance, from the reference geomagnetic 
field time series (from [7] and/or [8]) after the appropriate geomagnetic latitude scaling factor  is applied.8 
The reference geoelectric field time series is calculated using the reference earth model. When using this 
geoelectric  field  time  series  where  a  different  earth  model  is  applicable,  it  should  be  scaled  with  the 
appropriate conductivity scaling factor .9 Alternatively, the geoelectric field can be calculated from the 
reference  geomagnetic  field  time  series  after  the  appropriate  geomagnetic  latitude  scaling  factor    is 
applied and the appropriate earth model is used. In such case, the conductivity scaling factor  is not applied 
because it is already accounted for by the use of the appropriate earth model. 
Applying (5) to each point in EN(t) and EE(t) results in GIC(t). 
GIC(t) Calculation Example

Let us assume that from the steady‐state solution, the effective GIC in this transformer is GICE = ‐20 A/phase 
if EN=0, EE=1 V/km and GICN = 26 A/phase if EN=1 V/km, EE=0. Let us also assume the geomagnetic field time 

                                                       
8 The geomagnetic factor  is described in [2] and is used to scale the geomagnetic field according to geomagnetic latitude. The lower the 

geomagnetic latitude (closer to the equator), the lower the amplitude of the geomagnetic field. 
9 The conductivity scaling factor  is described in [2], and is used to scale the geoelectric field according to the conductivity of different 

physiographic regions. Lower conductivity results in higher  scaling factors. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

8 

 

series corresponds to a geomagnetic latitude where  = 1 and that the earth conductivity corresponds to 
the reference earth model in [7]. The resulting geoelectric field time series is shown in Figure 4. Therefore: 
 
 

⁄

	
20

26	

⁄

 

(6) 

 

(7) 

The resulting GIC waveform GIC(t) is shown in Figures 5 and 6 and can subsequently be used for thermal 
analysis. 
It should be emphasized that even for the same reference event, the GIC(t) waveform in every transformer 
will  be  different,  depending  on  the  location  within  the  system  and  the  number  and  orientation  of  the 
circuits  connecting  to  the  transformer  station.  Assuming  a  single  generic  GIC(t)  waveform  to  test  all 
transformers is incorrect. 

 
Figure 4: Calculated Geoelectric Field EN(t) and EE(t) Assuming =1 and =1
(Reference Earth Model)
Zoom area for subsequent graphs is highlighted
Dashed lines approximately show the close-up area for subsequent Figures 

 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

9 

 

 
Figure 5: Calculated GIC(t) Assuming =1 and =1
Reference Earth Model 

 

 
Figure 6: Calculated Magnitude of GIC(t) Assuming =1 and =1
Reference Earth Model 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

10 

 

Transformer Thermal Assessment Examples

There are two basic ways to carry out a transformer thermal analysis once the GIC time series GIC(t) is 
known  for  a  given  transformer:  1)  calculating  the  thermal  response  as  a  function  of  time;  and  2)  using 
manufacturer’s capability curves. 
Example 1: Calculating thermal response as a function of time using a thermal response tool
The thermal step response of the transformer can be obtained for both winding and metallic part hot spots 
from: 1) measurements; 2) manufacturer’s calculations; or 3) generic published values. Figure 7 shows the 
measured metallic hot spot thermal response to a dc step of 16.67 A/phase of the top yoke clamp from [9] 
that will be used in this example. Figure 8 shows the measured incremental temperature rise (asymptotic 
response) of the same hot spot to long duration GIC steps.10 

Figure 7: Thermal Step Response to a 16.67 Amperes per Phase dc Step
Metallic hot spot heating 

 

                                                       

10 Heating of bulk oil due to the hot spot temperature increase is not included in the asymptotic response because the time constant of bulk 

oil heating is at least an order of magnitude larger than the time constants of hot spot heating. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

11 

 

Figure 8: Asymptotic Thermal Step Response
Metallic hot spot heating

The  step  response  in  Figure  7  was  obtained  from  the  first  GIC  step  of  the  tests  carried  out  in  [6].  The 
asymptotic thermal response in Figure 8 was obtained from the final or near‐final temperature values after 
each  subsequent  GIC  step.  Figure  9  shows  a  comparison  between  measured  temperatures  and  the 
calculated temperatures using the thermal response model used in the rest of this discussion. 

 
Figure 9: Comparison of measured temperatures (red) and simulation results (blue)
Injected current is represented by magenta 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

12 

 

To obtain the thermal response of the transformer to a GIC waveform such as the one in Figure 6, a thermal 
response model is required. To create a thermal response model, the measured or manufacturer‐calculated 
transformer thermal step responses (winding and metallic part) for various GIC levels are required. The 
GIC(t) time series or waveform is then applied to the thermal model to obtain the incremental temperature 
rise as a function of time (t) for the GIC(t) waveform. The total temperature is calculated by adding the oil 
temperature, for example, at full load. 
Figure 10 illustrates the calculated GIC(t) and the corresponding metallic hot spot temperature time series 
(t). Figure 11 illustrates a close‐up view of the peak transformer temperatures calculated in this example. 

 
Figure 10: Magnitude of GIC(t) and Metallic Hot Spot Temperature (t) Assuming Full Load
Oil Temperature of 85.3C (40C ambient)
Dashed lines approximately show the close-up area for subsequent figures 

 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

13 

 

 
Figure 11: Close-up of Metallic Hot Spot Temperature Assuming a Full Load
Blue trace is (t) Red trace is GIC(t) 

In this example, the IEEE Std C57.91‐2011 emergency loading hot spot threshold of 200C for metallic hot 
spot heating is not exceeded. Peak temperature is 186C.  The IEEE standard is silent as to whether the 
temperature can be higher than 200C for less than 30 minutes. Manufacturers can provide guidance on 
individual transformer capability. 
It is not unusual to use a lower temperature threshold of 180C to account for calculation and data margins, 
as well as transformer age and condition. Figure 11 shows that 180C will be exceeded for 5 minutes. 
At 75% loading, the initial temperature is 64.6C rather than 85.3C, and the hot spot temperature peak is 
165C, well below the 180C threshold (see Figure 12). 
If a conservative threshold of 160C were used to account for the age and condition of the transformer, 
then the full load limits would be exceeded for approximately 22 minutes. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

14 

 

 
Figure 12: Close-up of Metallic Hot Spot Temperature Assuming a 75% Load
Oil temperature of 64.5C 

Example 2: Using a Manufacturer’s Capability Curves
The capability curves used in this example are shown in Figure 13. To maintain consistency with the previous 
example, these particular capability curves have been reconstructed from the thermal step response shown 
in Figures 7 and 8, and the simplified loading curve shown in Figure 14 (calculated using formulas from IEEE 
Std C57.91‐2011). 

Figure 13: Capability Curve of a Transformer Based on the Thermal Response Shown in
Figures 8 and 9 

 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

15 

 

 
Figure 14: Simplified Loading Curve Assuming 40C Ambient Temperature 

The basic notion behind the use of capability curves is to compare the calculated GIC in a transformer with 
the limits at different GIC pulse widths. A narrow GIC pulse has a higher limit than a longer duration or wider 
one. If the calculated GIC and assumed pulse width falls below the appropriate pulse width curve, then the 
transformer is within its capability. 
To use these curves, it is necessary to estimate an equivalent square pulse that matches the waveform of 
GIC(t), generally at a GIC(t) peak. Figure 15 shows a close‐up of the GIC near its highest peak superimposed 
to a 255 Amperes per phase, 2 minute pulse at 100% loading from Figure 13. Since a narrow 2‐minute pulse 
is not representative of GIC(t) in this case, a 5 minute pulse with an amplitude of 180 A/phase at 100% 
loading has  been superimposed on  Figure 16. It should  be noted that  a 255 A/phase, 2 minute pulse is 
equivalent to a 180 A/phase 5 minute pulse from the point of view of transformer capability. Deciding what 
GIC pulse is equivalent to the portion of GIC(t) under consideration is a matter of engineering judgment. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

16 

 

 
Figure 15: Close-up of GIC(t) and a 2 minute 255 A/phase GIC pulse at full load 

 
Figure 16: Close‐up of GIC(t) and a Five Minute 180 A/phase GIC Pulse at Full Load 
When using a capability curve, it should be understood that the curve is derived assuming that there is no 
hot  spot  heating  due  to  prior  GIC  at  the  time  the  GIC  pulse  occurs  (only  an  initial  temperature  due  to 
loading). Therefore, in addition to estimating the equivalent pulse that matches GIC(t), prior metallic hot 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

17 

 

spot heating must be accounted for. From these considerations, it is unclear whether the capability curves 
would be exceeded at full load with a 180C threshold in this example. 
At  70%  loading,  the  two  and  five  minute  pulses  from  Figure  13  would  have  amplitudes  of  310  and  225 
A/phase, respectively. The 5 minute pulse is illustrated in Figure 17. In this case, judgment is also required 
to assess if the GIC(t) is within the capability curve for 70% loading. In general, capability curves are easier 
to use when GIC(t) is substantially above, or clearly below the GIC thresholds for a given pulse duration. 
If a conservative threshold of 160C were used to account for the age and condition of the transformer, 
then a new set of capability curves would be required.

 
Figure 17: Close-up of GIC(t) and a 5 Minute 225 A/phase GIC Pulse Assuming 70% Load 

 

 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

18 

 

References
[1] "IEEE Guide for Loading Mineral‐Oil‐Immersed Transformers and Step‐Voltage Regulators." IEEE Std 
C57.91‐2011 (Revision of IEEE Std C57.91‐1995). March 7, 2012. 
[2] “Application Guide: Computing Geomagnetically‐Induced Current in the Bulk‐Power System,” NERC. 
December  2013.  Available  at:  http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20 
Task%20Force%20GMDTF%202013/GIC%20Application%20Guide%202013_approved.pdf. 
[3] “Screening Criterion for Transformer Thermal Impact Assessment.” Developed by the Project 2013‐
03  (Geomagnetic  Disturbance)  standard  drafting  team.  October  2017.  Available  at:  http://www. 
nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
[4] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances.” 
IEEE Std C57.163‐2015. October 26, 2015. 
[5] Girgis, R.; Vedante, K. “Methodology for evaluating the impact of GIC and GIC capability of power 
transformer  designs.”  IEEE  Power  and  Energy  Society  2013  General  Meeting  Proceedings. 
Vancouver, Canada. 
[6] Marti,  L.;  Rezaei‐Zare,  A.;  and  Narang,  A.  "Simulation  of  Transformer  Hotspot  Heating  due  to 
Geomagnetically Induced Currents." IEEE Transactions on Power Delivery, Vol.28, No.1. pp 320‐327. 
January 2013. 
[7] “Benchmark Geomagnetic Disturbance Event Description” white paper. Developed by the Project 
2013‐03  (Geomagnetic  Disturbance)  standard  drafting  team.  May  2016.  Available  at:  http:// 
www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
[8] “Supplemental Geomagnetic Disturbance Event Description” white paper. Developed by the Project 
2013‐03  (Geomagnetic  Disturbance)  standard  drafting  team.  October  2017.  Available  at:  http:// 
www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
[9] Lahtinen, M; and Elovaara, J. “GIC occurrences and GIC test for 400 kV system transformer.” IEEE 
Transactions on Power Delivery, Vol. 17, No. 2. pp 555‐561. April 2002. 

Transformer Thermal Impact Assessment White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

19 

 

Transformer Thermal Impact Assessment
White Paper
TPL-007-2 ̶– Transmission System Planned Performance for
Geomagnetic Disturbance Events
Background
Proposed TPL‐007‐2 includes requirements for entities to perform two types of geomagnetic disturbance 
(GMD)  Vulnerability  Assessments  to  evaluate  the  potential  impacts  of  GMD  events  on  the  Bulk  Electric 
System (BES): 


The benchmark GMD Vulnerability Assessment is based on the benchmark GMD event associated 
with TPL‐007‐1 which was approved by the Federal Energy Regulatory Commission (FERC) in Order 
No.  830  in  September  2016.  The  benchmark  GMD  event  is  derived  from  spatially‐averaged 
geoelectric field values to address potential wide‐area effects that could be caused by a severe 1‐in‐
100 year GMD event.1 



The supplemental GMD Vulnerability Assessment, based on the supplemental GMD event, is used 
by entities to evaluate localized peaks in geomagnetic field during a severe GMD event that "could 
potentially affect the reliable operation of the Bulk‐Power System."2 Localized enhancements of 
geomagnetic field can result in geoelectric field values above the spatially‐averaged benchmark in 
a local area. 

The  standard  requires  transformer  thermal  impact  assessments  to  be  performed  on  BES  power 
transformers  with  high  side,  wye‐grounded  windings  with  terminal  voltage  greater  than  200  kV.  Large 
power transformers connected to the extra‐high voltage (EHV) transmission system can experience both 
winding and structural hot spot heating as a result of GMD events. TPL‐007‐2 requires owners of such BES 
transformers to conduct thermal analyses to determine if the BES transformers will be able to withstand 
the  thermal  transient  effects  associated  with  the  GMD  events.  BES  Transformerstransformers  must 
undergo a thermal impact assessment if the maximum effective geomagnetically‐induced current (GIC) in 
the transformer is equal to or greater than:3 


75 A per phase for the benchmark GMD event 



85 A per phase for the supplemental GMD event 

This  white  paper  discusses  methods  that  can  be  employed  to  conduct  transformer  thermal  impact 
assessments, including example calculations. The first version of the white paper was developed by the 
Project  2013‐03  GMD  Standards  Drafting  Team  (SDT)  for  TPL‐007‐1  and  was  endorsed  by  the  Electric 
                                                       
1 See Benchmark Geomagnetic Disturbance Event Description white paper, May 12, 2016. Filed by NERC in RM15‐11 on June 28, 2016. 

2 See Order No. 830 P. 47. On September 22, 2016, FERC directed NERC to develop modifications to the benchmark GMD event, included in 

TPL‐007‐1, such that assessments would not be based solely on spatially averaged data. The characteristics of a GMD event for this 
assessment are in the Supplemental GMD Event Description white paper. 
3 See Screening Criterion for Transformer Thermal Impact Assessment for technical justification. 

 

 

Reliability Organization (ERO) as implementation guidance in October 2016. The SDT has updated the white 
paper  to  include  the  supplemental GMD  event  that  is  added  in  TPL‐007‐2  to  address  directives  in  FERC 
Order No. 830. 
The primary impact of GMDs on large power transformers is a result of the quasi‐dc current that flows 
through  wye‐grounded  transformer  windings.  This  geomagnetically‐induced  current  (GIC)  results  in  an 
offset of the ac sinusoidal flux resulting in asymmetric or half‐cycle saturation (see Figure 1). 
Half‐cycle saturation results in a number of known effects: 


Hot spot heating of transformer windings due to harmonics and stray flux; 



Hot spot heating of non‐current carrying transformer metallic members due to stray flux; 



Harmonics; 



Increase in reactive power absorption; and 



Increase in vibration and noise level. 
 

Figure 1: Mapping Magnetization Current to Flux through Core Excitation Characteristics 

This paper focuses on hot spot heating of transformer windings and non‐current‐carrying metallic parts. 
Effects such as the generation of harmonics, increase in reactive power absorption, vibration, and noise 
are not within the scope of this document. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

2 

 

Technical Considerations
The effects of half‐cycle saturation on high‐voltage (HV) and EHV transformers, namely localized “hot spot” 
heating, are relatively well understood, but are difficult to quantify. A transformer GMD impact assessment 
must  consider  GIC  amplitude,  duration,  and  transformer  physical  characteristics  such  as  design  and 
condition (e.g., age, gas content, and moisture in the oil). A single threshold value of GIC cannot be justified 
as a “pass or fail” screening criterion where “fail” means that the transformer will suffer damage. A single 
threshold value of GIC only makes sense in the context where “fail” means that a more detailed study is 
required. Such a threshold would have to be technically justifiable and sufficiently low to be considered a 
conservative value of GIC. 
The following considerations should be taken into account when assessing the thermal susceptibility of a 
transformer to half‐cycle saturation: 


In the absence of manufacturer specific information, use the temperature limits for safe transformer 
operation such as those suggested in the IEEE Std C57.91‐2011 (IEEE Guide for Loading Mineral‐oil‐
immersed  Transformers  and  Step‐voltage  Regulators)  for  hot  spot  heating  during  short‐term 
emergency operation [1]. This standard does not suggest that exceeding these limits will result in 
transformer  failure,  but  rather  that  it  will  result  in  additional  aging  of  cellulose  in  the  paper‐oil 
insulation and the potential for the generation of gas bubbles in the bulk oil. Thus, from the point 
of  view  of  evaluating  possible  transformer  damage  due  to  increased  hot  spot  heating,  these 
thresholds can be considered conservative for a transformer in good operational condition. 



The worst case temperature rise for winding and metallic part (e.g., tie plate) heating should be 
estimated  taking  into  consideration  the  construction  characteristics  of  the  transformer  as  they 
pertain to dc flux offset in the core (e.g., single‐phase, shell, 5 and 3‐leg three‐phase construction). 



Bulk oil temperature due to ambient temperature and transformer loading must be added to the 
incremental temperature rise caused by hot spot heating. For planning purposes, maximum ambient 
and  loading  temperature  should  be  used  unless  there  is  a  technically  justified  reason  to  do 
otherwise. 



The time series or “waveform” of the reference GMD event in terms of peak amplitude, duration, 
and frequency of the geoelectric field has an important effect on hot spot heating. Winding and 
metallic part hot spot heating have different thermal time constants, and their temperature rise will 
be different if the GIC currents are sustained for 2, 10, or 30 minutes for a given GIC peak amplitude. 



The “effective” GIC in autotransformers (reflecting the different GIC ampere‐turns in the common 
and  the  series  windings)  must  be  used  in  the  assessment.  The  effective  current  Idc,eq  in  an 
autotransformer is defined by [2]. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

3 

 

 

,

⁄3

⁄

 

(1) 

where 
IH is the dc current in the high voltage winding; 
IN is the neutral dc current; 
VH is the root mean square (rms) rated voltage at HV terminals; and 
VX is the rms rated voltage at the LV terminals. 

Transformer Thermal Impact Assessment Process
A simplified thermal assessment may be based on the appropriate tables from the “Screening Criterion for 
Transformer Thermal Impact Assessment” white paper [3].4 Each table below provides the peak metallic 
hot spot temperatures that can be reached for the given GMD event using conservative thermal models. 
To use each table, one must select the bulk oil temperature and the threshold for metallic hot spot heating, 
for instance, from reference [1] after allowing for possible de‐rating due to transformer condition. If the 
effective GIC results in higher than threshold temperatures, then the use of a detailed thermal assessment 
as described below should be carried out.5 
Table 1:  Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Benchmark GMD Event 
Effective GIC  Metallic hot spot 
Effective GIC 
Metallic hot spot 
(A/phase) 
(A/phase) 
Temperature (C ) 
Temperature (C ) 
0 
80 
100 
182 
10 
107 
110 
186 
20 
128 
120 
190 
30 
139 
130 
193 
40 
148 
140 
204 
50 
157 
150 
213 
60 
169 
160 
221 
70 
170 
170 
230 
75 
172 
180 
234 
80 
175 
190 
241 
90 
179 
200 
247 
 

                                                       

4 Table 1 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound temperatures for the 

benchmark GMD event. Table 2 in the Screening Criterion for Transformer Thermal Impact Assessment white paper provides upper bound 
temperatures for the supplemental GMD event. 
5 Effective GIC in the table is the peak GIC(t) for the GMD event being assessed. Peak GIC(t) is not steady‐state GIC. 
 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

4 

 

Table 2: Upper Bound of Peak Metallic Hot Spot Temperatures Calculated 
Using the Supplemental GMD Event 
Effective GIC  Metallic hot spot
Effective GIC 
Metallic hot spot 
(A/phase) 
Temperature 
(A/phase) 
Temperature 
(°(C) 
(°(C) 
0 
80 
120 
188 
10 
107 
130 
191 
20 
124 
140 
194 
30 
137 
150 
198 
40 
147 
160 
203 
50 
156 
170 
209 
60 
161 
180 
214 
70 
162 
190 
229 
75 
165 
200 
237 
80 
169 
220 
248 
85 
172 
230 
253 
90 
177 
250 
276 
100 
181 
275 
298 
110 
185 
300 
316 
Two different ways to carry out a detailed thermal impact assessment are discussed below. In addition, 
other  approaches  and  models  approved  by  international  standard‐setting  organizations  such  as  the 
Institute  of  Electrical  and  Electronic  Engineers  (IEEE)  or  International  Council  on  Large  Electric  Systems 
(CIGRE) may also provide technically justified methods for performing thermal assessments.6 All thermal 
assessment  methods  should  be  demonstrably  equivalent  to  assessments  that  use  the  GMD  events 
associated with TPL‐007‐2. 
1. Transformer manufacturer GIC capability curves. These curves relate permissible peak GIC (obtained 
by the user from a steady‐state GIC calculation) and loading, for a specific transformer. An example 
of  manufacturer  capability  curves  is  provided  in  Figure  2.  Presentation  details  vary  between 
manufacturers,  and  limited  information  is  available  regarding  the  assumptions  used  to  generate 
these  curves,  in  particular,  the  assumed  waveshape  or  duration  of  the  effective  GIC.  Some 
manufacturers assume that the waveform of the GIC in the transformer windings is a square pulse 
of 2, 10, or 30 minutes in duration. In the case of the transformer capability curve shown in Figure 
2, a square pulse of 900 A/phase with a duration of 2 minutes would cause the Flitch plate hot spot 
to reach a temperature of 180°C at full load [5]. While GIC capability curves are relatively simple to 
use, an amount of engineering judgment is necessary to ascertain which portion of a GIC waveform 
is equivalent to, for example, a 2 minute pulse. Also, manufacturers generally maintain that in the 
absence of transformer standards defining thermal duty due to GIC, such capability curves must be 
developed for every transformer design and vintage. 
                                                       

6 For example, C57.163‐2015 – IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances. [4] 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

5 

 

100
Flitch Plate Temp = 180 C for 2 Minutes

90

Flitch Plate Temp = 160 C for 30 Minutes

% MVA Rating

80

70

60

50

40

30
600

800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

GIC, Amps/Phase

 

Figure 2: Sample GIC Manufacturer Capability Curve of a Large Single-Phase Transformer
Design using the Flitch Plate Temperature Criteria [5] 

2. Thermal response simulation.7 The input to this type of simulation is the time series or waveform of 
effective  GIC  flowing  through  a  transformer  (taking  into  account  the  actual  configuration  of  the 
system), and the result of the simulation is the hot spot temperature (winding or metallic part) time 
sequence for a given transformer. An example of GIC input and hotspot temperature time series 
values from [6] are shown in Figure 3. The hot spot thermal transfer functions can be obtained from 
measurements or calculations provided by transformer manufacturers. Conservative default values 
can be used (e.g., those provided in [6]) when specific data are not available. Hot spot temperature 
thresholds shown in Figure 3 are consistent with IEEE Std C57.91‐2011 emergency loading hot spot 
limits. Emergency loading time limit is usually 30 minutes. 

                                                       

7 Technical details of this methodology can be found in [6]. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

6 

 

 
Figure 3: Sample Tie Plate Temperature Calculation
Blue trace is incremental temperature and red trace is the magnitude of the GIC/phase [6] 

It is important to reiterate that the characteristics of the time sequence or “waveform” are very important 
in  the  assessment  of  the  thermal  impact  of  GIC  on  transformers.  Transformer  hot  spot  heating  is  not 
instantaneous. The thermal time constants of transformer windings and metallic parts are typically on the 
order of minutes to tens of minutes; therefore, hot spot temperatures are heavily dependent on GIC history 
and  rise  time,  amplitude  and  duration  of  GIC  in  the  transformer  windings,  bulk  oil  temperature  due  to 
loading, ambient temperature and cooling mode. 
Calculation of the GIC Waveform for a Transformer

The following procedure can be used to generate time series GIC data (i.e., GIC(t)) using a software program 
capable of computing GIC in the steady‐state. The steps are as follows: 
1. Calculate contribution of GIC due to eastward and northward geoelectric fields for the transformer 
under consideration; and 
2. Scale the GIC contribution according to the reference geoelectric field time series to produce the 
GIC time series for the transformer under consideration. 
Most available GIC–capable software packages can calculate GIC in steady‐state in a transformer assuming 
a uniform eastward geoelectric field of 1 V/km (GICE) while the northward geoelectric field is zero. Similarly, 
GICN can be obtained for a uniform northward geoelectric field of 1 V/km while the eastward geoelectric 
field is zero. GICE and GICN are the normalized GIC contributions for the transformer under consideration. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

7 

 

If  the  earth  conductivity  is  assumed  to  be  uniform  (or  laterally  uniform)  in  the  transmission  system  of 
interest, then the transformer GIC (in A/phase) for any value of EE(t) and EN(t) can be calculated using (2) 
[2]. 
|

 

|

sin

cos

 

(2) 

where, 
 
 

|

|

 
tan

(3) 

 

 

(4) 
 

(5) 

GICN is the effective GIC due to a northward geoelectric field of 1 V/km, and GICE is the effective GIC due to 
an eastward geoelectric field of 1 V/km. The units for GICN and GICE are A/phase per V/km)). 
The geoelectric field time series EN(t) and EE(t) is obtained, for instance, from the reference geomagnetic 
field time series (from [7] and/or [8]) after the appropriate geomagnetic latitude scaling factor  is applied.8 
The reference geoelectric field time series is calculated using the reference earth model. When using this 
geoelectric  field  time  series  where  a  different  earth  model  is  applicable,  it  should  be  scaled  with  the 
appropriate conductivity scaling factor .9 Alternatively, the geoelectric field can be calculated from the 
reference  geomagnetic  field  time  series  after  the  appropriate  geomagnetic  latitude  scaling  factor    is 
applied and the appropriate earth model is used. In such case, the conductivity scaling factor  is not applied 
because it is already accounted for by the use of the appropriate earth model. 
Applying (5) to each point in EN(t) and EE(t) results in GIC(t). 
GIC(t) Calculation Example

Let us assume that from the steady‐state solution, the effective GIC in this transformer is GICE = ‐20 A/phase 
if EN=0, EE=1 V/km and GICN = 26 A/phase if EN=1 V/km, EE=0. Let us also assume the geomagnetic field time 

                                                       
8 The geomagnetic factor  is described in [2] and is used to scale the geomagnetic field according to geomagnetic latitude. The lower the 

geomagnetic latitude (closer to the equator), the lower the amplitude of the geomagnetic field. 
9 The conductivity scaling factor  is described in [2], and is used to scale the geoelectric field according to the conductivity of different 

physiographic regions. Lower conductivity results in higher  scaling factors. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

8 

 

series corresponds to a geomagnetic latitude where  = 1 and that the earth conductivity corresponds to 
the reference earth model in [7]. The resulting geoelectric field time series is shown in Figure 4. Therefore: 
 
 

⁄

	
20

26	

⁄

 

(6) 

 

(7) 

The resulting GIC waveform GIC(t) is shown in Figures 5 and 6 and can subsequently be used for thermal 
analysis. 
It should be emphasized that even for the same reference event, the GIC(t) waveform in every transformer 
will  be  different,  depending  on  the  location  within  the  system  and  the  number  and  orientation  of  the 
circuits  connecting  to  the  transformer  station.  Assuming  a  single  generic  GIC(t)  waveform  to  test  all 
transformers is incorrect. 

 
Figure 4: Calculated Geoelectric Field EN(t) and EE(t) Assuming =1 and =1
(Reference Earth Model)
Zoom area for subsequent graphs is highlighted
Dashed lines approximately show the close-up area for subsequent Figures 

 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

9 

 

 
Figure 5: Calculated GIC(t) Assuming =1 and =1
Reference Earth Model 

 

 
Figure 6: Calculated Magnitude of GIC(t) Assuming =1 and =1
Reference Earth Model 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

10 

 

Transformer Thermal Assessment Examples

There are two basic ways to carry out a transformer thermal analysis once the GIC time series GIC(t) is 
known  for  a  given  transformer:  1)  calculating  the  thermal  response  as  a  function  of  time;  and  2)  using 
manufacturer’s capability curves. 
Example 1: Calculating thermal response as a function of time using a thermal response tool
The thermal step response of the transformer can be obtained for both winding and metallic part hot spots 
from: 1) measurements; 2) manufacturer’s calculations; or 3) generic published values. Figure 7 shows the 
measured metallic hot spot thermal response to a dc step of 16.67 A/phase of the top yoke clamp from [9] 
that will be used in this example. Figure 8 shows the measured incremental temperature rise (asymptotic 
response) of the same hot spot to long duration GIC steps.10 

Figure 7: Thermal Step Response to a 16.67 Amperes per Phase dc Step
Metallic hot spot heating 

 

                                                       

10 Heating of bulk oil due to the hot spot temperature increase is not included in the asymptotic response because the time constant of bulk 

oil heating is at least an order of magnitude larger than the time constants of hot spot heating. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

11 

 

Figure 8: Asymptotic Thermal Step Response
Metallic hot spot heating

The  step  response  in  Figure  7  was  obtained  from  the  first  GIC  step  of  the  tests  carried  out  in  [6].  The 
asymptotic thermal response in Figure 8 was obtained from the final or near‐final temperature values after 
each  subsequent  GIC  step.  Figure  9  shows  a  comparison  between  measured  temperatures  and  the 
calculated temperatures using the thermal response model used in the rest of this discussion. 

 
Figure 9: Comparison of measured temperatures (red) and simulation results (blue)
Injected current is represented by magenta 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

12 

 

To obtain the thermal response of the transformer to a GIC waveform such as the one in Figure 6, a thermal 
response model is required. To create a thermal response model, the measured or manufacturer‐calculated 
transformer thermal step responses (winding and metallic part) for various GIC levels are required. The 
GIC(t) time series or waveform is then applied to the thermal model to obtain the incremental temperature 
rise as a function of time (t) for the GIC(t) waveform. The total temperature is calculated by adding the oil 
temperature, for example, at full load. 
Figure 10 illustrates the calculated GIC(t) and the corresponding metallic hot spot temperature time series 
(t). Figure 11 illustrates a close‐up view of the peak transformer temperatures calculated in this example. 

 
Figure 10: Magnitude of GIC(t) and Metallic Hot Spot Temperature (t) Assuming Full Load
Oil Temperature of 85.3C (40C ambient)
Dashed lines approximately show the close-up area for subsequent figures 

 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

13 

 

 
Figure 11: Close-up of Metallic Hot Spot Temperature Assuming a Full Load
Blue trace is (t) Red trace is GIC(t) 

In this example, the IEEE Std C57.91‐2011 emergency loading hot spot threshold of 200C for metallic hot 
spot heating is not exceeded. Peak temperature is 186C.  The IEEE standard is silent as to whether the 
temperature can be higher than 200C for less than 30 minutes. Manufacturers can provide guidance on 
individual transformer capability. 
It is not unusual to use a lower temperature threshold of 180C to account for calculation and data margins, 
as well as transformer age and condition. Figure 11 shows that 180C will be exceeded for 5 minutes. 
At 75% loading, the initial temperature is 64.6°C rather than 85.3°C, and the hot spot temperature peak 
is 165C, well below the 180C threshold (see Figure 12). 
If a conservative threshold of 160C were used to account for the age and condition of the transformer, 
then the full load limits would be exceeded for approximately 22 minutes. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

14 

 

 
Figure 12: Close-up of Metallic Hot Spot Temperature Assuming a 75% Load
Oil temperature of 64.5C 

Example 2: Using a Manufacturer’s Capability Curves
The capability curves used in this example are shown in Figure 13. To maintain consistency with the previous 
example, these particular capability curves have been reconstructed from the thermal step response shown 
in Figures 7 and 8, and the simplified loading curve shown in Figure 14 (calculated using formulas from IEEE 
Std C57.91‐2011). 

Figure 13: Capability Curve of a Transformer Based on the Thermal Response Shown in
Figures 8 and 9 

 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

15 

 

 
Figure 14: Simplified Loading Curve Assuming 40C Ambient Temperature 

The basic notion behind the use of capability curves is to compare the calculated GIC in a transformer with 
the limits at different GIC pulse widths. A narrow GIC pulse has a higher limit than a longer duration or wider 
one. If the calculated GIC and assumed pulse width falls below the appropriate pulse width curve, then the 
transformer is within its capability. 
To use these curves, it is necessary to estimate an equivalent square pulse that matches the waveform of 
GIC(t), generally at a GIC(t) peak. Figure 15 shows a close‐up of the GIC near its highest peak superimposed 
to a 255 Amperes per phase, 2 minute pulse at 100% loading from Figure 13. Since a narrow 2‐minute pulse 
is not representative of GIC(t) in this case, a 5 minute pulse with an amplitude of 180 A/phase at 100% 
loading has  been superimposed on  Figure 16. It should  be noted that  a 255 A/phase, 2 minute pulse is 
equivalent to a 180 A/phase 5 minute pulse from the point of view of transformer capability. Deciding what 
GIC pulse is equivalent to the portion of GIC(t) under consideration is a matter of engineering judgment. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

16 

 

 
Figure 15: Close-up of GIC(t) and a 2 minute 255 A/phase GIC pulse at full load 

 
Figure 16: Close‐up of GIC(t) and a Five Minute 180 A/phase GIC Pulse at Full Load 
When using a capability curve, it should be understood that the curve is derived assuming that there is no 
hot  spot  heating  due  to  prior  GIC  at  the  time  the  GIC  pulse  occurs  (only  an  initial  temperature  due  to 
loading). Therefore, in addition to estimating the equivalent pulse that matches GIC(t), prior metallic hot 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

17 

 

spot heating must be accounted for. From these considerations, it is unclear whether the capability curves 
would be exceeded at full load with a 180°C threshold in this example. 
At  70%  loading,  the  two  and  five  minute  pulses  from  Figure  13  would  have  amplitudes  of  310  and  225 
A/phase, respectively. The 5 minute pulse is illustrated in Figure 17. In this case, judgment is also required 
to assess if the GIC(t) is within the capability curve for 70% loading. In general, capability curves are easier 
to use when GIC(t) is substantially above, or clearly below the GIC thresholds for a given pulse duration. 
If a conservative threshold of 160C were used to account for the age and condition of the transformer, 
then a new set of capability curves would be required.

 
Figure 17: Close-up of GIC(t) and a 5 Minute 225 A/phase GIC Pulse Assuming 70% Load 

 

 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

18 

 

References
[1] "IEEE  Guide  for  loading  mineral‐oil‐immersed  transformersLoading  Mineral‐Oil‐Immersed 
Transformers and step‐voltage regulatorsStep‐Voltage Regulators." IEEE Std C57.91‐2011 (Revision 
of IEEE Std C57.91‐1995). March 7, 2012. 
[2] “Application  Guide:  Computing  Geomagnetically‐Induced  Current  in  the  Bulk‐Power  System,,” 
NERC. 
December 
2013. 
Available 
at: 
http://www.nerc.com/comm/PC/Geomagnetic%20Disturbance%20 
Task%20Force%20GMDTF%202013/GIC%20Application%20Guide%202013_approved.pdf. 
[3] “Screening  Criterion  for  Transformer  Thermal  Impact  Assessment”..”  Developed  by  the  Project 
2013‐03  (Geomagnetic  Disturbance)  standard  drafting  team.  October  2017.  Available  at: 
http://www. 
nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
[4] “IEEE Guide for Establishing Power Transformer Capability while under Geomagnetic Disturbances.” 
IEEE Std C57.163‐2015. October 26, 2015. 
[5] Girgis, R.; Vedante, K. “Methodology for evaluating the impact of GIC and GIC capability of power 
transformer  designs.”  IEEE  PESPower  and  Energy  Society  2013  General  Meeting  Proceedings. 
Vancouver, Canada. 
[6] Marti,  L.,.;  Rezaei‐Zare,  A.,.;  and  Narang,  A.  "Simulation  of  Transformer  Hotspot  Heating  due  to 
Geomagnetically  Induced  Currents."  IEEE  Transactions  on  Power  Delivery,  volVol.28,  noNo.1.  pp 
320‐327. January 2013. 
[7] “Benchmark Geomagnetic Disturbance Event Description” white paper. Developed by the Project 
2013‐03  (Geomagnetic  Disturbance)  standard  drafting  team.  May  2016.  Available  at:  http:// 
www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
[8] “Supplemental Geomagnetic Disturbance Event Description” white paper. Developed by the Project 
2013‐03  (Geomagnetic  Disturbance)  standard  drafting  team.  October  2017.  Available  at:  http:// 
www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐Geomagnetic‐Disturbance‐Mitigation.aspx. 
[9] Lahtinen,  Matti.  JarmoM;  and  Elovaara,  J.  “GIC  occurrences  and  GIC  test  for  400  kV  system 
transformer”..” IEEE Transactions on Power Delivery, Vol. 17, No. 2. pp 555‐561. April 2002. 

Transformer Thermal Impact Assessment:  White Paper 
Project 2013‐03 Geomagnetic Disturbance Mitigation | JuneOctober 2017 

19 

Violation Risk Factor and Violation Severity Level
Justifications

TPL-007-2  Transmission System Planned Performance for Geomagnetic Disturbance Events
This document provides the Standard Drafting Team’s (SDT) justification for assignment of Violation Risk Factors (VRFs) and Violation 
Severity Levels (VSLs) for each requirement in TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events. 
Each requirement is assigned a VRF and a VSL. These elements support the determination of an initial value range for the Base Penalty 
Amount regarding violations of requirements in FERC‐approved Reliability Standards, as defined in the ERO Sanction Guidelines. The SDT 
applied the following NERC criteria and FERC Guidelines when proposing VRFs and VSLs for the requirements under this project. 
 

NERC Criteria - Violation Risk Factors
High Risk Requirement

A requirement that, if violated, could directly cause or contribute to Bulk Electric System instability, separation, or a cascading sequence of 
failures, or could place the Bulk Electric System at an unacceptable risk of instability, separation, or cascading failures; or, a requirement in a 
planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly 
cause or contribute to Bulk Electric System instability, separation, or a cascading sequence of failures, or could place the Bulk Electric 
System at an unacceptable risk of instability, separation, or cascading failures, or could hinder restoration to a normal condition. 
Medium Risk Requirement

A requirement that, if violated, could directly affect the electrical state or the capability of the Bulk Electric System, or the ability to 
effectively monitor and control the Bulk Electric System. However, violation of a medium risk requirement is unlikely to lead to Bulk Electric 
System instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, 
abnormal, or restorative conditions anticipated by the preparations, directly and adversely affect the electrical state or capability of the Bulk 
Electric System, or the ability to effectively monitor, control, or restore the Bulk Electric System. However, violation of a medium risk 
requirement is unlikely, under emergency, abnormal, or restoration conditions anticipated by the preparations, to lead to Bulk Electric 
System instability, separation, or cascading failures, nor to hinder restoration to a normal condition. 

 
 
 

Lower Risk Requirement

A requirement that is administrative in nature and a requirement that, if violated, would not be expected to adversely affect the electrical 
state or capability of the Bulk Electric System, or the ability to effectively monitor and control the Bulk Electric System; or, a requirement 
that is administrative in nature and a requirement in a planning time frame that, if violated, would not, under the emergency, abnormal, or 
restorative conditions anticipated by the preparations, be expected to adversely affect the electrical state or capability of the Bulk Electric 
System, or the ability to effectively monitor, control, or restore the Bulk Electric System. 

FERC Violation Risk Factor Guidelines

 
Guideline (1) – Consistency with the Conclusions of the Final Blackout Report
The Commission seeks to ensure that VRFs assigned to Requirements of Reliability Standards in these identified areas appropriately reflect 
their historical critical impact on the reliability of the Bulk‐Power System. In the VSL Order, FERC listed critical areas (from the Final Blackout 
Report) where violations could severely affect the reliability of the Bulk‐Power System: 



Emergency operations 



Vegetation management 



Operator personnel training 



Protection systems and their coordination 



Operating tools and backup facilities 



Reactive power and voltage control 



System modeling and data exchange 



Communication protocol and facilities 



Requirements to determine equipment ratings 



Synchronized data recorders 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

2   

 
 
 



Clearer criteria for operationally critical facilities 



Appropriate use of transmission loading relief. 

Guideline (2) – Consistency within a Reliability Standard

The Commission expects a rational connection between the sub‐Requirement VRF assignments and the main Requirement VRF assignment. 
Guideline (3) – Consistency among Reliability Standards

The Commission expects the assignment of VRFs corresponding to requirements that address similar reliability goals in different Reliability 
Standards would be treated comparably. 
Guideline (4) – Consistency with NERC’s Definition of the Violation Risk Factor Level

Guideline (4) was developed to evaluate whether the assignment of a particular VRF level conforms to NERC’s definition of that risk level. 
Guideline (5) –Treatment of Requirements that Co-mingle More Than One Obligation

Where a single Requirement co‐mingles a higher risk reliability objective and a lesser risk reliability objective, the VRF assignment for such 
requirements must not be watered down to reflect the lower risk level associated with the less important objective of the Reliability 
Standard. 

NERC Criteria - Violation Severity Levels

 VSLs define the degree to which compliance with a requirement was not achieved. Each requirement must have at least one VSL. While it is 
preferable to have four VSLs for each requirement, some requirements do not have multiple “degrees” of noncompliant performance and 
may have only one, two, or three VSLs. 
 
 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

3   

 
 
 

VSLs should be based on NERC’s overarching criteria shown in the table below: 
Lower VSL

Moderate VSL

High VSL

The performance or product 
The performance or product 
The performance or product 
measured almost meets the full  measured meets the majority of  measured does not meet the 
intent of the requirement. 
the intent of the requirement. 
majority of the intent of the 
requirement, but does meet 
some of the intent. 

Severe VSL
The performance or product 
measured does not 
substantively meet the intent of 
the requirement. 

 

FERC Order of Violation Severity Levels
FERC’s VSL guidelines are presented below, followed by an analysis of whether the VSLs proposed for each requirement in the standard 
meet the FERC Guidelines for assessing VSLs:  
Guideline 1 – Violation Severity Level Assignments Should Not Have the Unintended Consequence of Lowering the Current
Level of Compliance
Compare the VSLs to any prior levels of non‐compliance and avoid significant changes that may encourage a lower level of compliance than was 
required when levels of non‐compliance were used. 
Guideline 2 – Violation Severity Level Assignments Should Ensure Uniformity and Consistency in the Determination of
Penalties

A violation of a “binary” type requirement must be a “Severe” VSL. 
Do not use ambiguous terms such as “minor” and “significant” to describe noncompliant performance. 
Guideline 3 – Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement

VSLs should not expand on what is required in the requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

4   

 
 
 

Guideline 4 – Violation Severity Level Assignment Should Be Based on A Single Violation, Not on A Cumulative Number of
Violations

Unless otherwise stated in the requirement, each instance of non‐compliance with a requirement is a separate violation. Section 4 of the 
Sanction Guidelines states that assessing penalties on a per‐violation per‐day basis is the “default” for penalty calculations. 
VRF Justifications – TPL-007-2, R1
Proposed VRF

Low

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report. N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard. The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Lower is consistent with Reliability 
Standard TPL‐001‐4 Requirement R7, which requires the Planning Coordinator, in conjunction with 
each of its Transmission Planners, to identify each entity’s individual and joint responsibilities for 
performing required studies for the Planning Assessment. Proposed TPL‐007‐2 Requirement R1 
requires Planning Coordinators, in conjunction with Transmission Planners, to identify individual and 
joint responsibilities for maintaining models and performing studies needed to complete the 
benchmark and supplemental GMD Vulnerability Assessments, and implementing process(es) to 
obtain GMD measurement data as specified in the Standard. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. A VRF of Lower is consistent with the NERC 
VRF definition. The requirement for identifying individual and joint responsibilities of the Planning 
Coordinator and each of the Transmission Planners in the Planning Coordinator’s planning area for 
maintaining models, performing GMD studies, and obtaining GMD measurement data, if violated, 
would not be expected to adversely affect the electrical state or capability of the Bulk Electric System, 
or the ability to effectively monitor, control, or restore the Bulk Electric System under conditions of a 
GMD event. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

5   

 
 
 

VRF Justifications – TPL-007-2, R1
Proposed VRF

FERC VRF G5 Discussion 

Low

Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. The requirement 
contains one objective, therefore a single VRF is assigned. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

6   

 
 
 

Proposed VSLs – TPL-007-2, R1	
Lower

N/A 

Moderate

N/A 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

High

N/A 

Severe

The Planning Coordinator, in 
conjunction with its 
Transmission Planner(s), failed 
to determine and identify 
individual or joint 
responsibilities of the Planning 
Coordinator and Transmission 
Planner(s) in the Planning 
Coordinator’s planning area for 
maintaining models, performing 
the study or studies needed to 
complete benchmark and 
supplemental GMD Vulnerability 
Assessments, and implementing 
process(es) to obtain GMD 
measurement data as specified 
in this standard. 

7   

 
 
 

VSL Justifications – TPL-007-2, R1

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
The VSL is not changed in TPL‐007‐2. 

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 

The proposed VSL is worded consistently with the corresponding requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

8   

 
 
 

Consistent with the 
Corresponding Requirement 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 

The proposed VSL is not based on a cumulative number of violations. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

9   

 
 
 

VRF Justifications – TPL-007-2, R2
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with the VRF for 
Reliability Standard TPL‐001‐4 Requirement R1 as amended in NERC's filing dated August 29, 2014, 
which requires Transmission Planners and Planning Coordinators to maintain models within its 
respective planning area for performing studies needed to complete its Planning Assessment. 
Proposed TPL‐007‐2, Requirement R2 requires responsible entities to maintain System models and GIC 
System models of the responsible entity’s planning area for performing the studies needed to 
complete benchmark and supplemental GMD Vulnerability Assessments. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. The System Models and GIC System Models serve as the foundation for all conditions 
and events that are required to be studied and evaluated in the benchmark and supplemental GMD 
Vulnerability Assessments. For this reason, failure to maintain models of the responsible entity’s 
planning area for performing GMD studies could, under GMD conditions that are as severe as the 
benchmark and supplemental GMD event, place the Bulk Electric System at an unacceptable risk of 
instability, separation, or cascading failures. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

10   

 
 
 

Proposed VSLs – TPL-007-2, R2
Lower

N/A 

Moderate

High

Severe

N/A 

The responsible entity did not 
maintain either System models 
or GIC System models of the 
responsible entity’s planning 
area for performing the studies 
needed to complete benchmark 
and supplemental GMD 
Vulnerability Assessments. 

The responsible entity did not 
maintain both System models 
and GIC System models of the 
responsible entity’s planning 
area for performing the studies 
needed to complete benchmark 
and supplemental GMD 
Vulnerability Assessments. 

VSL Justifications – TPL-007-2, R2

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Two VSLs are specified for a graduated scale. 
The VSL is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

11   

 
 
 

VSL Justifications – TPL-007-2, R2

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

12   

 
 
 

VRF Justifications – TPL-007-2, R3
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability 
Standard TPL‐001‐4 Requirement R5 which requires Transmission Planners and Planning Coordinators 
to have criteria for acceptable System steady state voltage limits. Proposed TPL‐007‐2 Requirement R4 
requires responsible entities to have criteria for acceptable System steady state voltage performance 
for its System during the benchmark GMD event; these criteria may be different from the voltage 
limits determined in Reliability Standard TPL‐001‐4 Requirement R5. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to have criteria for acceptable System steady state voltage limits for its 
System during a GMD planning event could directly and adversely affect the electrical state or 
capability of the Bulk Electric System, or the ability to effectively monitor, control, or restore the Bulk 
Electric System during an actual GMD event. However, it is unlikely that such a failure by itself would 
lead to Bulk Electric System instability, separation, or cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

13   

 
 
 

Proposed VSLs – TPL-007-2, R3
Lower

N/A 

Moderate

N/A 

High

N/A 

Severe

The responsible entity did not 
have criteria for acceptable 
System steady state voltage 
performance for its System 
during the GMD events 
described in Attachment 1 as 
required. 

VSL Justifications – TPL-007-2, R3

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
The VSL is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

14   

 
 
 

VSL Justifications – TPL-007-2, R3

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

15   

 
 
 

VRF Justifications – TPL-007-2, R4
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with Reliability 
Standard TPL‐001‐4 Requirement R2 which requires Transmission Planners and Planning Coordinators 
to prepare an annual Planning Assessment to ensure its portion of the Bulk Electric System meets 
performance criteria. Proposed TPL‐007‐2 Requirement R4 requires responsible entities to complete a 
benchmark GMD Vulnerability Assessment to ensure the system meets performance criteria during the 
benchmark GMD event. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. Failure to complete a benchmark GMD Vulnerability Assessment could, under GMD 
conditions that are as severe as the benchmark GMD event, place the Bulk Electric System at an 
unacceptable risk of instability, separation, or cascading failures. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

16   

 
 
 

Proposed VSLs – TPL-007-2, R4
Lower

Moderate

The responsible entity 
completed a benchmark GMD 
Vulnerability Assessment, but it 
was more than 60 calendar 
months and less than or equal 
to 64 calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment failed 
to satisfy one of the elements 
listed in Requirement R4, Parts 
4.1 through 4.3; 
OR 

High

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment failed 
to satisfy two of the elements 
listed in Requirement R4, Parts 
4.1 through 4.3; 
OR 
The responsible entity 
The responsible entity 
completed a benchmark GMD 
completed a benchmark GMD 
Vulnerability Assessment, but it  Vulnerability Assessment, but it 
was more than 68 calendar 
was more than 64 calendar 
months and less than or equal 
months and less than or equal 
to 68 calendar months since the  to 72 calendar months since the 
last benchmark GMD 
last benchmark GMD 
Vulnerability Assessment. 
Vulnerability Assessment. 

Severe

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment failed 
to satisfy three of the elements 
listed in Requirement R4, Parts 
4.1 through 4.3; 
OR 
The responsible entity 
completed a benchmark GMD 
Vulnerability Assessment, but it 
was more than 72 calendar 
months since the last 
benchmark GMD Vulnerability 
Assessment; 
OR 
The responsible entity does not 
have a completed benchmark 
GMD Vulnerability Assessment. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

17   

 
 
 

VSL Justifications – TPL-007-2, R4

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
 The VSL is not changed in TPL‐007‐2. 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

18   

 
 
 

VSL Justifications – TPL-007-2, R4

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 

VRF Justifications – TPL-007-2, R5
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

19   

 
 
 

VRF Justifications – TPL-007-2, R5
Proposed VRF

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

Medium

Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability 
Standard MOD‐032‐1 Requirement R2 which requires applicable entities to provide modeling data to 
Transmission Planners and Planning Coordinators. A VRF of Medium is also consistent with Reliability 
Standard IRO‐010‐2 Requirement R3 which requires entities to provide data necessary for the 
Reliability Coordinator to perform its Operational Planning Analysis and Real‐time Assessments. 
Proposed TPL‐007‐2 Requirement R5 requires responsible entities to provide specific geomagnetically‐
induced currents (GIC) flow information to Transmission Owners and Generator Owners for 
performing transformer thermal impact assessments. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to provide GIC flow information for the benchmark GMD event could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

20   

 
 
 

Proposed VSLs – TPL-007-2, R5
Lower

Moderate

High

Severe

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
90 calendar days and less than 
or equal to 100 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
100 calendar days and less than 
or equal to 110 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
110 calendar days after receipt 
of a written request. 

The responsible entity did not 
provide the maximum effective 
GIC value to the Transmission 
Owner and Generator Owner 
that owns each applicable BES 
power transformer in the 
planning area; 
OR  
The responsible entity did not 
provide the effective GIC time 
series, GIC(t), upon written 
request. 

VSL Justifications – TPL-007-2, R5

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
The VLS is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

21   

 
 
 

VSL Justifications – TPL-007-2, R5

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

22   

 
 
 

VRF Justifications – TPL-007-2, R6
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability 
Standard FAC‐008‐3 Requirement R6 which requires Transmission Owners and Generator Owners to 
have Facility Ratings for all solely and jointly owned Facilities that are consistent with the associated 
Facility Ratings methodology or documentation. Proposed TPL‐007‐2 Requirement R6 requires 
responsible entities to conduct a benchmark thermal impact assessment for solely and jointly owned 
applicable transformers and provide results including suggested actions to mitigate identified impacts 
to planning entities. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to conduct a benchmark transformer thermal impact assessment could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

23   

 
 
 

Proposed VSLs – TPL-007-2, R6
Lower

Moderate

High

Severe

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for 5% or 
less or one of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase; 
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 24 
calendar months and less than 
or equal to 26 calendar months 

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for more 
than 5% up to (and including) 
10% or two of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase;  
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 26 
calendar months and less than 

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for more 
than 10% up to (and including) 
15% or three of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase; 
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 28 
calendar months and less than 

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for more 
than 15% or more than three of 
its solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the maximum 
effective GIC value provided in 
Requirement R5, Part 5.1, is 75 
A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 30 
calendar months of receiving 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

24   

 
 
 

Proposed VSLs – TPL-007-2, R6
Lower

of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1. 

Moderate

High

Severe

or equal to 28 calendar months 
of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 
OR 
The responsible entity failed to 
include one of the required 
elements as listed in 
Requirement R6, Parts 6.1 
through 6.3. 

or equal to 30 calendar months 
of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 
OR 
The responsible entity failed to 
include two of the required 
elements as listed in 
Requirement R6, Parts 6.1 
through 6.3. 

GIC flow information specified in 
Requirement R5, Part 5.1; 
OR 
The responsible entity failed to 
include three of the required 
elements as listed in 
Requirement R6, Parts 6.1 
through 6.3. 

VSL Justifications – TPL-007-2, R6

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
The VSL is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

25   

 
 
 

VSL Justifications – TPL-007-2, R6

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

26   

 
 
 

VRF Justifications – TPL-007-2, R7
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with Reliability 
Standard TPL‐001‐4 Requirement R2 which requires Transmission Planners and Planning Coordinators 
to include a Corrective Action Plan that addresses identified performance issues in the annual Planning 
Assessment. Proposed TPL‐007‐2 Requirement R7 requires responsible entities to develop a Corrective 
Action Plan when results of the benchmark GMD Vulnerability Assessment indicate that the System 
does not meet performance requirements. While Reliability Standard TPL‐001‐4 has a single 
requirement for performing the Planning Assessment and developing the Corrective Action Plan, 
proposed TPL‐007‐2 has split the requirements for performing a benchmark GMD Vulnerability 
Assessment and developing the Corrective Action Plan into two separate requirements because the 
transformer thermal impact assessments performed by Transmission Owners and Generator Owners 
must be considered. The sequencing with separate requirements follows a logical flow of the GMD 
Vulnerability Assessment process. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. Failure to develop a Corrective Action Plan that addresses issues identified in a GMD 
Vulnerability Assessment could, under GMD conditions that are as severe as the benchmark GMD 
event, place the Bulk Electric System at an unacceptable risk of instability, separation, or cascading 
failures. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

27   

 
 
 

Proposed VSLs – TPL-007-2, R7
Lower

Moderate

High

Severe

The responsible entity's 
Corrective Action Plan failed to 
comply with one of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed to 
comply with two of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed to 
comply with three of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed to 
comply with four or more of the 
elements in Requirement R7, 
Parts 7.1 through 7.5; 
OR 
The responsible entity did not 
have a Corrective Action Plan as 
required by Requirement R7. 

VSL Justifications – TPL-007-2, R7

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
The proposed requirement is a significant revision to TPL‐007‐2 to address the directive for Corrective 
FERC VSL G1  
Action Plan deadlines contained in FERC Order No. 830. There is no prior compliance obligation related 
Violation Severity Level 
to the directive. However, the requirement uses the same construct for a graduated scale as TPL‐007‐1 
Assignments Should Not Have 
the Unintended Consequence of  Requirement R7 and is similar to Reliability Standard TPL‐001‐4, Requirement R2. 
Lowering the Current Level of 
Compliance 
NERC VSL Guidelines 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

28   

 
 
 

VSL Justifications – TPL-007-2, R7

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

29   

 
 
 

 
VRF Justifications – TPL-007-2, R8
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with Reliability 
Standard TPL‐001‐4 Requirement R2 which requires Transmission Planners and Planning Coordinators 
to prepare an annual Planning Assessment to ensure its portion of the Bulk Electric System meets 
performance criteria. The proposed requirement is also consistent with approved TPL‐007‐1 
Requirement R4 (unchanged in proposed TPL‐007‐2 Requirement R4). Proposed TPL‐007‐2 
Requirement R8 requires responsible entities to complete a supplemental GMD Vulnerability 
Assessment to assess system performance during a supplemental GMD event. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. Failure to complete a supplemental GMD Vulnerability Assessment could, under GMD 
conditions that are as severe as the supplemental GMD event, place the Bulk Electric System at an 
unacceptable risk of instability, separation, or cascading failures by precluding responsible entities 
from considering actions to mitigate risk of Cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

30   

 
 
 

Proposed VSLs – TPL-007-2, R8
Lower

Moderate

The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy one of elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental GMD 
Vulnerability Assessment, but it 
was more than 60 calendar 
months and less than or equal 
to 64 calendar months since the 
last supplemental GMD 
Vulnerability Assessment. 

The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy two of elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 
OR 

High

The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy three of the elements 
listed in Requirement R8, Parts 
8.1 through 8.4; 
OR 
The responsible entity 
The responsible entity 
completed a supplemental GMD  completed a supplemental GMD 
Vulnerability Assessment, but it  Vulnerability Assessment, but it 
was more than 68 calendar 
was more than 64 calendar 
months and less than or equal 
months and less than or equal 
to 68 calendar months since the  to 72 calendar months since the 
last supplemental GMD 
last supplemental GMD 
Vulnerability Assessment. 
Vulnerability Assessment. 

Severe

The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy four of the elements 
listed in Requirement R8, Parts 
8.1 through 8.4; 
OR 
The responsible entity 
completed a supplemental GMD 
Vulnerability Assessment, but it 
was more than 72 calendar 
months since the last 
supplemental GMD Vulnerability 
Assessment; 
OR 
The responsible entity does not 
have a completed supplemental 
GMD Vulnerability Assessment. 

 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

31   

 
 
 

VSL Justifications – TPL-007-2, R8

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
There is no prior compliance obligation related to supplemental GMD Vulnerability Assessment. 
However, the requirement is similar to approved TPL‐007‐1, Requirement R4 (unchanged in proposed 
TPL‐007‐2 Requirement R4). That requirement also has a graduated scale for VSLs. 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

32   

 
 
 

VSL Justifications – TPL-007-2, R8

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 
 
VRF Justifications – TPL-007-2, R9
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with approved 
TPL‐007‐1 Requirement R5 (unchanged in proposed TPL‐007‐2 Requirement R5) which requires 
responsible entities to provide specific geomagnetically‐induced currents (GIC) flow information to 
Transmission Owners and Generator Owners for performing transformer thermal impact assessments. 

FERC VRF G3 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

33   

 
 
 

VRF Justifications – TPL-007-2, R9
Proposed VRF

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

Medium

Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to provide GIC flow information for the supplemental GMD event could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

34   

 
 
 

Proposed VSLs – TPL-007-2, R9
Lower

Moderate

High

Severe

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
90 calendar days and less than 
or equal to 100 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
100 calendar days and less than 
or equal to 110 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
110 calendar days after receipt 
of a written request. 

The responsible entity did not 
provide the maximum effective 
GIC value to the Transmission 
Owner and Generator Owner 
that owns each applicable BES 
power transformer in the 
planning area; 
OR 
The responsible entity did not 
provide the effective GIC time 
series, GIC(t), upon written 
request. 

 
 
VSL Justifications – TPL-007-2, R9

NERC VSL Guidelines 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

35   

 
 
 

VSL Justifications – TPL-007-2, R9

There is no prior compliance obligation related to supplemental GMD Vulnerability Assessment. 
FERC VSL G1  
However, the requirement is similar to approved TPL‐007‐1, Requirement R5 (unchanged in proposed 
Violation Severity Level 
TPL‐007‐2 Requirement R5). That requirement also has a graduated scale for VSLs. 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

36   

 
 
 

VSL Justifications – TPL-007-2, R9

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 
 
VRF Justifications – TPL-007-2, R10
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with approved 
TPL‐007‐1 Requirement R6 (unchanged in proposed TPL‐007‐2 Requirement R6), which requires 
responsible entities to conduct a benchmark thermal impact assessment for solely and jointly owned 
applicable transformers and provide results including suggested actions to mitigate identified impacts 
to planning entities. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to conduct a supplemental transformer thermal impact assessment could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

37   

 
 
 

VRF Justifications – TPL-007-2, R10
Proposed VRF

FERC VRF G5 Discussion 

Medium

Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

 
 
Proposed VSLs – TPL-007-2, R10
Lower

Moderate

High

Severe

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for 5% or 
less or one of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 
owned applicable BES power 

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for more 
than 5% up to (and including) 
10% or two of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for more 
than 10% up to (and including) 
15% or three of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for more 
than 15% or more than three of 
its solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the maximum 
effective GIC value provided in 
Requirement R9, Part 9.1, is 85 
A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 
owned applicable BES power 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

38   

 
 
 

Proposed VSLs – TPL-007-2, R10
Lower

Moderate

High

Severe

transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 24 
calendar months and less than 
or equal to 26 calendar months 
of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1. 

owned applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 26 
calendar months and less than 
or equal to 28 calendar months 
of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1 
OR 
The responsible entity failed to 
include one of the required 
elements as listed in 
Requirement R10, Parts 10.1 
through 10.3. 

owned applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 28 
calendar months and less than 
or equal to 30 calendar months 
of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1; 
OR 
The responsible entity failed to 
include two of the required 
elements as listed in 
Requirement R10, Parts 10.1 
through 10.3. 

transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 30 
calendar months of receiving 
GIC flow information specified in 
Requirement R9, Part 9.1; 
OR 
The responsible entity failed to 
include three of the required 
elements as listed in 
Requirement R10, Parts 10.1 
through 10.3. 

 
 
VSL Justifications – TPL-007-2, R10

NERC VSL Guidelines 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

39   

 
 
 

VSL Justifications – TPL-007-2, R10

There is no prior compliance obligation related to supplemental thermal impact assessment. However, 
FERC VSL G1  
the requirement is similar to approved TPL‐007‐1, Requirement R6 (unchanged in proposed TPL‐007‐2 
Violation Severity Level 
Requirement R6). That requirement also has a graduated scale for VSLs. 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

40   

 
 
 

VSL Justifications – TPL-007-2, R10

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 
 
VRF Justifications – TPL-007-2, R11
Proposed VRF

Lower

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Lower is consistent with approved 
Reliability Standards requiring entities to implement processes to obtain data. These include Reliability 
Standard MOD‐032‐1 Requirement R1 and Reliability Standard IRO‐010‐2 Requirement R1. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Lower is consistent with the NERC 
VRF Definition. Failure to obtain GIC monitor data from at least one GIC monitor located in the system 
would not be expected to adversely affect the electrical state or capability of the Bulk Electric System, 
or the ability to effectively monitor, control, or restore the Bulk Electric System. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

41   

 
 
 

Proposed VSLs – TPL-007-2, R11
Lower

N/A 

Moderate

N/A 

High

Severe

N/A 

The responsible entity did not 
implement a process to obtain 
GIC monitor data from at least 
one GIC monitor located in the 
Planning Coordinator’s planning 
area or other part of the system 
included in the Planning 
Coordinator’s GIC System 
Model. 

 
 
VSL Justifications – TPL-007-2, R11

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
There is no prior compliance obligation for this requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

42   

 
 
 

VSL Justifications – TPL-007-2, R11

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

43   

 
 
 

 
 
VRF Justifications – TPL-007-2, R12
Proposed VRF

Lower

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Lower is consistent with approved 
Reliability Standards requiring entities to implement processes to obtain data. These include Reliability 
Standard MOD‐032‐1 Requirement R1 and Reliability Standard IRO‐010‐2 Requirement R1. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Lower is consistent with the NERC 
VRF Definition. Failure to obtain geomagnetic field data for the planning area would not be expected 
to adversely affect the electrical state or capability of the Bulk Electric System, or the ability to 
effectively monitor, control, or restore the Bulk Electric System. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

44   

 
 
 

Proposed VSLs – TPL-007-2, R12
Lower

N/A 

Moderate

N/A 

High

Severe

N/A 

The responsible entity did not 
implement a process to obtain 
geomagnetic field data for its 
Planning Coordinator’s planning 
area. 

 
VSL Justifications – TPL-007-2, R12

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
There is no prior compliance obligation for this requirement. 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

45   

 
 
 

VSL Justifications – TPL-007-2, R12

Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications | October 2017 

46   

Violation Risk Factor and Violation Severity Level
Justifications

TPL-007-2  Transmission System Planned Performance for Geomagnetic Disturbance Events
This document provides the Standard Drafting Team’s (SDT) justification for assignment of Violation Risk Factors (VRFs) and Violation 
Severity Levels (VSLs) for each requirement in TPL‐007‐2 – Transmission System Planned Performance for Geomagnetic Disturbance Events. 
Each requirement is assigned a VRF and a VSL. These elements support the determination of an initial value range for the Base Penalty 
Amount regarding violations of requirements in FERC‐approved Reliability Standards, as defined in the ERO Sanction Guidelines. The SDT 
applied the following NERC criteria and FERC Guidelines when proposing VRFs and VSLs for the requirements under this project. 
 

NERC Criteria - Violation Risk Factors
High Risk Requirement

A requirement that, if violated, could directly cause or contribute to Bulk Electric System instability, separation, or a cascading sequence of 
failures, or could place the Bulk Electric System at an unacceptable risk of instability, separation, or cascading failures; or, a requirement in a 
planning time frame that, if violated, could, under emergency, abnormal, or restorative conditions anticipated by the preparations, directly 
cause or contribute to Bulk Electric System instability, separation, or a cascading sequence of failures, or could place the Bulk Electric 
System at an unacceptable risk of instability, separation, or cascading failures, or could hinder restoration to a normal condition. 
Medium Risk Requirement

A requirement that, if violated, could directly affect the electrical state or the capability of the Bulk Electric System, or the ability to 
effectively monitor and control the Bulk Electric System. However, violation of a medium risk requirement is unlikely to lead to Bulk Electric 
System instability, separation, or cascading failures; or, a requirement in a planning time frame that, if violated, could, under emergency, 
abnormal, or restorative conditions anticipated by the preparations, directly and adversely affect the electrical state or capability of the Bulk 
Electric System, or the ability to effectively monitor, control, or restore the Bulk Electric System. However, violation of a medium risk 
requirement is unlikely, under emergency, abnormal, or restoration conditions anticipated by the preparations, to lead to Bulk Electric 
System instability, separation, or cascading failures, nor to hinder restoration to a normal condition. 

 
 
 

Lower Risk Requirement

A requirement that is administrative in nature and a requirement that, if violated, would not be expected to adversely affect the electrical 
state or capability of the Bulk Electric System, or the ability to effectively monitor and control the Bulk Electric System; or, a requirement 
that is administrative in nature and a requirement in a planning time frame that, if violated, would not, under the emergency, abnormal, or 
restorative conditions anticipated by the preparations, be expected to adversely affect the electrical state or capability of the Bulk Electric 
System, or the ability to effectively monitor, control, or restore the Bulk Electric System. 

FERC Violation Risk Factor Guidelines

 
Guideline (1) – Consistency with the Conclusions of the Final Blackout Report
The Commission seeks to ensure that VRFs assigned to Requirements of Reliability Standards in these identified areas appropriately reflect 
their historical critical impact on the reliability of the Bulk‐Power System. In the VSL Order, FERC listed critical areas (from the Final Blackout 
Report) where violations could severely affect the reliability of the Bulk‐Power System: 



Emergency operations 



Vegetation management 



Operator personnel training 



Protection systems and their coordination 



Operating tools and backup facilities 



Reactive power and voltage control 



System modeling and data exchange 



Communication protocol and facilities 



Requirements to determine equipment ratings 



Synchronized data recorders 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

2   

 
 
 



Clearer criteria for operationally critical facilities 



Appropriate use of transmission loading relief. 

Guideline (2) – Consistency within a Reliability Standard

The Commission expects a rational connection between the sub‐Requirement VRF assignments and the main Requirement VRF assignment. 
Guideline (3) – Consistency among Reliability Standards

The Commission expects the assignment of VRFs corresponding to requirements that address similar reliability goals in different Reliability 
Standards would be treated comparably. 
Guideline (4) – Consistency with NERC’s Definition of the Violation Risk Factor Level

Guideline (4) was developed to evaluate whether the assignment of a particular VRF level conforms to NERC’s definition of that risk level. 
Guideline (5) –Treatment of Requirements that Co-mingle More Than One Obligation

Where a single Requirement co‐mingles a higher risk reliability objective and a lesser risk reliability objective, the VRF assignment for such 
requirements must not be watered down to reflect the lower risk level associated with the less important objective of the Reliability 
Standard. 

NERC Criteria - Violation Severity Levels

 VSLs define the degree to which compliance with a requirement was not achieved. Each requirement must have at least one VSL. While it is 
preferable to have four VSLs for each requirement, some requirements do not have multiple “degrees” of noncompliant performance and 
may have only one, two, or three VSLs. 
 
 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

3   

 
 
 

VSLs should be based on NERC’s overarching criteria shown in the table below: 
Lower VSL

Moderate VSL

High VSL

The performance or product 
The performance or product 
The performance or product 
measured almost meets the full  measured meets the majority of  measured does not meet the 
intent of the requirement. 
the intent of the requirement. 
majority of the intent of the 
requirement, but does meet 
some of the intent. 

Severe VSL
The performance or product 
measured does not 
substantively meet the intent of 
the requirement. 

 

FERC Order of Violation Severity Levels
FERC’s VSL guidelines are presented below, followed by an analysis of whether the VSLs proposed for each requirement in the standard 
meet the FERC Guidelines for assessing VSLs:  
Guideline 1 – Violation Severity Level Assignments Should Not Have the Unintended Consequence of Lowering the Current
Level of Compliance
Compare the VSLs to any prior levels of non‐compliance and avoid significant changes that may encourage a lower level of compliance than was 
required when levels of non‐compliance were used. 
Guideline 2 – Violation Severity Level Assignments Should Ensure Uniformity and Consistency in the Determination of
Penalties

A violation of a “binary” type requirement must be a “Severe” VSL. 
Do not use ambiguous terms such as “minor” and “significant” to describe noncompliant performance. 
Guideline 3 – Violation Severity Level Assignment Should Be Consistent with the Corresponding Requirement

VSLs should not expand on what is required in the requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

4   

 
 
 

Guideline 4 – Violation Severity Level Assignment Should Be Based on A Single Violation, Not on A Cumulative Number of
Violations

Unless otherwise stated in the requirement, each instance of non‐compliance with a requirement is a separate violation. Section 4 of the 
Sanction Guidelines states that assessing penalties on a per‐violation per‐day basis is the “default” for penalty calculations. 
VRF Justifications – TPL-007-2, R1
Proposed VRF

Low

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report. N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard. The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Lower is consistent with Reliability 
Standard TPL‐001‐4 Requirement R7, which requires the Planning Coordinator, in conjunction with 
each of its Transmission Planners, to identify each entity’s individual and joint responsibilities for 
performing required studies for the Planning Assessment. Proposed TPL‐007‐2 Requirement R1 
requires Planning Coordinators, in conjunction with Transmission Planners, to identify individual and 
joint responsibilities for maintaining models and performing studies needed to complete the 
benchmark and supplemental GMD Vulnerability Assessments, and implementing process(es) to 
obtain GMD measurement data as specified in the Standard. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. A VRF of Lower is consistent with the NERC 
VRF definition. The requirement for identifying individual and joint responsibilities of the Planning 
Coordinator and each of the Transmission Planners in the Planning Coordinator’s planning area for 
maintaining models, performing GMD studies, and obtaining GMD measurement data, if violated, 
would not be expected to adversely affect the electrical state or capability of the Bulk Electric System, 
or the ability to effectively monitor, control, or restore the Bulk Electric System under conditions of a 
GMD event. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

5   

 
 
 

VRF Justifications – TPL-007-2, R1
Proposed VRF

FERC VRF G5 Discussion 

Low

Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. The requirement 
contains one objective, therefore a single VRF is assigned. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

6   

 
 
 

Proposed VSLs – TPL-007-2, R1	
Lower

N/A 

Moderate

N/A 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

High

N/A 

Severe

The Planning Coordinator, in 
conjunction with its 
Transmission Planner(s), failed 
to determine and identify 
individual or joint 
responsibilities of the Planning 
Coordinator and Transmission 
Planner(s) in the Planning 
Coordinator’s planning area for 
maintaining models, performing 
the study or studies needed to 
complete benchmark and 
supplemental GMD Vulnerability 
Assessments, and implementing 
process(es) to obtain GMD 
measurement data as specified 
in the Standard. this standard. 

7   

 
 
 

VSL Justifications – TPL-007-2, R1

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
The VSL is not changed in TPL‐007‐2. 

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 

The proposed VSL is worded consistently with the corresponding requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

8   

 
 
 

Consistent with the 
Corresponding Requirement 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 

The proposed VSL is not based on a cumulative number of violations. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

9   

 
 
 

VRF Justifications – TPL-007-2, R2
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with the VRF for 
Reliability Standard TPL‐001‐4 Requirement R1 as amended in NERC's filing dated August 29, 2014, 
which requires Transmission Planners and Planning Coordinators to maintain models within its 
respective planning area for performing studies needed to complete its Planning Assessment. 
Proposed TPL‐007‐2, Requirement R2 requires responsible entities to maintain System models and GIC 
System models of the responsible entity’s planning area for performing the studies needed to 
complete benchmark and supplemental GMD Vulnerability Assessments. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. The System Models and GIC System Models serve as the foundation for all conditions 
and events that are required to be studied and evaluated in the benchmark and supplemental GMD 
Vulnerability Assessments. For this reason, failure to maintain models of the responsible entity’s 
planning area for performing GMD studies could, under GMD conditions that are as severe as the 
benchmark and supplemental GMD event, place the Bulk Electric System at an unacceptable risk of 
instability, separation, or cascading failures. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

10   

 
 
 

Proposed VSLs – TPL-007-2, R2
Lower

N/A 

Moderate

High

Severe

N/A 

The responsible entity did not 
maintain either System models 
or GIC System models of the 
responsible entity’s planning 
area for performing the study or 
studies or studies needed to 
complete benchmark and 
supplemental GMD Vulnerability 
Assessments. 

The responsible entity did not 
maintain both System models 
and GIC System models of the 
responsible entity’s planning 
area for performing the study or 
studies or studies needed to 
complete benchmark and 
supplemental GMD Vulnerability 
Assessments. 

VSL Justifications – TPL-007-2, R2

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Two VSLs are specified for a graduated scale. 
The VSL is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

11   

 
 
 

VSL Justifications – TPL-007-2, R2

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

12   

 
 
 

VRF Justifications – TPL-007-2, R3
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability 
Standard TPL‐001‐4 Requirement R5 which requires Transmission Planners and Planning Coordinators 
to have criteria for acceptable System steady state voltage limits. Proposed TPL‐007‐2 Requirement R4 
requires responsible entities to have criteria for acceptable System steady state voltage performance 
for its System during the benchmark GMD event; these criteria may be different from the voltage 
limits determined in Reliability Standard TPL‐001‐4 Requirement R5. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to have criteria for acceptable System steady state voltage limits for its 
System during a GMD planning event could directly and adversely affect the electrical state or 
capability of the Bulk Electric System, or the ability to effectively monitor, control, or restore the Bulk 
Electric System during an actual GMD event. However, it is unlikely that such a failure by itself would 
lead to Bulk Electric System instability, separation, or cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

13   

 
 
 

Proposed VSLs – TPL-007-2, R3
Lower

N/A 

Moderate

N/A 

High

N/A 

Severe

The responsible entity did not 
have criteria for acceptable 
System steady state voltage 
performance for its System 
during the GMD events 
described in Attachment 1 as 
required. 

VSL Justifications – TPL-007-2, R3

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
The VSL is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

14   

 
 
 

VSL Justifications – TPL-007-2, R3

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

15   

 
 
 

VRF Justifications – TPL-007-2, R4
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with Reliability 
Standard TPL‐001‐4 Requirement R2 which requires Transmission Planners and Planning Coordinators 
to prepare an annual Planning Assessment to ensure its portion of the Bulk Electric System meets 
performance criteria. Proposed TPL‐007‐2 Requirement R4 requires responsible entities to complete a 
benchmark GMD Vulnerability Assessment to ensure the system meets performance criteria during the 
benchmark GMD event. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. Failure to complete a benchmark GMD Vulnerability Assessment could, under GMD 
conditions that are as severe as the benchmark GMD event, place the Bulk Electric System at an 
unacceptable risk of instability, separation, or cascading failures. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

16   

 
 
 

Proposed VSLs – TPL-007-2, R4
Lower

Moderate

The responsible entity 
completed a benchmark GMD 
Vulnerability Assessment, but it 
was more than 60 calendar 
months and less than or equal 
to 64 calendar months since the 
last benchmark GMD 
Vulnerability Assessment. 

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment failed 
to satisfy one of the elements 
listed in Requirement R4, Parts 
4.1 through 4.3; 
OR 

High

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment failed 
to satisfy two of the elements 
listed in Requirement R4, Parts 
4.1 through 4.3; 
OR 
The responsible entity 
The responsible entity 
completed a benchmark GMD 
completed a benchmark GMD 
Vulnerability Assessment, but it  Vulnerability Assessment, but it 
was more than 68 calendar 
was more than 64 calendar 
months and less than or equal 
months and less than or equal 
to 68 calendar months since the  to 72 calendar months since the 
last benchmark GMD 
last benchmark GMD 
Vulnerability Assessment. 
Vulnerability Assessment. 

Severe

The responsible entity's 
completed benchmark GMD 
Vulnerability Assessment failed 
to satisfy three of the elements 
listed in Requirement R4, Parts 
4.1 through 4.3; 
OR 
The responsible entity 
completed a benchmark GMD 
Vulnerability Assessment, but it 
was more than 72 calendar 
months since the last 
benchmark GMD Vulnerability 
Assessment; 
OR 
The responsible entity does not 
have a completed benchmark 
GMD Vulnerability Assessment. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

17   

 
 
 

VSL Justifications – TPL-007-2, R4

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
 The VSL is not changed in TPL‐007‐2. 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

18   

 
 
 

VSL Justifications – TPL-007-2, R4

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 

VRF Justifications – TPL-007-2, R5
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

19   

 
 
 

VRF Justifications – TPL-007-2, R5
Proposed VRF

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

Medium

Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability 
Standard MOD‐032‐1 Requirement R2 which requires applicable entities to provide modeling data to 
Transmission Planners and Planning Coordinators. A VRF of Medium is also consistent with Reliability 
Standard IRO‐010‐2 Requirement R3 which requires entities to provide data necessary for the 
Reliability Coordinator to perform its Operational Planning Analysis and Real‐time Assessments. 
Proposed TPL‐007‐2 Requirement R5 requires responsible entities to provide specific geomagnetically‐
induced currents (GIC) flow information to Transmission Owners and Generator Owners for 
performing transformer thermal impact assessments. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to provide GIC flow information for the benchmark GMD event could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

20   

 
 
 

Proposed VSLs – TPL-007-2, R5
Lower

Moderate

High

Severe

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
90 calendar days and less than 
or equal to 100 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
100 calendar days and less than 
or equal to 110 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
110 calendar days after receipt 
of a written request. 

The responsible entity did not 
provide the maximum effective 
GIC value to the Transmission 
Owner and Generator Owner 
that owns each applicable BES 
power transformer in the 
planning area; 
OR  
The responsible entity did not 
provide the effective GIC time 
series, GIC(t), upon written 
request. 

VSL Justifications – TPL-007-2, R5

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
The VLS is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

21   

 
 
 

VSL Justifications – TPL-007-2, R5

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

22   

 
 
 

VRF Justifications – TPL-007-2, R6
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with Reliability 
Standard FAC‐008‐3 Requirement R6 which requires Transmission Owners and Generator Owners to 
have Facility Ratings for all solely and jointly owned Facilities that are consistent with the associated 
Facility Ratings methodology or documentation. Proposed TPL‐007‐2 Requirement R6 requires 
responsible entities to conduct a benchmark thermal impact assessment for solely and jointly owned 
applicable transformers and provide results including suggested actions to mitigate identified impacts 
to planning entities. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to conduct a benchmark transformer thermal impact assessment could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

23   

 
 
 

Proposed VSLs – TPL-007-2, R6
Lower

Moderate

High

Severe

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for 5% or 
less or one of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase; 
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 24 
calendar months and less than 
or equal to 26 calendar months 

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for more 
than 5% up to (and including) 
10% or two of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase;  
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 26 
calendar months and less than 

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for more 
than 10% up to (and including) 
15% or three of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase; 
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 28 
calendar months and less than 

The responsible entity failed to 
conduct a benchmark thermal 
impact assessment for more 
than 15% or more than three of 
its solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the maximum 
effective GIC value provided in 
Requirement R5, Part 5.1, is 75 
A or greater per phase; 
OR 
The responsible entity 
conducted a benchmark thermal 
impact assessment for its solely 
owned and jointly owned 
applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R5, 
Part 5.1, is 75 A or greater per 
phase but did so more than 30 
calendar months of receiving 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

24   

 
 
 

Proposed VSLs – TPL-007-2, R6
Lower

of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1. 

Moderate

High

Severe

or equal to 28 calendar months 
of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 
OR 
The responsible entity failed to 
include one of the required 
elements as listed in 
Requirement R6, Parts 6.1 
through 6.3. 

or equal to 30 calendar months 
of receiving GIC flow 
information specified in 
Requirement R5, Part 5.1; 
OR 
The responsible entity failed to 
include two of the required 
elements as listed in 
Requirement R6, Parts 6.1 
through 6.3. 

GIC flow information specified in 
Requirement R5, Part 5.1; 
OR 
The responsible entity failed to 
include three of the required 
elements as listed in 
Requirement R6, Parts 6.1 
through 6.3. 

VSL Justifications – TPL-007-2, R6

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
The VSL is not changed in TPL‐007‐2. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

25   

 
 
 

VSL Justifications – TPL-007-2, R6

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

26   

 
 
 

VRF Justifications – TPL-007-2, R7
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with Reliability 
Standard TPL‐001‐4 Requirement R2 which requires Transmission Planners and Planning Coordinators 
to include a Corrective Action Plan that addresses identified performance issues in the annual Planning 
Assessment. Proposed TPL‐007‐2 Requirement R7 requires responsible entities to develop a Corrective 
Action Plan when results of the benchmark GMD Vulnerability Assessment indicate that the System 
does not meet performance requirements. While Reliability Standard TPL‐001‐4 has a single 
requirement for performing the Planning Assessment and developing the Corrective Action Plan, 
proposed TPL‐007‐2 has split the requirements for performing a benchmark GMD Vulnerability 
Assessment and developing the Corrective Action Plan into two separate requirements because the 
transformer thermal impact assessments performed by Transmission Owners and Generator Owners 
must be considered. The sequencing with separate requirements follows a logical flow of the GMD 
Vulnerability Assessment process. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. Failure to develop a Corrective Action Plan that addresses issues identified in a GMD 
Vulnerability Assessment could, under GMD conditions that are as severe as the benchmark GMD 
event, place the Bulk Electric System at an unacceptable risk of instability, separation, or cascading 
failures. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

27   

 
 
 

Proposed VSLs – TPL-007-2, R7
Lower

Moderate

High

Severe

The responsible entity's 
Corrective Action Plan failed to 
comply with one of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed to 
comply with two of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed to 
comply with three of the 
elements in Requirement R7, 
Parts 7.1 through 7.5. 

The responsible entity's 
Corrective Action Plan failed to 
comply with four or more of the 
elements in Requirement R7, 
Parts 7.1 through 7.5; 
OR 
The responsible entity did not 
have a Corrective Action Plan as 
required by Requirement R7. 

VSL Justifications – TPL-007-2, R7

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
The proposed requirement is a significant revision to TPL‐007‐2 to address the directive for Corrective 
FERC VSL G1  
Action Plan deadlines contained in FERC Order No. 830. There is no prior compliance obligation related 
Violation Severity Level 
to the directive. However, the requirement uses the same construct for a graduated scale as TPL‐007‐1 
Assignments Should Not Have 
the Unintended Consequence of  Requirement R7 and is similar to Reliability Standard TPL‐001‐4, Requirement R2. 
Lowering the Current Level of 
Compliance 
NERC VSL Guidelines 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

28   

 
 
 

VSL Justifications – TPL-007-2, R7

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

29   

 
 
 

 
VRF Justifications – TPL-007-2, R8
Proposed VRF

High

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of High is consistent with Reliability 
Standard TPL‐001‐4 Requirement R2 which requires Transmission Planners and Planning Coordinators 
to prepare an annual Planning Assessment to ensure its portion of the Bulk Electric System meets 
performance criteria. The proposed requirement is also consistent with approved TPL‐007‐1 
Requirement R4 (unchanged in proposed TPL‐007‐2 Requirement R4). Proposed TPL‐007‐2 
Requirement R8 requires responsible entities to complete a supplemental GMD Vulnerability 
Assessment to assess system performance during a supplemental GMD event. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of High is consistent with the NERC 
VRF Definition. Failure to complete a supplemental GMD Vulnerability Assessment could, under GMD 
conditions that are as severe as the supplemental GMD event, place the Bulk Electric System at an 
unacceptable risk of instability, separation, or cascading failures by precluding responsible entities 
from considering actions to mitigate risk of Cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

30   

 
 
 

Proposed VSLs – TPL-007-2, R8
Lower

The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy one of elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 
OR 
The responsible entity 
completed a supplemental GMD 
Vulnerability Assessment, but it 
was more than 60 calendar 
months and less than or equal 
to 64 calendar months since the 
last supplemental GMD 
Vulnerability Assessment; 

Moderate

High

The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy three of the elements 
listed in Requirement R8, Parts 
8.1 through 8.4; 
OR 
The responsible entity 
The responsible entity 
completed a supplemental GMD  completed a supplemental GMD 
Vulnerability Assessment, but it  Vulnerability Assessment, but it 
was more than 68 calendar 
was more than 64 calendar 
months and less than or equal 
months and less than or equal 
to 68 calendar months since the  to 72 calendar months since the 
last supplemental GMD 
last supplemental GMD 
Vulnerability Assessment. 
Vulnerability Assessment. 
The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy two of elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 
OR 

OR 
.The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy one of elements listed 
in Requirement R8, Parts 8.1 
through 8.4; 

Severe

The responsible entity's 
completed supplemental GMD 
Vulnerability Assessment failed 
to satisfy four of the elements 
listed in Requirement R8, Parts 
8.1 through 8.4; 
OR 
The responsible entity 
completed a supplemental GMD 
Vulnerability Assessment, but it 
was more than 72 calendar 
months since the last 
supplemental GMD Vulnerability 
Assessment; 
OR 
The responsible entity does not 
have a completed supplemental 
GMD Vulnerability Assessment. 

 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

31   

 
 
 

 
VSL Justifications – TPL-007-2, R8

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 
There is no prior compliance obligation related to supplemental GMD Vulnerability Assessment. 
However, the requirement is similar to approved TPL‐007‐1, Requirement R4 (unchanged in proposed 
TPL‐007‐2 Requirement R4). That requirement also has a graduated scale for VSLs. 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

32   

 
 
 

VSL Justifications – TPL-007-2, R8

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 
 
VRF Justifications – TPL-007-2, R9
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with approved 
TPL‐007‐1 Requirement R5 (unchanged in proposed TPL‐007‐2 Requirement R5) which requires 
responsible entities to provide specific geomagnetically‐induced currents (GIC) flow information to 
Transmission Owners and Generator Owners for performing transformer thermal impact assessments. 

FERC VRF G3 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

33   

 
 
 

VRF Justifications – TPL-007-2, R9
Proposed VRF

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 

Medium

Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to provide GIC flow information for the supplemental GMD event could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

34   

 
 
 

Proposed VSLs – TPL-007-2, R9
Lower

Moderate

High

Severe

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
90 calendar days and less than 
or equal to 100 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
100 calendar days and less than 
or equal to 110 calendar days 
after receipt of a written 
request. 

The responsible entity provided 
the effective GIC time series, 
GIC(t), in response to written 
request, but did so more than 
110 calendar days after receipt 
of a written request. 

The responsible entity did not 
provide the maximum effective 
GIC value to the Transmission 
Owner and Generator Owner 
that owns each applicable BES 
power transformer in the 
planning area; 
OR 
The responsible entity did not 
provide the effective GIC time 
series, GIC(t), upon written 
request. 

 
 
VSL Justifications – TPL-007-2, R9

NERC VSL Guidelines 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

35   

 
 
 

VSL Justifications – TPL-007-2, R9

There is no prior compliance obligation related to supplemental GMD Vulnerability Assessment. 
FERC VSL G1  
However, the requirement is similar to approved TPL‐007‐1, Requirement R5 (unchanged in proposed 
Violation Severity Level 
TPL‐007‐2 Requirement R5). That requirement also has a graduated scale for VSLs. 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

36   

 
 
 

VSL Justifications – TPL-007-2, R9

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 
 
VRF Justifications – TPL-007-2, R10
Proposed VRF

Medium

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Medium is consistent with approved 
TPL‐007‐1 Requirement R6 (unchanged in proposed TPL‐007‐2 Requirement R6), which requires 
responsible entities to conduct a benchmark thermal impact assessment for solely and jointly owned 
applicable transformers and provide results including suggested actions to mitigate identified impacts 
to planning entities. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Medium is consistent with the 
NERC VRF Definition. Failure to conduct a supplemental transformer thermal impact assessment could 
directly and adversely affect the electrical state or capability of the Bulk Electric System, or the ability 
to effectively monitor, control, or restore the Bulk Electric System during a GMD event. However, it is 
unlikely that such a failure by itself would lead to Bulk Electric System instability, separation, or 
cascading. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

37   

 
 
 

VRF Justifications – TPL-007-2, R10
Proposed VRF

FERC VRF G5 Discussion 

Medium

Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

 
 
Proposed VSLs – TPL-007-2, R10
Lower

Moderate

High

Severe

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for 5% or 
less or one of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 
owned applicable BES power 

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for more 
than 5% up to (and including) 
10% or two of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for more 
than 10% up to (and including) 
15% or three of its solely owned 
and jointly owned applicable 
BES power transformers 
(whichever is greater) where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 

The responsible entity failed to 
conduct a supplemental thermal 
impact assessment for more 
than 15% or more than three of 
its solely owned and jointly 
owned applicable BES power 
transformers (whichever is 
greater) where the maximum 
effective GIC value provided in 
Requirement R9, Part 9.1, is 85 
A or greater per phase; 
OR 
The responsible entity 
conducted a supplemental 
thermal impact assessment for 
its solely owned and jointly 
owned applicable BES power 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

38   

 
 
 

Proposed VSLs – TPL-007-2, R10
Lower

Moderate

High

Severe

transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 24 
calendar months and less than 
or equal to 26 calendar months 
of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1. 

owned applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 26 
calendar months and less than 
or equal to 28 calendar months 
of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1; 
OR 
The responsible entity failed to 
include one of the required 
elements as listed in 
Requirement R10, Parts 10.1 
through 10.3. 

owned applicable BES power 
transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 28 
calendar months and less than 
or equal to 30 calendar months 
of receiving GIC flow 
information specified in 
Requirement R9, Part 9.1; 
OR 
The responsible entity failed to 
include two of the required 
elements as listed in 
Requirement R10, Parts 10.1 
through 10.3. 

transformers where the 
maximum effective GIC value 
provided in Requirement R9, 
Part 9.1, is 85 A or greater per 
phase but did so more than 30 
calendar months of receiving 
GIC flow information specified in 
Requirement R9, Part 9.1; 
OR 
The responsible entity failed to 
include three of the required 
elements as listed in 
Requirement R10, Parts 10.1 
through 10.3. 

 
 
VSL Justifications – TPL-007-2, R10

NERC VSL Guidelines 

Consistent with NERC's VSL Guidelines. The requirement may be described by elements or quantities 
to evaluate degrees of compliance. Four VSLs are specified for a graduated scale. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

39   

 
 
 

VSL Justifications – TPL-007-2, R10

There is no prior compliance obligation related to supplemental thermal impact assessment. However, 
FERC VSL G1  
the requirement is similar to approved TPL‐007‐1, Requirement R6 (unchanged in proposed TPL‐007‐2 
Violation Severity Level 
Requirement R6). That requirement also has a graduated scale for VSLs. 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is not binary. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

40   

 
 
 

VSL Justifications – TPL-007-2, R10

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 
 
VRF Justifications – TPL-007-2, R11
Proposed VRF

Lower

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Lower is consistent with approved 
Reliability Standards requiring entities to implement processes to obtain data. These include Reliability 
Standard MOD‐032‐1 Requirement R1 and Reliability Standard IRO‐010‐2 Requirement R1. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Lower is consistent with the NERC 
VRF Definition. Failure to obtain GIC monitor data from at least one GIC monitor located in the system 
would not be expected to adversely affect the electrical state or capability of the Bulk Electric System, 
or the ability to effectively monitor, control, or restore the Bulk Electric System. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

41   

 
 
 

Proposed VSLs – TPL-007-2, R11
Lower

N/A 

Moderate

N/A 

High

Severe

N/A 

The responsible entity did not 
implement a process to obtain 
GIC monitor data from at least 
one GIC monitor located in the 
Planning Coordinator’s planning 
area or other part of the system 
included in the Planning 
Coordinator’s GIC System 
Model. 

 
 
VSL Justifications – TPL-007-2, R11

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
There is no prior compliance obligation for this requirement. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

42   

 
 
 

VSL Justifications – TPL-007-2, R11

FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 
Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 
 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

43   

 
 
 

 
 
VRF Justifications – TPL-007-2, R12
Proposed VRF

Lower

FERC VRF G1 Discussion 

Guideline 1‐ Consistency w/ Blackout Report: N/A 

FERC VRF G2 Discussion 

Guideline 2‐ Consistency within a Reliability Standard: The requirement has no sub‐requirements so a 
single VRF was assigned. 
Guideline 3‐ Consistency among Reliability Standards. A VRF of Lower is consistent with approved 
Reliability Standards requiring entities to implement processes to obtain data. These include Reliability 
Standard MOD‐032‐1 Requirement R1 and Reliability Standard IRO‐010‐2 Requirement R1. 
Guideline 4‐ Consistency with NERC Definitions of VRFs. The VRF of Lower is consistent with the NERC 
VRF Definition. Failure to obtain geomagnetic field data for the planning area would not be expected 
to adversely affect the electrical state or capability of the Bulk Electric System, or the ability to 
effectively monitor, control, or restore the Bulk Electric System. 
Guideline 5‐ Treatment of Requirements that Co‐mingle More than One Obligation. This requirement 
does not co‐mingle a higher‐risk reliability objective with a lesser‐ risk reliability objective. 

FERC VRF G3 Discussion 

FERC VRF G4 Discussion 

FERC VRF G5 Discussion 
 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

44   

 
 
 

Proposed VSLs – TPL-007-2, R12
Lower

N/A 

Moderate

N/A 

High

Severe

N/A 

The responsible entity did not 
implement a process to obtain 
geomagnetic field data for its 
Planning Coordinator’s planning 
area. 

 
VSL Justifications – TPL-007-2, R12

NERC VSL Guidelines 
FERC VSL G1  
Violation Severity Level 
Assignments Should Not Have 
the Unintended Consequence of 
Lowering the Current Level of 
Compliance 
FERC VSL G2 
Violation Severity Level 
Assignments Should Ensure 
Uniformity and Consistency in 
the Determination of Penalties 
Guideline 2a: The Single 
Violation Severity Level 

Consistent with NERC's VSL Guidelines. The requirement does not have elements or quantities to 
evaluate degrees of compliance. A VSL of Severe is assigned for non‐compliance. 
There is no prior compliance obligation for this requirement. 

The proposed VSL is written to ensure uniformity and consistency in the determination of penalties. 
 
 
 
 
Guideline 2a: The proposed VSL is binary and assigned a Severe VSL. 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

45   

 
 
 

VSL Justifications – TPL-007-2, R12

Assignment Category for 
"Binary" Requirements Is Not 
Consistent 
Guideline 2b: Violation Severity 
Level Assignments that Contain 
Ambiguous Language 

 
 
 
Guideline 2b: The proposed VSL does not use ambiguous terms, supporting uniformity and consistency 
in the determination of similar penalties for similar violations. 

FERC VSL G3  
Violation Severity Level 
Assignment Should Be 
Consistent with the 
Corresponding Requirement 

The proposed VSL is worded consistently with the corresponding requirement. 

The proposed VSL is not based on a cumulative number of violations. 
FERC VSL G4  
Violation Severity Level 
Assignment Should Be Based on 
A Single Violation, Not on A 
Cumulative Number of 
Violations 
 

TPL‐007‐2  Transmission System Planned Performance for Geomagnetic Disturbance Events
VRF and VSL Justifications – June 8,| October 2017 

46   

 
 
 
 
 
 
 
 
Consideration of Directives 
Reliability Standard for Transmission System Planned Performance for Geomagnetic Disturbance Events 
Order No. 830, 156 FERC ¶ 61,215 (Sep. 22, 2016)  
approving Reliability Standard TPL‐007‐1 
 

Consideration of Directives 
 
#  P 

Directive/Guidance 

Resolution 

1)  PP 44 
47‐49 

MODIFY THE BENCHMARK GMD EVENT re SPATIAL AVERAGING 
 
P44: “[T]he Commission, as proposed in the NOPR, directs NERC to 
develop revisions to the benchmark GMD event definition so that the 
reference peak geoelectric field amplitude component is not based 
solely on spatially‐averaged data.” 
 
P47: “Without prejudging how NERC proposes to address the 
Commission’s directive, NERC’s response to this directive should 
satisfy the NOPR’s concern that reliance on spatially‐averaged data 
alone does not address localized peaks that could potentially affect 
the reliable operation of the Bulk‐Power System.” 
 
P48: “NERC could revise [the standard] to apply a higher reference 
peak geoelectric field amplitude value to assess the impact of 
localized hot spots on the Bulk‐Power System, as suggested by the 
Trade Associations.” 
 
P49: “Consistent with Order No. 779, the Commission does not 
specify a particular reference peak geoelectric field amplitude value 
that should be applied to hot spots given present uncertainties.” 

The directive is addressed in proposed TPL‐007‐2 
through Requirements for applicable entities to perform 
supplemental geomagnetic disturbance (GMD) 
Vulnerability Assessments based on the supplemental 
GMD event. The supplemental GMD event is a defined 
event for assessing system performance that is not 
based on spatially‐averaged data. 
 
The supplemental GMD event is described in the 
standard drafting team's (SDT) white paper available on 
the project page: 
 
http://www.nerc.com/pa/Stand/Pages/Project‐2013‐03‐
Geomagnetic‐Disturbance‐Mitigation.aspx 
 

Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

2 

Consideration of Directives 
 
#  P 

Directive/Guidance 

Resolution 

2)  P65 

REVISE R6 RE SPATIAL AVERAGING 
 
P65: “Consistent with our determination above regarding the 
reference peak geoelectric field amplitude value, the Commission 
directs NERC to revise Requirement R6 to require registered entities 
to apply spatially averaged and non‐spatially averaged peak 
geoelectric field values, or some equally efficient and effective 
alternative, when conducting thermal impact assessments.” 

The directive is addressed in proposed TPL‐007‐2 
Requirements R9 and R10. Applicable entities use 
geomagnetically‐induced current (GIC) information for 
the supplemental GMD event to perform supplemental 
thermal impact assessments of applicable power 
transformers. 
 
Requirement R9 obligates responsible Planning 
Coordinators and Transmission Planners to provide GIC 
flow information to Transmission Owners and Generator 
Owners for performing supplemental thermal impact 
assessments. The GIC flow information is based on the 
supplemental GMD event. 
 
Requirement R10 obligates Transmission Owners and 
Generator Owners to perform supplemental thermal 
impact assessments on applicable power transformers 
and provide results to responsible Planning Coordinators 
and Transmission Planners. 

Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

3 

Consideration of Directives 
 
3)  PP 88  REVISE STANDARD TO REQUIRE COLLECTION OF GMD DATA 
90, 
 
91, 92  P 88: “The Commission … adopts the NOPR proposal in relevant part 
an directs NERC to develop revisions to Reliability Standard TPL‐007‐1 
to require responsible entities to collect GIC monitoring and 
magnetometer data as necessary to enable model validation and 
situational awareness, including from any devices that must be added 
to meet this need. 
 
The NERC standard drafting team should address the criteria for 
collecting GIC monitoring and magnetometer data discussed below 
and provide registered entities with sufficient guidance in terms of 
defining the data that must be collected, and NERC should propose in 
the GMD research work plan how it will determine and report on the 
degree to which industry is following that guidance.” 
 
GIC Requirements 
P 91: “Each responsible entity that is a transmission owner should be 
required to collect necessary GIC monitoring data. However, a 
transmission owner should be able to apply for an exemption from 
the GIC monitoring data collection requirement if it demonstrates 
that little or no value would be added to planning and operations. 
 
In developing a requirement regarding the collection of GIC 
monitoring data, NERC should consider the following criteria 
discussed at the March 1, 2016 Technical Conference: (1) the GIC 
data is from areas found to have high GIC based on system studies; 
(2) the GIC data comes from sensitive installations and key parts of 
the transmission grid; and (3) the data comes from GIC monitors that 
are not situated near transportation systems using direct current 
(e.g., subways or light rail.” 
 
Magnetometer Requirements 
P90: “In developing a requirement regarding the collection of 

Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

The directive is addressed in proposed TPL‐007‐2 
Requirements R11 and R12. 
 
Requirement R11 obligates responsible Planning 
Coordinators and Transmission Planners to implement a 
process to obtain GIC monitor data from at least one GIC 
monitor located in the Planning Coordinator's planning 
area or other part of the system included in the Planning 
Coordinator's GIC System model. The SDT described GIC 
data collection criteria in the guidance section to 
promote consistency in achieving the reliability 
objective and provide responsible entities with flexibility 
to tailor procedures to their planning area. The guidance 
addresses the following considerations: monitor 
locations, monitor specifications, sampling interval, 
collection periods, data format, and data retention. 
 
 
Requirement R12 obligates responsible Planning 
Coordinators and Transmission Planners to implement a 
process to obtain geomagnetic field data for its Planning 
Coordinator’s planning area. Sources of geomagnetic 
field data include government observatories, installed 
equipment owned or operated by the entity, and third‐
party sources. Entities are referred to INTRAMAGNET 
guidance for criteria and considerations including data 
sampling rate (10‐s or faster) and data format. By 
requiring responsible Planning Coordinators and 
Transmission Planners to obtain geomagnetic field data 
for their planning areas, the requirement ensures data is 
obtained from diverse geographic areas (latitudes and 
longitudes) of the North American Bulk‐Power System. 

4 

Consideration of Directives 
 
#  P 

Directive/Guidance 

Resolution 

magnetometer data, NERC should consider the following criteria 
discussed at the March 1, 2016 Technical Conference: (1) the data is 
sampled at a cadence of at least 10‐seconds or faster; (2) the data 
comes from magnetometers that are physically close to GIC monitors; 
(3) the data comes from magnetometers that are not near sources of 
magnetic interference (e.g., roads and local distribution networks); 
and (4) data is collected from magnetometers spread across wide 
latitudes and longitudes and from diverse physiographic regions.” 
*** 
P 91: GIC monitoring and magnetometer locations should also be 
revisited after GIC system models are run with improved ground 
conductivity models. NERC may also propose to incorporate the GIC 
monitoring and magnetometer data collection requirements in a 
different Reliability Standard (e.g., real‐time reliability monitoring and 
analysis capabilities as part of the TOP Reliability Standards). 
 
P 92: “[T]he Commission determines that requiring responsible 
entities to collect necessary GIC monitoring and magnetometer data, 
rather than install GIC monitors and magnetometers, affords greater 
flexibility while obtaining significant benefits.” 

Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

5 

Consideration of Directives 
 
4)  P 101,  REVISE TPL‐007 TO REQUIRE DEADLINES FOR THE DEVELOPMENT 
102 
AND COMPLETION OF CORRECTIVE ACTION PLANS 
 
P 101: “The Commission directs NERC to modify Reliability Standard 
TPL‐007‐1 to include a deadline of one year from the completion of 
the GMD Vulnerability Assessments to complete the development of 
corrective action plans.” 
 
P 102: “The Commission also directs NERC to modify Reliability 
Standard TPL‐007‐1 to include a two‐year deadline after the 
development of the corrective action plan to complete the 
implementation of non‐hardware mitigation and four‐year deadline 
to complete hardware mitigation…” 
  

Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

The directive is addressed in proposed TPL‐007‐2 
Requirement R7. 
 
Part 7.2 specifies that responsible entities must develop 
Corrective Action Plans (CAP) within one year of 
completing the benchmark GMD Vulnerability 
Assessment. 
 
Part 7.3 requires responsible entities to include a 
timetable in the CAP that must specify: 
 Specify implementation of non‐hardware 
mitigation, if any, within two years of 
development of the CAP; and 
 Specify implementation of hardware mitigation, 
if any, within four years of development of the 
CAP. 
 
Part 7.4 provides responsible entities with flexibility to 
revise the CAP and timetables if situations beyond the 
control of the responsible entity prevent 
implementation of the CAP within the specified 
timetable. The provision is necessary to account for 
potential planning, siting, budgeting approval, or 
regulatory uncertainties associated with transmission 
system projects that are not within the responsible 
entity’s control. Responsible entities are obligated to 
document the revised CAP and update the revised CAP 
every 12 calendar months until implemented. 
 
Requirement R8 requires responsible entities to 
complete a supplemental GMD Vulnerability 
Assessment, based on the supplemental GMD event, to 
evaluate localized enhancements of geomagnetic field 
during a severe GMD event that could potentially affect 

6 

Consideration of Directives 
 
the reliable operation of the Bulk‐Power System. 
Localized enhancements of geomagnetic field can result 
in geoelectric field values above the spatially‐averaged 
benchmark in a local area. Part 8.3 specifies that if the 
responsible entity concludes that there is Cascading 
caused by the supplemental GMD event, then the 
responsible entity shall conduct an analysis of possible 
actions to reduce the likelihood or mitigate the impacts 
and the event. 
 
Proposed TPL‐007‐2 does not require responsible 
entities to implement a Corrective Action Plan to 
address impacts identified in the supplemental GMD 
Vulnerability Assessment because mandatory mitigation 
on the basis of the supplemental GMD Vulnerability 
Assessment may not provide effective reliability benefit 
or use industry resources optimally. As discussed in the 
Supplemental GMD Event Description white paper, the 
supplemental GMD event is based on a small number of 
observed localized enhancement events that provide 
only general insight into the geographic size of localized 
events during severe solar storms. Additionally, the 
state‐of‐the‐art modeling tools do not provide entities 
with capabilities to realistically model localized 
enhancements within a severe GMD event, and as a 
result entities may need to employ conservative 
approaches in the GMD Vulnerability Assessment such 
as applying the localized peak geoelectric field over an 
entire planning area. 
 
The approach taken in TPL‐007‐2 to mitigating impacts 
identified in the supplemental GMD Vulnerability 
Assessment provides responsible entities with flexibility 
to consider and select actions based on entity‐specific 

Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

7 

Consideration of Directives 
 
#  P 

Directive/Guidance 

Resolution 
factors. This is similar to the approach taken in 
Reliability Standard TPL‐001‐4 for extreme events (TPL‐
001‐4 Requirement R3 Part 3.5). 

 

Project 2013‐03 Geomagnetic Disturbance Mitigation | October 2017 

8 

Standards Announcement

Project 2013-03 Geomagnetic Disturbance Mitigation
TPL-007-2
Final Ballot Open through October 30, 2017
Now Available

A final ballot for TPL-007-2 - Transmission System Planned Performance for Geomagnetic Disturbance
Events is open through 8 p.m. Eastern, Monday, October 30, 2017.
Balloting

In the final ballot, votes are counted by exception. Votes from the previous ballot are automatically
carried over in the final ballot. Only members of the applicable ballot pools can cast a vote. Ballot pool
members who previously voted have the option to change their vote in the final ballot. Ballot pool
members who did not cast a vote during the previous ballot can vote in the final ballot.
Members of the ballot pool associated with this project can log in and submit their vote here. If you
experience any difficulties using the Standards Balloting & Commenting System (SBS), contact Nasheema
Santos.
If you are having difficulty accessing the SBS due to a forgotten password, incorrect credential error
messages, or system lock-out, contact NERC IT support directly at https://support.nerc.net/ (Monday –
Friday, 8 a.m. - 5 p.m. Eastern).
•

Passwords expire every 6 months and must be reset.

•

The SBS is not supported for use on mobile devices.

•

Please be mindful of ballot and comment period closing dates. We ask to allow at least 48
hours for NERC support staff to assist with inquiries. Therefore, it is recommended that users try
logging into their SBS accounts prior to the last day of a comment/ballot period.

Next Steps

The voting results will be posted and announced after the ballot closes. If approved, the standard will be
submitted to the Board of Trustees for adoption and then filed with the appropriate regulatory
authorities.
Standards Development Process

For more information on the Standards Development Process, refer to the Standard Processes Manual.
For more information or assistance, contact Senior Standards Developer, Scott Barfield-McGinnis via email
or at (404) 446-9689.

North American Electric Reliability Corporation
3353 Peachtree Rd, NE
Suite 600, North Tower
Atlanta, GA 30326
404-446-2560 | www.nerc.com

Standards Announcement | Project 2013-03 Geomagnetic Disturbance Mitigation
Final Ballot | October 2017

2

 

Implementation Plan

Project 2013-03 Geomagnetic Disturbance Mitigation
Reliability Standard TPL-007-2
Applicable Standard


TPL‐007‐2 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Requested Retirement


TPL‐007‐1 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Prerequisite Standard
None 
Applicable Entities


Planning Coordinator with a planning area that includes a Facility or Facilities specified in 
Section 4.2 of the standard; 



Transmission Planner with a planning area that includes a Facility or Facilities specified in 
Section 4.2 of the standard; 



Transmission Owner who owns a Facility or Facilities specified in Section 4.2 of the standard; 
and 



Generator Owner who owns a Facility or Facilities specified in Section 4.2 of the standard. 

Section 4.2 states that the standard applies to facilities that include power transformer(s) with a 
high‐side, wye‐grounded winding with terminal voltage greater than 200 kV. 
 
Terms in the NERC Glossary of Terms
There are no new, modified, or retired terms. 
 
Background
On September 22, 2016, the Federal Energy Regulatory Commission (FERC) issued Order No. 830 
approving Reliability Standard TPL‐007‐1 and its associated five‐year Implementation Plan. In the 
Order, FERC also directed NERC to develop certain modifications to the standard. FERC established a 
deadline of 18 months from the effective date of Order No. 830 for completing the revisions, which 
is May 2018. 
 
General Considerations
This Implementation Plan is intended to integrate the new requirements in TPL‐007‐2 with the GMD 
Vulnerability Assessment process that is being implemented through approved TPL‐007‐1. At the 
time of the May 2018 filing deadline, many requirements in approved standard TPL‐007‐1 that lead 

 

 

to completion of the geomagnetic disturbance (GMD) Vulnerability Assessment will be in effect. 
Furthermore, many entities may be taking steps to complete studies or assessments that are 
required by future enforceable requirements in TPL‐007‐1. The Implementation Plan phases in the 
requirements in TPL‐007‐2 based on the effective date of TPL‐007‐2, as follows: 
 
 Effective Date before January 1, 2021. Implementation timeline supports applicable entities 
completing new requirements for supplemental GMD Vulnerability Assessments 
concurrently with requirements for the benchmark GMD Vulnerability Assessment 
(concurrent effective dates). 
 
 Effective Date on or after January 1, 2021. Implementation timeline supports applicable 
entities completing the benchmark GMD Vulnerability Assessments before new 
requirements for supplemental GMD Vulnerability Assessments become effective.  
  
Effective Date
The effective date for the proposed Reliability Standard is provided below. Where the standard 
drafting team identified the need for a longer implementation period for compliance with a 
particular section of the proposed Reliability Standard (e.g., an entire Requirement or a portion 
thereof), the additional time for compliance with that section is specified below. These phased‐in 
compliance dates represent the dates that entities must begin to comply with that particular section 
of the Reliability Standard, even where the Reliability Standard goes into effect at an earlier date. 
 
Standard TPL‐007‐2 
Where approval by an applicable governmental authority is required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the effective date 
of the applicable governmental authority’s order approving the standard, or as otherwise provided 
for by the applicable governmental authority. 
 
Where approval by an applicable governmental authority is not required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the date the 
standard is adopted by the NERC Board of Trustees, or as otherwise provided for in that jurisdiction. 
 
Phased-In Compliance Dates
If TPL-007-2 becomes effective before January 1, 2021
Implementation timeline supports applicable entities completing new requirements for 
supplemental GMD Vulnerability Assessments concurrently with requirements for the benchmark 
GMD Vulnerability Assessment (concurrent effective dates). 
 
Compliance Date for TPL‐007‐2 Requirements R1 and R2 
Entities shall be required to comply with Requirements R1 and R2 upon the effective date of 
Reliability Standard TPL‐007‐2. 
 

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | January 2018 

2 

 

Compliance Date for TPL‐007‐2 Requirement R5 
Entities shall not be required to comply with Requirements R5 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2.
Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R11 and R12 
Entities shall not be required to comply with Requirements R11 and R12 until 24 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R6 and R10 
Entities shall not be required to comply with Requirements R6 and R10 until 30 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R3, R4, and R8 
Entities shall not be required to comply with Requirements R3, R4, and R8 until 42 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R7 
Entities shall not be required to comply with Requirement R7 until 54 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
If TPL-007-2 becomes effective on or after January 1, 2021
Implementation timeline supports applicable entities completing the benchmark GMD Vulnerability 
Assessments before new requirements for supplemental GMD Vulnerability Assessments become 
effective. 
 
Compliance Date for TPL‐007‐2 Requirements R1, R2, R5, and R6 
Entities shall be required to comply with Requirements R1, R2, R5, and R6 upon the effective date of 
Reliability Standard TPL‐007‐2.
Compliance Date for TPL‐007‐2 Requirements R3 and R4 
Entities shall not be required to comply with Requirements R3 and R4 until 12 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R7, R11, and R12 
Entities shall not be required to comply with Requirements R7, R11, and R12 until 24 months after 
the effective date of Reliability Standard TPL‐007‐2. 
 

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | January 2018 

3 

 

Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until 36 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R10 
Entities shall not be required to comply with Requirement R10 until 60 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R8 
Entities shall not be required to comply with Requirement R8 until 72 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Retirement Date
Standard TPL‐007‐1 
Reliability Standard TPL‐007‐1 shall be retired immediately prior to the effective date of TPL‐007‐2 in 
the particular jurisdiction in which the revised standard is becoming effective. 
Initial Performance of Periodic Requirements
Transmission Owners and Generator Owners are not required to comply with Requirement R6 prior 
to the compliance date for Requirement R6, regardless of when geomagnetically‐induced current 
(GIC) flow information specified in Requirement R5, Part 5.1 is received. 
 
Transmission Owners and Generator Owners are not required to comply with Requirement R10 
prior to the compliance date for Requirement R10, regardless of when GIC flow information 
specified in Requirement R9, Part 9.1 is received.

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | January 2018 

4 

 

Implementation Plan

Project 2013-03 Geomagnetic Disturbance Mitigation
Reliability Standard TPL-007-2
Applicable Standard


TPL‐007‐2 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Requested Retirement


TPL‐007‐1 ‐ Transmission System Planned Performance for Geomagnetic Disturbance Events 

Prerequisite Standard
None 
Applicable Entities





Planning Coordinator with a planning area that includes a Facility or Facilities specified in Section 
4.2 of the standard; 
Transmission Planner with a planning area that includes a Facility or Facilities specified in Section 
4.2 of the standard; 
Transmission Owner who owns a Facility or Facilities specified in Section 4.2 of the standard; and 
Generator Owner who owns a Facility or Facilities specified in Section 4.2 of the standard. 

Section 4.2 states that the standard applies to facilities that include power transformer(s) with a 
high‐side, wye‐grounded winding with terminal voltage greater than 200 kV. 
 
Terms in the NERC Glossary of Terms
There are no new, modified, or retired terms. 
 
Background
On September 22, 2016, the Federal Energy Regulatory Commission (FERC) issued Order No. 830 
approving Reliability Standard TPL‐007‐1 and its associated five‐year Implementation Plan. In the 
Order, FERC also directed NERC to develop certain modifications to the standard. FERC established a 
deadline of 18 months from the effective date of Order No. 830 for completing the revisions, which 
is May 2018. 
 
General Considerations
This Implementation Plan is intended to integrate the new requirements in TPL‐007‐2 with the GMD 
Vulnerability Assessment process that is being implemented through approved TPL‐007‐1. At the 
time of the May 2018 filing deadline, many requirements in approved standard TPL‐007‐1 that lead 
to completion of the geomagnetic disturbance (GMD) Vulnerability Assessment will be in effect. 
Furthermore, many entities may be taking steps to complete studies or assessments that are 

 

 

required by future enforceable requirements in TPL‐007‐1. The Implementation Plan phases in the 
requirements in TPL‐007‐2 based on the effective date of TPL‐007‐2, as follows: 
 
 Effective Date before January 1, 2021. Implementation timeline supports applicable entities 
completing new requirements for supplemental GMD Vulnerability Assessments 
concurrently with requirements for the benchmark GMD Vulnerability Assessment 
(concurrent effective dates). 
 
 Effective Date on or after January 1, 2021. Implementation timeline supports applicable 
entities completing the benchmark GMD Vulnerability Assessments before new 
requirements for supplemental GMD Vulnerability Assessments become effective.  
  
Effective Date
The effective date for the proposed Reliability Standard is provided below. Where the standard 
drafting team identified the need for a longer implementation period for compliance with a 
particular section of the proposed Reliability Standard (e.g., an entire Requirement or a portion 
thereof), the additional time for compliance with that section is specified below. These phased‐in 
compliance dates represent the dates that entities must begin to comply with that particular section 
of the Reliability Standard, even where the Reliability Standard goes into effect at an earlier date. 
 
Standard TPL‐007‐2 
Where approval by an applicable governmental authority is required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the effective date 
of the applicable governmental authority’s order approving the standard, or as otherwise provided 
for by the applicable governmental authority. 
 
Where approval by an applicable governmental authority is not required, the standard shall become 
effective on the first day of the first calendar quarter that is three (3) months after the date the 
standard is adopted by the NERC Board of Trustees, or as otherwise provided for in that jurisdiction. 
 
Phased-In Compliance Dates
If TPL-007-2 becomes effective before January 1, 2021
Implementation timeline supports applicable entities completing new requirements for 
supplemental GMD Vulnerability Assessments concurrently with requirements for the benchmark 
GMD Vulnerability Assessment (concurrent effective dates). 
 
Compliance Date for TPL‐007‐2 Requirements R1 and R2 
Entities shall be required to comply with Requirements R1 and R2 upon the effective date of 
Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R5 
Entities shall not be required to comply with Requirements R5 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2.

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | January 2018  

2 

 

Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until six (6) months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R11 and R12 
Entities shall not be required to comply with Requirements R11 and R12 until 24 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R6 and R10 
Entities shall not be required to comply with Requirements R6 and R10 until 30 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R3, R4, and R8 
Entities shall not be required to comply with Requirements R3, R4, and R8 until 42 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R7 
Entities shall not be required to comply with Requirement R7 until 54 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
If TPL-007-2 becomes effective on or after January 1, 2021
Implementation timeline supports applicable entities completing the benchmark GMD Vulnerability 
Assessments before new requirements for supplemental GMD Vulnerability Assessments become 
effective. 
 
Compliance Date for TPL‐007‐2 Requirements R1, R2, R5, and R6 
Entities shall be required to comply with Requirements R1, R2, R5, and R6 upon the effective date of 
Reliability Standard TPL‐007‐2.
Compliance Date for TPL‐007‐2 Requirements R3 and R4 
Entities shall not be required to comply with Requirements R3 and R4 until 12 months after the 
effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirements R7, R11, and R12 
Entities shall not be required to comply with Requirements R7, R11, and R12 until 24 months after 
the effective date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R9 
Entities shall not be required to comply with Requirement R9 until 36 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | January 2018  

3 

 

Compliance Date for TPL‐007‐2 Requirement R10 
Entities shall not be required to comply with Requirement R10 until 60 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Compliance Date for TPL‐007‐2 Requirement R8 
Entities shall not be required to comply with Requirement R8 until 72 months after the effective 
date of Reliability Standard TPL‐007‐2. 
 
Retirement Date
Standard TPL‐007‐1 
Reliability Standard TPL‐007‐1 shall be retired immediately prior to the effective date of TPL‐007‐2 in 
the particular jurisdiction in which the revised standard is becoming effective, provided that the TPL‐
007‐1 Implementation Plan shall remain in effect to the extent necessary until the phased‐in 
compliance dates above are implemented for TPL‐007‐2. 
Initial Performance of Periodic Requirements
Transmission Owners and Generator Owners are not required to comply with Requirement R6 prior 
to the compliance date for Requirement R6, regardless of when geomagnetically‐induced current 
(GIC) flow information specified in Requirement R5, Part 5.1 is received. 
 
Transmission Owners and Generator Owners are not required to comply with Requirement R10 
prior to the compliance date for Requirement R10, regardless of when GIC flow information 
specified in Requirement R9, Part 9.1 is received.

Implementation Plan 
Project 2013‐03 Geomagnetic Disturbance Mitigation | January 2018  

4 


File Typeapplication/pdf
AuthorCourtney Baughan
File Modified2018-05-10
File Created2018-01-22

© 2024 OMB.report | Privacy Policy